Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Circulating sex hormone binding globulin: An integrating biomarker for an adverse cardio-metabolic profile in obese pregnant women

  • Sílvia Xargay-Torrent,

    Roles Formal analysis, Investigation, Writing – review & editing

    Affiliation Obesity and cardiovascular risk in pediatrics, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain

  • Gemma Carreras-Badosa,

    Roles Formal analysis, Investigation

    Affiliation Obesity and cardiovascular risk in pediatrics, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain

  • Sara Borrat-Padrosa,

    Roles Formal analysis, Investigation

    Affiliation Department of Pediatrics, Dr. Trueta University Hospital, Girona, Spain

  • Anna Prats-Puig,

    Roles Investigation

    Affiliation Department of Physical Therapy, EUSES University School, Salt, Spain

  • Pilar Soriano,

    Roles Methodology

    Affiliation Clinical Laboratory, Fundació Salut Empordà, Figueres, Spain

  • Elena Álvarez-Castaño,

    Roles Methodology

    Affiliation Department of Gynecology, Dr. Trueta University Hospital, Girona, Spain

  • Mª Jose Ferri,

    Roles Methodology

    Affiliation Clinical Laboratory, Dr. Trueta University Hospital, Girona, Spain

  • Francis De Zegher,

    Roles Writing – review & editing

    Affiliation Department of Development & Regeneration, University of Leuven, Leuven, Belgium

  • Lourdes Ibáñez,

    Roles Writing – review & editing

    Affiliations Endocrinology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain

  • Abel López-Bermejo ,

    Contributed equally to this work with: Abel López-Bermejo, Judit Bassols

    Roles Conceptualization, Formal analysis, Funding acquisition, Supervision, Writing – review & editing

    jbassols@idibgi.org (JB); alopezbermejo@idibgi.org (ALB)

    Affiliations Obesity and cardiovascular risk in pediatrics, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain, Department of Pediatrics, Dr. Trueta University Hospital, Girona, Spain

  • Judit Bassols

    Contributed equally to this work with: Abel López-Bermejo, Judit Bassols

    Roles Conceptualization, Formal analysis, Funding acquisition, Supervision, Writing – original draft, Writing – review & editing

    jbassols@idibgi.org (JB); alopezbermejo@idibgi.org (ALB)

    Affiliation Materno-fetal metabolic reseach, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain

Abstract

Sex hormone-binding globulin (SHBG) negatively associates with pre-gestational body mass index (BMI) and gestational weight gain. The link with other cardio-metabolic risk factors in pregnant women is poorly understood. Our aim was to study the association of SHBG levels with common cardio-metabolic risk parameters in pregnant woman.

Serum SHBG was quantified in 291 Caucasian pregnant women (142 with normal weight, 42 with pregestational obesity, 50 with gestational obesity and 57 with pregestational plus gestational obesity) with uncomplicated pregnancies and parturition. Cardio-metabolic [C-reactive protein (CRP), blood pressure (BP), glycosylated hemoglobin (HbAc1), glucose, C-peptide, insulin, triglycerides and high molecular weight (HMW) adiponectin], and endocrine [testosterone and estradiol] parameters were also assessed.

SHBG was negatively correlated with BMI, but also with CRP, BP, HbAc1, pre and post-load glucose, C-peptide, HOMA-IR, triglycerides; and positively with HMW adiponectin (all p<0.01 to p<0.0001). These associations were more robust in women with pregestational plus gestational obesity, who had lower SHBG, in comparison to normal-weight women (p<0.0001). In multivariate analyses in women with pregestational plus gestational obesity SHBG showed independent associations with CRP (β = −0.352, p = 0.03, R2 = 8.0%), DBP (β = −0.353, p = 0.03, R2 = 7.0%) and SBP (β = −0.333, p = 0.04, R2 = 6.0%) independently of BMI and metabolic and endocrine parameters.

SHBG is decreased in pregnant women with pregestational plus gestational obesity in association with common cardio-metabolic parameters. SHBG could represent an integrating biomarker for an adverse cardio-metabolic profile in pregnant women with pregestational plus gestational obesity.

Introduction

Obesity is a well-known worldwide epidemic condition that affects men, women and children. In recent years, much attention has been paid to obesity during pregnancy, which has not only adverse effects on the mothers’ health but also on the developing fetus [1]. Pregnant women with obesity have increased risk of impaired glucose tolerance and gestational diabetes (GDM) and increased risk of delivering a large for gestational age baby [1]. Offspring of obese women have also increased risk of obesity and obesity-related negative health outcomes later in life, such as increased carotid-intima thickness, higher body mass index, increased blood pressure or adverse lipid profile throughout childhood, adolescence, and as young adults [2,3]. Women can enter pregnancy with a body mass index (BMI) in the overweight or obese range or gain excessive weight during gestation and it is difficult to determine the separate or interdependent contributions of prepregnancy BMI and gestational weight gain on the metabolic outcomes for the mother and the offspring [4].

Adiposity is significantly associated with sex hormones, and adipose tissue contributes to the production of sex hormones in women [5,6]. Increased concentrations of sexual steroids have been related to cardio-metabolic alterations such as high blood pressure, gestational diabetes mellitus, pre-eclampsia or low/high birth weight [5,710]. Sex hormone binding globulin (SHBG) is a glycoprotein synthetized by the liver that transports sexual steroids (androgens and estrogens) in plasma, regulating their availability and access to target organs [11]. SHBG production is negatively regulated by insulin and monosaccharides and numerous studies in men, children and adolescents have shown that SHBG levels are reduced in obesity, insulin resistance, metabolic syndrome and type 2 diabetes [12,13]. Thus, a low level of SHBG may be a biomarker for the future development of metabolic risk factors (including hypertension, dyslipidemia, abdominal obesity and impaired glucose metabolism), and has been associated with a 2-fold increased risk of cardiovascular disease (CVD) [14]. Consistently, in postmenopausal women, low SHBG levels are related to an adverse profile of risk factors for CVD [15].

SHBG levels vary during pregnancy, being higher between 16 and 27 weeks’ gestation. The hormone is expressed in placenta as well as found in cord blood. SHBG is reduced in pregnant women with obesity and gestational diabetes [16,17]. The relationship between newborn parameters such as birth weight and maternal SHBG concentrations has been poorly investigated and is controversial, with some studies finding negative correlations and others no association [1820]. Recent data suggest that SHBG levels during pregnancy may contribute to and predict the development of adiposity, metabolic syndrome and diabetes as children grow older [21]. If confirmed, SHBG might be a useful biomarker to detect children who are prone to develop cardio-metabolic diseases.

In summary, the link of SHBG with common cardio-metabolic parameters is poorly understood in pregnancy. We aimed to study the association of circulating SHBG with cardio-metabolic parameters in a cohort of pregnant women with pregestational and/or gestational obesity. As a secondary aim, we also studied the relationship of maternal SHBG with newborn parameters.

Materials and methods

Study population and ethics

The study cohort consisted of 291 mother-newborn pairs recruited among those seen at the prenatal primary care clinics in Girona, between 2008 and 2010. Inclusion criteria were: 1) singleton uncomplicated pregnancies of Caucasian origin; 2) absence of major medical, surgical or obstetrical complications; and 3) absence of maternal pathology (hypertension, pre-eclampsia or gestational diabetes). The exclusion criteria were: 1) fetal malformations or asphyxia; and 2) lack of data about principal variables. A total of 335 pregnant women were recruited in the prenatal cohort and 43 were excluded because they did not fulfil the inclusion criteria or had exclusion criteria.

Women were grouped according to their pregestational BMI and their end pregnancy weight gain following consensus guidelines from the Health and Medicine Division of the US National Academies [22], which are recommended by Spanish Society of Gynecology and Obstetrics (SEGO). The groups were as follows: 1) Normal weight women: [18.5≤pregestational BMI≤24.9 and 11.5≤pregnancy weight gain≤16kg]; 2) Women with Pregestational obesity only [pregestational BMI≥25 and 7≤pregnancy weight gain≤11.5kg or pregestational BMI>30 and 5≤pregnancy weight gain≤9kg]; 3) Women with gestational obesity only [18.5≤pregestational BMI≤24.9 and pregnancy weight gain>16kg]; and 4) Pregestational plus Gestational obesity [pregestational BMI≥25 and pregnancy weight gain>16kg or pregestational BMI≥30 and pregnancy weight gain>9kg] respectively.

The protocol was approved by the Institutional Review Board of Dr. Josep Trueta Hospital and all methods were performed in accordance with the relevant guidelines and regulations. Written informed consent was obtained from the women. All data generated or analyzed during this study are included in this published article.

Assessments and samples

Prenatal follow-up, consisting of standardized clinical exams, ultrasonograms, and laboratory tests (urine and blood), were performed in all subjects. Social, demographic, medical and reproductive features were retrieved from the mothers’ clinical records along with labor and delivery information. Maternal education was assessed as years of schooling after primary school.

Maternal weight and height were assessed at the beginning of gestation, at second trimester and again before delivery. Maternal gestational weight gain was obtained as the difference between the last weight measurement before delivery and pre-pregnancy weight. Body mass index (BMI) was calculated as weight divided by height squared, Kg/m2. Systolic (SBP) and diastolic (DBP) blood pressure were measured in the sitting position on the right arm after 10 min rest; an electronic sphygmomanometer (Dinamap Pro 100, GE Healthcare, Chalfont St. Giles, United Kingdom) was used.

At delivery, placentas were weighed using a calibrated scale. Infants were weighed and measured within the first minutes after delivery using a calibrated scale for weight, a measuring board and a measuring tape for length and head circumference respectively. Gestational age- and sex-adjusted z-scores were calculated using regional norms [23]. Ponderal index was calculated as (birth weight (g)*100)/ (birthlength (cm))3.

Analytical methods

All serum samples for assessment of soluble SHBG and metabolic markers were obtained under fasting conditions at second trimester of pregnancy (between 24 and 28 gestation weeks), at the time of assessment of glucose tolerance. Oral glucose tolerance tests, with fasting and one hour-timed blood glucose measurements after a 50 g oral glucose load, were performed in all participants.

Serum glucose was analyzed by the hexokinase method. HbA1c was measured by high performance liquid chromatography with ionic exchange (D-10 Hemoglobin, Bio-Rad Laboratories, Hercules, CA). Serum immunoreactive insulin was measured by immunochemiluminiscence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA). Lower detection limit was 0.4 mIU/L and intra- and inter-assay CVs were less than 10%. Fasting insulin sensitivity was estimated from fasting insulin and glucose levels using the homeostasis model assessment [HOMA-IR = (fasting insulin in mU/l) x (fasting glucose in mM)/22.5)]. Serum C-peptide was measured by immunochemiluminiscence (IMMULITE 2000; Diagnostic Products, Los Angeles, CA). The detection limit was 0.05 ng/mL and CVs were less than 10%. High-molecular-weight (HMW) adiponectin was measured by sandwich ELISA (Linco, St. Charles, MO). The detection limit was 0.5 ng/mL and CVs was less than 4%. Serum levels of CRP were measured using an ultrasensitive latex immunoassay (CRP Vario; Sentinel Diagnostics, Abbott Diagnostics Europe, Milan, Italy). The lower limit of detection was 0.2 mg/L, and the intra-assay and interassay CVs were both <3%. Total serum triglycerides were measured by monitoring the reaction of glycerol-phosphate-oxidase and peroxidase. HDL cholesterol was quantified by the homogeneous method of selective detergent with accelerator. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT) were analyzed by colorimetry using automated tests (Roche diagnostics GmbH, Manheim, Germany). Intraassay and interassay coefficients of variation were less than 4% for these tests. Serum SHBG, estradiol and testosterone concentrations were measured by a chemiluminescent microparticle immunoassay (ARCHITECT, Abbot Laboratories SA, Texas). The within- and between-run CVs were less than 10%, and the detection limit were 0.1 nmol/L, 5 pg/mL and 0.15 nmol/L, respectively. Total testosterone was used to calculate free testosterone as previously described [24].

Statistics

Statistical analyses were performed using SPSS version 18.0 (SPSS Inc, Chicago, IL). Results are expressed as mean ± SD for normally distributed variables and median and interquartile range for non-normally distributed variables. Kolmogorov-Smirnov test was applied to test for normal distribution. Non-normally distributed variables were mathematically transformed to improve symmetry. Differences among pregnant women groups were examined by One-way ANOVA and DMS post-hoc test or χ2 test. The relation of SHBG with maternal cardio-metabolic parameters at the second trimester of pregnancy (24–28 weeks of gestation) was analyzed by Pearson correlation followed by multiple regression analysis using the enter method to adjust for maternal age, maternal education, pregestational and gestational smoking, BMI, time of gestation, HOMA-IR, HMW adiponectin, hepatic enzymes, serum lipids and sex hormones. The same tests were used to study the association between SHBG at the second trimester of pregnancy and newborn parameters. Significance level was set at p<0.05.

Results

Clinical and laboratory characteristics of the study subjects are summarized in Table 1. Women with pregestational, gestational obesity or pregestaional plus gestational obesity showed lower SHBG values than normal weight women (p = 0.05, p = 0.05 and p<0.001 respectively; Table 1).

thumbnail
Table 1. Clinical and laboratory assessments in the studied pregnant women.

https://doi.org/10.1371/journal.pone.0205592.t001

In the studied women, decreasing concentrations of SHBG were correlated with a less favorable cardio-metabolic profile (more CRP, DBP, SBP, BMI, HbAc1, pre and post-load glucose, C-peptide, HOMA-IR, triglycerides and less HMW adiponectin; all p<0.05 to p<0.001; Table 2). Most of these associations were not apparent in normal weight women or women with pregestational or gestational obesity only but were present in women with pregestational plus gestational obesity (Table 2).

thumbnail
Table 2. Pearson correlation analyses of SHBG with clinical and laboratory parameters in the studied pregnant women.

https://doi.org/10.1371/journal.pone.0205592.t002

The associations of SHBG with cardio-metabolic parameters remained significant in all subjects after controlling for maternal age and education, BMI, time of gestation, smoking, metabolic (HOMA-IR, hepatic enzymes and serum lipids) and endocrine parameters (HMW adiponectin, free testosterone and estradiol) in multiple regression analyses. CRP (β = −0.151, p = 0.009) and DBP (β = −0.129, p = 0.024) were independent predictors of SHBG levels in their respective models, explaining, together with BMI, GGT and sex hormones, 25% of SHBG variance (Table 3). In women with pregestational plus gestational obesity, SHBG showed independent associations with CRP (β = −0.352, p = 0.032, R2 = 8.0%), DBP (β = −0.353, p = 0.035, R2 = 7.0%) and SBP (β = −0.333, p = 0.046, R2 = 6.0%) independently of BMI and metabolic and endocrine parameters (Table 3).

thumbnail
Table 3. Multivariate linear models of SHBG as dependent variable in pregnant women according to obesity status.

https://doi.org/10.1371/journal.pone.0205592.t003

SHBG levels showed negative associations with newborn parameters including placental weight, birth weight, birth length, head circumference and ponderal index (all p<0.05; Table 2). In pregnant women with pregestational plus gestational obesity, maternal SHBG levels correlated with birth weight SDS and birth length SDS (p<0.05; Table 2). However, these parameters were not significantly related to SHBG in multivariate analysis after adjusting for confounding variables (Data not shown).

Discussion

SHBG levels are decreased in pregnant women with pregestational plus gestational obesity and are correlated with a less favorable cardio-metabolic profile (more CRP, DBP, SBP, insulin, C-peptide, HOMA-IR and less HMW adiponectin).

It is well known that SHBG levels decrease with increasing obesity [25] and rise with weight loss [26]. We also observed that women with pregestational obesity and/or gestational obesity showed lower SHBG values than normal weight women.

As expected from the current literature [1,11,27] negative associations were found between SHBG levels and metabolic parameters. Except for BMI, these correlations were not apparent in normal weight women but were present in women with pregestational plus gestational obesity suggesting that the insulin resistance state secondary to maternal obesity could elicit these associations. Interestingly, it appears that the combined contribution of pregestational plus gestational obesity increases the cardio-metabolic risk in pregnant women, since each factor alone elicits weak or absent associations.

Several studies have investigated the associations between SHBG and cardiovascular risk parameters including CRP and blood pressure [28]. However, these studies were mostly performed in men [2931]. Studies on the association between androgens and CVD in women have been conducted mainly in the setting of polycystic ovarian syndrome, a condition that has been strongly associated with cardiovascular risk factors including obesity, insulin resistance, and lipid abnormalities [32]. The available studies of SHBG in pregnant women were focused in GDM [3337]. Interestingly, low SHBG concentrations before pregnancy have also been associated with increased risk of GDM, suggesting that SHBG could be used as a biomarker for early detection of GDM [38]. However, none of these studies has assessed the potential association of SHBG and cardiovascular risk markers during pregnancy. Hence we show, for the first time, that SHBG associated with CRP and BP independently of metabolic (HOMA-IR, HbAc1, hepatic enzymes and serum lipids) and endocrine (HMW adiponectin, testosterone and estradiol) parameters in pregnant women with pregestational plus gestational obesity. Although we cannot demonstrate a direct role of SHBG in real cardiovascular risk, the clinical relevance of these data relies on the independent association of SHBG with a more adverse cardio-metabolic profile. Accordingly, SHBG levels measured in young adulthood were negatively associated with markers of subclinical CVD in a cohort study of young adult women followed for 18 yr. The associations were independent of BMI and HOMA-IR. In contrast, testosterone (either total or free) levels showed no associations with SHBG [39].

SHBG regulates the levels of active sex hormones. Sex hormones can control adipose tissue metabolism by stimulating receptors that trigger several phases of lipolysis and lipogenesis. Increased signaling by estrogens and androgens could be aimed at preparing the adipose tissue for the catabolic phase in late pregnancy in a depot-specific manner [40]. Knockout mice for estrogen receptor suffer from metabolic dysfunction together with increased adiposity, glucose intolerance, insulin resistance and endothelial alterations [41]. Although SHBG was believed to be only a transport glycoprotein, there is growing evidence suggesting that SHBG may have an independent biological function through the binding to its receptor in target tissues [42]. A possible direct effect of SHBG on diabetes mellitus was suggested by a recent report [17]. Direct effects of SHBG on the vasculature are therefore also plausible. In a study of coronary artery disease, long repeats in the SHBG gene promoter (the (TAAAA)n) were associated with low SHBG and with increased severity of coronary artery disease on angiography [43]. SHBG has been suggested to act through the steroid signal transduction system of cell membranes [44].

SHBG is present in the fetal circulation and in cord blood [36]. In general, low levels of SHBG have been described in newborns, followed by an increase until the end of infancy [45]. Children born at low birth weight show reduced levels of SHBG at prepubertal stages [46]. Low circulating SHBG levels in childhood and adolescence have been related to hyperinsulinaemia/insulin resistance [47]. However, the relationship between neonatal and maternal SHBG concentrations has been controversial. While no association was initially found between maternal SHBG concentrations and infant’s birth weight [19,20], a recent study reported that SHBG concentrations were inversely related to birth weight [17]. Similar results were previously obtained from SHBG measured in umbilical cord [18]. We observed that SHBG levels showed negative associations with placental weight, birth weight, birth length, head circumference and ponderal index, however, these parameters were not significantly associated with SHBG in multivariate analysis after adjusting for confounding variables. Differences in design and study populations could account for the disparity in the reported results.

An important strength of our study is the availability of a large representative population-based sample with detailed information on the cardio-metabolic profile for each individual. However, the limitations of our study also merit attention. No data about socio-economic variables of the families or physical activity of the mothers that could act as confounders was available; it would be interesting to test the contribution of these factors in future studies. The cross-sectional design does not allow us to address the temporality or cause-effect of the observed associations, thus whether elevated SHBG is causing increased cardiovascular risk or is definitely a mere consequence. In this line, future studies with long term follow-up of these women should assess whether these associations are transitory during pregnancy or permanently increase the risk of developing cardio-metabolic diseases in later life, and determine if this applies only to Caucasian population or to other ethnicities. Finally, study of the association between newborn SHBG levels at birth and maternal SHBG or maternal parameters should be considered, however not performed in this current study due to the unavailability of neonatal blood samples.

In summary, SHBG is decreased in pregnant Caucasian women with pregestational plus gestational obesity in association with common cardio-metabolic parameters. We suggest that SHBG could represent an integrating biomarker for an adverse cardio-metabolic profile in pregnant women with pregestational plus gestational obesity.

Acknowledgments

S.X-T is an investigator of the Sara Borrell Fund from Carlos III National Institute of Health, Spain (CD15-00162). FdZ is a Senior Investigator of the Clinical Research Fund of the Leuven University Hospital, Belgium. L.I. is a Clinical Investigator of CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), from Carlos III National Institute of Health, Spain. A.L.-B. is an Investigator of the I3 Fund for Scientific Research (Ministry of Economy and Competitiveness, Spain). J.B. is an investigator of the Miguel Servet Fund from Carlos III National Institute of Health, Spain (MS12/03239).

References

  1. 1. Boney CM, Verma A, Tucker R, Vohr BR Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005; 115: e290–296. pmid:15741354
  2. 2. Skilton MR, Siitonen N, Wurtz P, Viikari JS, Juonala M, Seppala I, et al. High birth weight is associated with obesity and increased carotid wall thickness in young adults: the cardiovascular risk in young Finns study. Arterioscler Thromb Vasc Biol. 2014; 34: 1064–1068. pmid:24626439
  3. 3. Gaillard R Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur J Epidemiol. 2015; 30: 1141–1152. pmid:26377700
  4. 4. Nicholas LM, Rattanatray L, MacLaughlin SM, Ozanne SE, Kleemann DO, Walker SK, et al. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J. 2013; 27: 3786–3796. pmid:23729590
  5. 5. Vejrazkova D, Vcelak J, Vankova M, Lukasova P, Bradnova O, Halkova T, et al. Steroids and insulin resistance in pregnancy. J Steroid Biochem Mol Biol. 2014; 139: 122–129. pmid:23202146
  6. 6. Mongraw-Chaffin ML, Anderson CA, Allison MA, Ouyang P, Szklo M, Vaidya D, et al. Association between sex hormones and adiposity: qualitative differences in women and men in the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2015; 100: E596–600. pmid:25636047
  7. 7. Falbo A, Rocca M, Russo T, D'Ettore A, Tolino A, Zullo F, et al. Changes in androgens and insulin sensitivity indexes throughout pregnancy in women with polycystic ovary syndrome (PCOS): relationships with adverse outcomes. J Ovarian Res. 2010; 3: 23. pmid:20942923
  8. 8. Hu S, Leonard A, Seifalian A, Hardiman P Vascular dysfunction during pregnancy in women with polycystic ovary syndrome. Hum Reprod. 2007; 22: 1532–1539. pmid:17369295
  9. 9. Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015; 21: 575–592. pmid:26117684
  10. 10. Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod. 2002; 17: 2573–2579. pmid:12351531
  11. 11. Hammond GL, Wu TS, Simard M Evolving utility of sex hormone-binding globulin measurements in clinical medicine. Curr Opin Endocrinol Diabetes Obes. 2012; 19: 183–189. pmid:22531107
  12. 12. Birkeland KI, Hanssen KF, Torjesen PA, Vaaler S Level of sex hormone-binding globulin is positively correlated with insulin sensitivity in men with type 2 diabetes. J Clin Endocrinol Metab. 1993; 76: 275–278. pmid:8432768
  13. 13. Agirbasli M, Agaoglu NB, Orak N, Caglioz H, Ocek T, Poci N, et al. Sex hormones and metabolic syndrome in children and adolescents. Metabolism. 2009; 58: 1256–1262. pmid:19497594
  14. 14. Rexrode KM, Manson JE, Lee IM, Ridker PM, Sluss PM, Cook NR, et al. Sex hormone levels and risk of cardiovascular events in postmenopausal women. Circulation. 2003; 108: 1688–1693. pmid:12975257
  15. 15. Jaspers L, Dhana K, Muka T, Meun C, Kiefte-de Jong JC, Hofman A, et al. Sex Steroids, Sex Hormone-Binding Globulin and Cardiovascular Health in Men and Postmenopausal Women: The Rotterdam Study. J Clin Endocrinol Metab. 2016; 101: 2844–2852. pmid:27163357
  16. 16. Sun L, Jin Z, Teng W, Chi X, Zhang Y, Ai W, et al. SHBG in GDM maternal serum, placental tissues and umbilical cord serum expression changes and its significance. Diabetes Res Clin Pract. 2013; 99: 168–173. pmid:23164471
  17. 17. Morisset AS, Dube MC, Drolet R, Robitaille J, Weisnagel SJ, Tchernof A Sex hormone-binding globulin levels and obesity in women with gestational diabetes: relationship with infant birthweight. Gynecol Endocrinol. 2011; 27: 905–909. pmid:21500993
  18. 18. Simmons D Interrelation between umbilical cord serum sex hormones, sex hormone-binding globulin, insulin-like growth factor I, and insulin in neonates from normal pregnancies and pregnancies complicated by diabetes. J Clin Endocrinol Metab. 1995; 80: 2217–2221. pmid:7608282
  19. 19. Carlsen SM, Jacobsen G, Romundstad P Maternal testosterone levels during pregnancy are associated with offspring size at birth. Eur J Endocrinol. 2006; 155: 365–370. pmid:16868152
  20. 20. Wuu J, Hellerstein S, Lipworth L, Wide L, Xu B, Yu GP, et al. Correlates of pregnancy oestrogen, progesterone and sex hormone-binding globulin in the USA and China. Eur J Cancer Prev. 2002; 11: 283–293. pmid:12131662
  21. 21. Dharashivkar S, Wasser L, Baumgartner RN, King JC, Winters SJ Obesity, maternal smoking and SHBG in neonates. Diabetol Metab Syndr. 2016; 8: 47. pmid:27462374
  22. 22. Olson CM Achieving a healthy weight gain during pregnancy. Annu Rev Nutr. 2008; 28: 411–423. pmid:18422452
  23. 23. Carrascosa A, Fernandez JM, Fernandez C, Ferrandez A, Lopez-Siguero JP, Sanchez E, et al. Spanish growth studies 2008. New anthropometric standards. Endocrinol Nutr. 2008; 55: 484–506. pmid:22980464
  24. 24. Vermeulen A, Verdonck L, Kaufman JM A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999; 84: 3666–3672. pmid:10523012
  25. 25. Glass AR, Swerdloff RS, Bray GA, Dahms WT, Atkinson RL Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab. 1977; 45: 1211–1219. pmid:338622
  26. 26. Guzick DS, Wing R, Smith D, Berga SL, Winters SJ Endocrine consequences of weight loss in obese, hyperandrogenic, anovulatory women. Fertil Steril. 1994; 61: 598–604. pmid:8150098
  27. 27. Aydin B, Winters SJ Sex Hormone-Binding Globulin in Children and Adolescents. J Clin Res Pediatr Endocrinol. 2016; 8: 1–12. pmid:26761949
  28. 28. Wang Q, Kangas AJ, Soininen P, Tiainen M, Tynkkynen T, Puukka K, et al. Sex hormone-binding globulin associations with circulating lipids and metabolites and the risk for type 2 diabetes: observational and causal effect estimates. Int J Epidemiol. 2015; 44: 623–637. pmid:26050255
  29. 29. Canoy D, Barber TM, Pouta A, Hartikainen AL, McCarthy MI, Franks S, et al. Serum sex hormone-binding globulin and testosterone in relation to cardiovascular disease risk factors in young men: a population-based study. Eur J Endocrinol. 2014; 170: 863–872. pmid:24670886
  30. 30. Firtser S, Juonala M, Magnussen CG, Jula A, Loo BM, Marniemi J, et al. Relation of total and free testosterone and sex hormone-binding globulin with cardiovascular risk factors in men aged 24–45 years. The Cardiovascular Risk in Young Finns Study. Atherosclerosis. 2012; 222: 257–262. pmid:22420889
  31. 31. Vanbillemont G, Lapauw B, De Naeyer H, Roef G, Kaufman JM, Taes YE Sex hormone-binding globulin at the crossroad of body composition, somatotropic axis and insulin/glucose homeostasis in young healthy men. Clin Endocrinol (Oxf). 2012; 76: 111–118.
  32. 32. Cussons AJ, Stuckey BG, Watts GF Cardiovascular disease in the polycystic ovary syndrome: new insights and perspectives. Atherosclerosis. 2006; 185: 227–239. pmid:16313910
  33. 33. Bartha JL, Comino-Delgado R, Romero-Carmona R, Gomez-Jaen MC Sex hormone-binding globulin in gestational diabetes. Acta Obstet Gynecol Scand. 2000; 79: 839–845. pmid:11304966
  34. 34. Kopp HP, Festa A, Krugluger W, Schernthaner G Low levels of Sex-Hormone-Binding Globulin predict insulin requirement in patients with gestational diabetes mellitus. Exp Clin Endocrinol Diabetes. 2001; 109: 365–369. pmid:11573147
  35. 35. Thadhani R, Wolf M, Hsu-Blatman K, Sandler L, Nathan D, Ecker JL First-trimester sex hormone binding globulin and subsequent gestational diabetes mellitus. Am J Obstet Gynecol. 2003; 189: 171–176. pmid:12861158
  36. 36. Jin Z, Guan X, Gao H, Shang L, Gao M, Su D, et al. The change in sex hormone binding globulin and the influence by gestational diabetes mellitus in fetal period. Gynecol Endocrinol. 2009; 25: 647–652. pmid:19557594
  37. 37. Veltman-Verhulst SM, van Haeften TW, Eijkemans MJ, de Valk HW, Fauser BC, Goverde AJ Sex hormone-binding globulin concentrations before conception as a predictor for gestational diabetes in women with polycystic ovary syndrome. Hum Reprod. 2010; 25: 3123–3128. pmid:20943702
  38. 38. Hedderson MM, Xu F, Darbinian JA, Quesenberry CP, Sridhar S, Kim C, et al. Prepregnancy SHBG concentrations and risk for subsequently developing gestational diabetes mellitus. Diabetes Care. 2014; 37: 1296–1303. pmid:24561392
  39. 39. Calderon-Margalit R, Schwartz SM, Wellons MF, Lewis CE, Daviglus ML, Schreiner PJ, et al. Prospective association of serum androgens and sex hormone-binding globulin with subclinical cardiovascular disease in young adult women: the "Coronary Artery Risk Development in Young Adults" women's study. J Clin Endocrinol Metab. 2010; 95: 4424–4431. pmid:20554712
  40. 40. Rodriguez-Cuenca S, Gianotti M, Roca P, Proenza AM Sex steroid receptor expression in different adipose depots is modified during midpregnancy. Mol Cell Endocrinol. 2006; 249: 58–63. pmid:16504376
  41. 41. Clegg D, Hevener AL, Moreau KL, Morselli E, Criollo A, Van Pelt RE, et al. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology. 2017; 158: 1095–1105. pmid:28323912
  42. 42. Sendemir A, Sendemir E, Kosmehl H, Jirikowski GF Expression of sex hormone-binding globulin, oxytocin receptor, caveolin-1 and p21 in leiomyoma. Gynecol Endocrinol. 2008; 24: 105–112. pmid:17952758
  43. 43. Alevizaki M, Saltiki K, Xita N, Cimponeriu A, Stamatelopoulos K, Mantzou E, et al. The importance of the (TAAAA)n alleles at the SHBG gene promoter for the severity of coronary artery disease in postmenopausal women. Menopause. 2008; 15: 461–468. pmid:18188141
  44. 44. Kahn SM, Hryb DJ, Nakhla AM, Romas NA, Rosner W Sex hormone-binding globulin is synthesized in target cells. J Endocrinol. 2002; 175: 113–120. pmid:12379495
  45. 45. Elmlinger MW, Kuhnel W, Ranke MB Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. Clin Chem Lab Med. 2002; 40: 1151–1160. pmid:12521235
  46. 46. Ibanez L, Lopez-Bermejo A, Diaz M, de Zegher F Catch-up growth in girls born small for gestational age precedes childhood progression to high adiposity. Fertil Steril. 2011; 96: 220–223. pmid:21549368
  47. 47. Galloway PJ, Donaldson MD, Wallace AM Sex hormone binding globulin concentration as a prepubertal marker for hyperinsulinaemia in obesity. Arch Dis Child. 2001; 85: 489–491. pmid:11719335