Skip to main content
Advertisement

< Back to Article

Temporal Correlation Mechanisms and Their Role in Feature Selection: A Single-Unit Study in Primate Somatosensory Cortex

Figure 4

Attention modulates spike-synchrony rates of feature selective neural pairs.

(A) Instantaneous spike-synchrony activity of two neural pairs selective for frequency (left graph) and orientation (right graph) features. Attention towards orientation, frequency, and visual stimuli is represented in green, red, and blue traces, respectively. The “chance” synchrony for each attention condition was subtracted. The lower panels show the instantaneous FR profiles of each neuron comprising the neural pair. All graphs are aligned to the onset of the tactile stimulus (t = 0). These example neural pairs are from animal 1. See Figure S3 for other example neural pairs in animals 1, 2, and 3. The instantaneous FR and synchrony waveforms were smoothed with a ±5 ms moving average filter. (B) FAI of feature selective and non-feature selective neurons. (C) Numerical simulations of spike-synchrony between two neurons as a function of the averaged FR between the neural pair. The graphs show that the jitter correction method [32] removes the spike-synchrony expected by chance across all FR values. The asterisks in Figure 4A indicate significant differences between spike-synchrony across the attention conditions (p<0.05). The asterisk in (B) indicates a significant difference in the FAI between the two neural populations. The underlying data used to make this figure can be found in Data S1.

Figure 4

doi: https://doi.org/10.1371/journal.pbio.1002004.g004