Skip to main content
Advertisement

< Back to Article

BRAF and AXL oncogenes drive RIPK3 expression loss in cancer

Fig 2

Necroptosis sensitivity screen in 941 cancer cell lines identifies drivers of necroptosis resistance.

(A) Outline of the high-throughput screening for differential necroptosis sensitivity in 941 human cancer cell lines. (B) Differential sensitivity of 941 cancer cell lines to TSZ-induced necroptosis across 28 tissues of origin. (C) Numbers and percentages of necroptosis-resistant/sensitive cell lines. (D) Low-throughput confirmation of the screen observations regarding loss of RIPK3 expression and necroptosis resistance, as judged by lack of p-MLKL induction. Indicated cancer cell lines were treated with TSZ for 6 hours and cell lysates were immunoblotted with indicated antibodies. Note that RIPK1, RIPK3, and MLKL levels decrease in lane 2 because of induction of necroptosis, formation of amyloid-like necrosome structure, and translocation of these proteins into a detergent-insoluble fraction. (E) Low-throughput confirmation of the screen observations regarding necroptosis resistance. Indicated cells were treated with indicated treatments and cell survival was measured 16 hours later using CellTiterGlo. Means ± SEM are shown. (F) Genome-wide Pearson correlation analysis of TSZ-IC50 values versus gene expression values across 941 cell lines identifies genes, the expression of which negatively (e.g., RIPK3) and positively (e.g., AXL) correlates with necroptosis resistance. Top genes, the expression of which positively correlates with necroptosis resistance (red box), are listed. The underlying data can be found in S1 Data. p-MLKL, phospho-MLKL S358; TSZ TNFα+SM-164+zVAD.fmk; UT, untreated.

Fig 2

doi: https://doi.org/10.1371/journal.pbio.2005756.g002