Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Hepatopancreatic metabolomics shedding light on the mechanism underlying unsynchronized growth in giant freshwater prawn, Macrobrachium rosenbergii

  • Jianping Jiang ,

    Contributed equally to this work with: Jianping Jiang, Xiang Yuan

    Roles Conceptualization, Funding acquisition, Writing – review & editing

    jiangjianping818@126.com

    Affiliations Guangxi Engineering Technology Research Center of Chinese Medicinal Materials Stock Breeding, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China

  • Xiang Yuan ,

    Contributed equally to this work with: Jianping Jiang, Xiang Yuan

    Roles Formal analysis, Methodology, Writing – original draft

    Affiliations College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China

  • Guanghua Huang,

    Roles Resources

    Affiliation Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, China

  • Wen Shi,

    Roles Formal analysis

    Affiliations College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China

  • Xueming Yang,

    Roles Resources

    Affiliation Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, China

  • Qinyang Jiang,

    Roles Supervision

    Affiliation College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China

  • Yinhai Jia,

    Roles Data curation

    Affiliation Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China

  • Xiurong Yang,

    Roles Data curation

    Affiliation College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China

  • Hesheng Jiang

    Roles Supervision

    Affiliation College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China

Abstract

The giant freshwater prawn, Macrobrachium rosenbergii (M. rosenbergii) as an important freshwater aquaculture species with high commercial value, exhibited unsynchronized growth. However, the potentially metabolic mechanism remains unclear. In this study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) to investigate the hepatopancreatic metabolic profiles of twenty giant freshwater prawns between the fast-growing group and slow-growing group. In the metabolomics assay, we isolated 8,293 peaks in positive and negative iron mode. Subsequently, 44 significantly differential metabolites were identified. Functional pathway analysis revealed that these metabolites were significantly enriched in three key metabolic pathways. Further integrated analysis indicated that glycerophospholipid metabolism and aminoacyl-tRNA biosynthesis have significant impact on growth performance in M.rosenbergii. Our findings presented here demonstrated the critical metabolites and metabolic pathways involved in growth performance, moreover provided strong evidence for elucidating the potentially metabolic mechanism of the unsynchronized growth in M. rosenbergii.

1. Introduction

The giant freshwater prawn, Macrobrachium rosenbergii (M. rosenbergii) is one of commercial important species around the world due to the special characteristic of nutrition-rich, fast-growing and higher economic values. In China, its production was up to 133,300 tons in 2018, which potentially contributed the most to its global production [1]. Similar to numerous crustaceans, M. rosenbergii exhibited unsynchronized growth pattern: some individuals grow fast, otherwise some are slowly growing. Notably, difference in growth rate was a crucial factor significantly affected yields of giant freshwater prawns. Over the past decades, large progresses have been made to understand the various internal and external factors, as well as the genetic factors, those influence individual growth variability in M. rosenbergii [24]. However, little is known regarding the metabolic mechanisms of unsynchronized growth.

Metabolomics as an analytical approach was applied to detect the low-molecular-weight metabolites [5]. While this method provides a glimpse of metabolic profiles, biomarkers and metabolic mechanism linked with human diseases [6,7], economic traits of plants [8] and domestic animals [9]. Also, metabolomics has been widely used in toxicity [10,11], sex differentiation [12], cold stress [13], flesh quality [14] and adaptation [15], moreover, it was widely utilized to growth performance [16,17] in aquaculture species. Otherwise, limited researches of metabolomics were published in M. rosenbergii. Bose et al. conducted untargeted metabolomics of the antennal gland (AnG), and identified several metabolites and biosynthetic pathway implicated in endogenous and exogenous transport [18]. Dong et al. performed muscle metabolomics of M. rosenbergii by treating with different concentration of ammonia-N (0, 0.108, 0.324, or 0.54 mg L−1) for 20 days. Subsequently, a list of metabolomics pathways related to lipid, carbohydrate, and protein metabolism were identified, which was contributed to illustrate the mechanisms underlying the effects of ammonia stress in M. rosenbergii [11]. Until now, the metabolic profiles and metabolites regarding the unsynchronized growth of M. rosenbergii was scarce.

Therefore, the objective of the present study was used the liquid chromatography tandem mass spectrometry (LC-MS/MS) to investigate the metabolic profiles of M. rosenbergii, and further to detect the differential metabolites between the fast-growing and slow-growing groups. As expected, the results we obtained could provide a clue for illustrating the metabolic mechanism to understand the unsynchronized growth of M. rosenbergii.

2. Materials and methods

2.1. Ethics statement

All procedures were in compliance with the institutional guidelines and under a protocol approved by the Animal Experimental Ethical Inspection Form of Guangxi Botanical Garden of Medicinal Plants.

2.2. Animals

The prawn population was established in the national Macrobrachium rosenbergii seed multiplication farm, Nanning, Guangxi, China. A total of 20 mating pairs (female: male = 20:20) were constructed to produce the progeny stock. In August 2019, family production was finished. The subsequent procedure for hatching and rearing was according to Hung et al. [19]. Totally, 200 juveniles from each family were randomly selected and reared into grow-out ponds. Finally, each of 10 prawns from one family with extremely growth performance were chosen as fast-growing and slow-growing individuals (Table 1).

thumbnail
Table 1. Growth performance of 20 prawns between fast-growing and slow-growing groups.

https://doi.org/10.1371/journal.pone.0243778.t001

2.3. Sample preparation

The hepatopancreas of each sample from fast-growing and slow-growing groups was immediately dissected, and then stored in liquid nitrogen. Sample preparation for LC-MS/MS analysis was conducted as previously described by Want et al. [20]. Briefly, samples of 100 mg were mixed with 1 mL chilled extraction liquid (methanol: water = 4:1, vol: vol) containing 2-Chloro-L-phenylalanine (Shanghai Hanhong Scientific Co.,Ltd.) as internal standard, vortexed for 30 s, and homogenized to extract the compounds from the hepatopancreas. Then, the homogenate was further ultrasonically treated in ice bath for 3 min, and deproteinized through centrifugation at 4°C (12,000 rpm, 10 min). The supernatant was subsequently transferred into a new microcentrifuge tube and lyophilized. The dried samples were reconstructed with chilled methanol/water (4:1, v: v) for further process.

2.4. LC–MS/MS analysis

Briefly, the LC-MS/MS experiments were performed on the Dionex UltiMate 3000 Uhplc system coupled with Q Exactive mass spectrometer (Thermo Fisher Scientific, CA, USA) operating in data-dependent acquisition (DDA) mode. Samples were injected onto a Hypersil GOLD HPLC column (50×2.1 mm, 1.9 μm). The mobile phase consisted of a gradient system of (A) 10 mM ammonium formate in water and (B) 10 mM ammonium formate in methanol: 0–2 min, 5% B; 2–5 min, 5–30% B; 5–19 min, 30–99% B; 19–22 min, 99% B; and 22.1–25 min, 5% B.

Compound ionization was conducted as the following parameters: Q-Exactive mass spectrometer was operated in positive/negative polarity mode with spray voltage 3.5 kV/3.2 kV, capillary temperature of 320°C, sheath gas flow rate 30 psi and aux gas flow rate 10 arb. Samples were analyzed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in full scan + data dependent MS2 mode with a scan range from 100–1000 m/z at a resolution of 70,000, followed by data dependent MS/MS (dd-MS/MS) with a normalized collision energy of 30 and at a resolution of 17,500. To avoid instrument drift, fourteen quality control (QC) samples were preprocessed as the samples for data quality assessment.

2.5. Data analysis

Data processing including peak alignment, retention time correction, and peak area extraction was conducted by commercially available software, Compound Discoverer v. 3.0 (Thermo Fisher Scientific, CA, USA). The identified metabolites were searched against mzCloud and ChemSpider database. For multivariate statistical analysis, principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS–DA) were performed to detect the metabolic variations between the two experimental groups through the SIMCA-P v.14.1 software (Umetrics, Umeå, Sweden) after pareto (Par) scaling. The quality of OPLS-DA model was assessed based on the cumulative parameters R2X, R2Y, and Q2 in cross-validation, and applying a permutation test with 200 permutations.

Significantly differential metabolites of the pairwise comparisons were identified with VIP score > 1 obtained from OPLS-DA model and p < 0.05 from Student’s t test. Hierarchical cluster analysis (HCA) was performed via TBtools software v.1.046 [21]. Afterward, pathway enrichment analysis of identified metabolites was carried out through MetaboAnalyst v.4.0 software [22] (https://www.metaboanalyst.ca/).

3. Results

3.1. Overall data set and metabolic profiles

In total, 5,589 and 2,704 peaks were detected in positive and negative ion modes, respectively. Subsequently, after further quality control filtering, 1,254 and 222 peaks were retained for parallel analyses.

To characterize the variations in the metabolic profiles of M.rosenbergii between the fast-growing group and slow-growing group, PCA and OPLS-DA were conducted.

As shown in Fig 1A and 1B, apparent separation was observed of the 20 prawns between fast-growing and slow-growing groups. The percentage of explained value in the metabolomics analysis of PC1 and PC2 was 28.2% and 18.3% (positive ion mode), 45.8% and 16.0% (negative ion mode), respectively. Subsequently, a further examination based on the OPLS-DA score plot showed a clear separation between the two groups. In the positive (negative) ion mode, the parameters considered for classification from the software were R2X (cum) = 0.303, R2Y (cum) = 0.860, Q2 (cum) = 0.528 (R2X (cum) = 0.608, R2Y (cum) = 0.704, Q2 (cum) = 0.467) (Fig 1C and 1D). Subsequently, model cross-validation through permutation tests (200 times) generated intercepts of R2 and Q2 (positive ion mode, 0.644 and -0.478; negative ion mode, 0.573 and -0.433, respectively) (Fig 2). Herein, all of which confirmed that the OPLS-DA model was stable and not over-fitted. Taken together, multivariate analyses (PCA and OPLS-DA) demonstrated a clear and significant separation of the fast-growing group versus slow-growing group.

thumbnail
Fig 1. PCA (A and B, in positive and negative modes, respectively) and OPLS-DA (C and D, positive and negative modes, respectively) scores plots based on LC-MS/MS data of hepatopancreas samples from Fg (red) and Sg (green).

https://doi.org/10.1371/journal.pone.0243778.g001

thumbnail
Fig 2. OPLS-DA permutation test for positive (A) and negative ion mode (B).

https://doi.org/10.1371/journal.pone.0243778.g002

3.2. Significantly differential metabolites

On the basis of the OPLS-DA results, a total of 44 (36 in positive ion mode and 8 in negative ion mode) significantly differential metabolites (SDMs) were identified (VIP > 1, p < 0.05) between the fast-growing and slow-growing groups (Table 2), and MS/MS spectrums of seven representative SDMs were listed in additional file 1. Among the 44 SDMs, 11 and 33 metabolites were significantly up-regulated and down-regulated compared with those in slow-growing group. Hierarchical clustering analysis also indicated that each type of the two groups exhibited a distinct metabolic pattern (Fig 3).

thumbnail
Fig 3. Heatmap of significantly differential metabolites between the fast-growing and slow-growing groups.

https://doi.org/10.1371/journal.pone.0243778.g003

thumbnail
Table 2. Significantly differential metabolites for 20 prawns between fast-growing and slow-growing groups.

https://doi.org/10.1371/journal.pone.0243778.t002

3.3. Metabolic KEGG pathway analysis

To explore potentially metabolic pathways affected by different growth performances, pathway analysis of 44 SDMs were performed by MetaboAnalyst 4.0. Functional analysis revealed that the metabolites those significantly difference were involved in glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis and linoleic acid metabolism (Fig 4). The putative compounds hit LysoPC (20:5(5Z,8Z,11Z,14Z,17Z)) (LysoPC), PC (14:0/18:1(9Z)) (PC), Glycerophosphocholine (GPC), PE (16:0/22:1(13Z)) (PE), L-histidine, L-arginine and L-proline.

4. Discussion

In the past decades, unsynchronized growth of M. rosenbergii have caused severe productive and economic losses, while the potentially metabolic mechanism behind the phenomenon remains unclear. Hepatopancreas as the major organ, is implicated in carbohydrate and energy metabolism, protein and lipid synthesis [23]. Moreover, it plays an important role in the synthesis and secretion of digestive enzymes, nutrient absorption, digestion, reserve storage and mobilization [24]. Accumulating evidence have shown that hepatopancreas has significant impact on crustacean growth [25]. Thus, in the present study, we performed hepatopancreatic metobolomics of giant freshwater prawns with different growth performance between the fast-growing group and slow-growing group based on the LC-MS/MS. To our knowledge, this study was the first investigation to identify the key metabolites and pathways implicated in growth performance, which will provide novel insights into understanding of metabolic mechanism underlying the unsynchronized growth in M. rosenbergii.

Of note, combining our data and KEGG database, a comprehensive scheme that controlling growth performance of M. rosenbergii is proposed, as shown in Fig 5. We speculated that in the hepatopancreas, glycerophospholipid metabolism might affect the physiological functions of cells and membranes, moreover provide energy for aminoacyl-tRNA biosynthesis and amino acid biosynthesis via fatty acid degradation and oxidation in response of different growth performance in M. rosenbergii.

thumbnail
Fig 5. Hypothesized pathway of the different growth performances of M. rosenbergii.

Up-regulated and down-regulated metabolites are shown in red or green letters. Three significant pathways are shown in red boxes, two pathways not significantly enriched are shown in blue boxes. Abbreviations: PE, PE (16:0/22:1(13Z)); PC, PC (14:0/18:1(9Z)); LysoPC, LysoPC (20:5(5Z,8Z,11Z,14Z,17Z)); GPC, Glycerophosphocholine.

https://doi.org/10.1371/journal.pone.0243778.g005

4.1. Glycerophospholipid metabolism and linoleic acid metabolism

Amongst, the elements of glycerophospholipid metabolism, including LysoPC (20:5(5Z,8Z,11Z,14Z,17Z)), PC (14:0/18:1(9Z)), Glycerophosphocholine and PE (16:0/22:1(13Z)) were significantly altered between the two groups. It has been reported that PC and PE are the main lipid constituents of cell membranes, which play critical roles in functioning well of cells [26]. Decreasing the PC content affected the integrity of liver cells and mitochondrial membrane, thus directly leading to proliferation, differentiation and apoptosis [27]. LysoPC is the main component of low density lipoprotein. Generally, the content of LysoPC was low occurred in cells or tissues, high concentrations could damage the membrane system of cells [28].

Glycerophosphocholine is produced by lysoPC [29], which was response for cell viability and motility [30]. Some studies have proposed that higher content of GPC acted as an indicator of cancer progression [31]. Notably, PC was involved in linoleic acid metabolism. Interestingly, in recent prior studies, researchers have observed that glycerophospholipid metabolism and linoleic acid metabolism have closed relationship with energy metabolism via β-oxidation [32,33]. The present study investigated that PC and PE, LysoPC and GPC were shown down-regulated and up-regulated in fast-growing group, respectively. Overall, the data could interpret that high concentration of PC and PE, low concentration of LysoPC and GPC was essential for different growth performance.

4.2. Aminoacyl-tRNA biosynthesis

For the aminoacyl-tRNA biosynthesis, previous researches have observed that it is an important metabolic pathway before amino acid biosynthesis [34]. In this study, three amino acids including L-histidine, L-arginine, L-proline those identified in the metabolic pathway showed down-regulated in fast-growing group.

Zhao et al. demonstrated that dietary histidine level affected the growth performance, body composition of juvenile Jian carp [35]. Similarly, Zehra et al. also confirmed that dietary histidine level has positive effects on the growth performance, protein deposition and carcass composition [36]. L-Arginine (Arg) is synthesized from glutamine, glutamate and proline. It has demonstrated that the concentration of Arg in hepatocytes was very low [37]. It has been found that dietary arginine contributed to the growth performance, immunity and health status of broiler chicks [38]. L-Proline as an essential precursor for the synthesis of proteins most publications have paid attention to proline on plants [39,40]. It was indicated that proline displays remarkable role on plant growth and development under non-stress or stress conditions, but the role of proline on growth was varied [41].

Meanwhile, the three amino acids have favorable roles in formation of peptide chains. Moreover, Wang et al. proposed that aminoacyl-tRNA biosynthesis was significantly associated with the growth of D. similis [34], which was in agreement with previous finding of Yebra et al. [42]. All in all, high contents of L-histidine, L-arginine, L-proline might disrupt the homeostasis of hepatopancreas, and perturb the transport process to the intestine or plasma.

5. Conclusions

In summary, we investigated the metabolic profiles of hepatopancreas between the fast-growing group and slow-growing group in M. rosenbergii based on the LC-MS/MS, and identified 44 significantly differential metabolites. Integrated analysis of key metabolic pathways showed that glycerophospholipid metabolism and aminoacyl-tRNA biosynthesis played crucial role in response to unsynchronized growth. Notably, seven metabolites, consist of LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)), PC(14:0/18:1(9Z)), Glycerophosphocholine, PE(16:0/22:1(13Z)), L-histidine, L-arginine and L-proline, were strongly correlated with growth performance. The results obtained in our study demonstrated the critical pathways and metabolites to decipher the potential metabolic mechanism of the unsynchronized growth in M. rosenbergii.

Supporting information

S1 Fig. MS/MS spectrum of PC(14:0/18:1(9Z)).

https://doi.org/10.1371/journal.pone.0243778.s001

(DOCX)

S2 Fig. MS/MS spectrum of LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)).

https://doi.org/10.1371/journal.pone.0243778.s002

(DOCX)

S3 Fig. MS/MS spectrum of Glycerylphosphorylcholine.

https://doi.org/10.1371/journal.pone.0243778.s003

(DOCX)

S4 Fig. MS/MS spectrum of PE(16:0/22:1(13Z)).

https://doi.org/10.1371/journal.pone.0243778.s004

(DOCX)

References

  1. 1. Jiang Q, Qian L, Gu S, Guo X, Zhang X, Sun L. Investigation of growth retardation in Macrobrachium rosenbergii based on genetic/epigenetic variation and molt performance. Comp Biochem Physiol Part D Genomics Proteomics. 2020;35:100683. pmid:32279060.
  2. 2. Srinivasan V, Bhavan PS, Rajkumar G, Satgurunathan T, Muralisankar T. Dietary Supplementation of Magnesium Oxide (MgO) Nanoparticles for Better Survival and Growth of the Freshwater Prawn Macrobrachium rosenbergii Post-larvae. Biol Trace Elem Res. 2017;177(1):196–208. pmid:27709496.
  3. 3. Mahmood T, Zhang J, Zhang G. Assessment of Constructed Wetland in Nutrient Reduction, in the Commercial Scale Experiment Ponds of Freshwater Prawn Macrobrachium rosenbergii. Bull Environ Contam Toxicol. 2016;96(3):361–8. pmid:26679323.
  4. 4. Jung H, Lyons RE, Li Y, Thanh NM, Dinh H, Hurwood DA, et al. A candidate gene association study for growth performance in an improved giant freshwater prawn (Macrobrachium rosenbergii) culture line2014 Apr. 161–80 p.
  5. 5. Loor JJ, Bionaz M, Drackley JK. Systems physiology in dairy cattle: nutritional genomics and beyond. Annu Rev Anim Biosci. 2013;1:365–92. pmid:25387024.
  6. 6. Stratakis N, Conti DV, Jin R, Margetaki K, Valvi D, Siskos AP, et al. Prenatal Exposure to Perfluoroalkyl Substances Associated with Increased Susceptibility to Liver Injury in Children. Hepatology. 2020. pmid:32738061.
  7. 7. Jang C, Chen L, Rabinowitz JD. Metabolomics and Isotope Tracing. Cell. 2018;173(4):822–37. pmid:29727671
  8. 8. Deng M, Zhang X, Luo J, Liu H, Wen W, Luo H, et al. Metabolomics analysis reveals differences in evolution between maize and rice. Plant J. 2020. pmid:32445406.
  9. 9. Gomez E, Salvetti P, Gatien J, Munoz M, Martin-Gonzalez D, Carrocera S, et al. Metabolomic Profiling of Bos Taurus Beef, Dairy and Crossbred Cattle: A between-Breeds Meta-Analysis. J Agric Food Chem. 2020. pmid:32687347.
  10. 10. Li T, Li E, Suo Y, Xu Z, Jia Y, Qin JG, et al. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity. Aquat Toxicol. 2017;183:28–37. pmid:27988416.
  11. 11. Dong X, Liu Q, Kan D, Zhao W, Guo H, Lv L. Effects of ammonia-N exposure on the growth, metabolizing enzymes, and metabolome of Macrobrachium rosenbergii. Ecotoxicol Environ Saf. 2020;189:110046. pmid:31835043.
  12. 12. Jin S, Hu Y, Fu H, Sun S, Jiang S, Xiong Y, et al. Analysis of testis metabolome and transcriptome from the oriental river prawn (Macrobrachium nipponense) in response to different temperatures and illumination times. Comp Biochem Physiol Part D Genomics Proteomics. 2020;34:100662. pmid:32114312.
  13. 13. Wen X, Hu Y, Zhang X, Wei X, Wang T, Yin S. Integrated application of multi-omics provides insights into cold stress responses in pufferfish Takifugu fasciatus. BMC Genomics. 2019;20(1):563. pmid:31286856
  14. 14. Zhao H, Chong J, Tang R, Li L, Xia J, Li D. Metabolomics investigation of dietary effects on flesh quality in grass carp (Ctenopharyngodon idellus). Gigascience. 2018;7(10). pmid:30192945
  15. 15. Kloska A, Cech GM, Sadowska M, Krause K, Szalewska-Palasz A, Olszewski P. Adaptation of the Marine Bacterium Shewanella baltica to Low Temperature Stress. Int J Mol Sci. 2020;21(12). pmid:32570789
  16. 16. Hao R, Du X, Yang C, Deng Y, Zheng Z, Wang Q. Integrated application of transcriptomics and metabolomics provides insights into unsynchronized growth in pearl oyster Pinctada fucata martensii. Sci Total Environ. 2019;666:46–56. pmid:30784822.
  17. 17. Hao R, Wang Z, Yang C, Deng Y, Zheng Z, Wang Q, et al. Metabolomic responses of juvenile pearl oyster Pinctada maxima to different growth performances. Aquaculture. 2018;491:258–65.
  18. 18. Bose U, Kruangkum T, Wang T, Zhao M, Ventura T, Mitu SA, et al. Biomolecular changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium rosenbergii). PLoS One. 2017;12(6):e0177064. pmid:28662025
  19. 19. Hung D, Nguyen NH, Ponzoni RW, Hurwood DA, Mather PB. Quantitative genetic parameter estimates for body and carcass traits in a cultured stock of giant freshwater prawn (Macrobrachium rosenbergii) selected for harvest weight in Vietnam. Aquaculture. 2013;404–405:122–9.
  20. 20. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8(1):17–32. pmid:23222455.
  21. 21. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular plant. 2020;13(8):1194–202. pmid:32585190.
  22. 22. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–W94. pmid:29762782
  23. 23. Sun P, Jin M, Jiao L, Monroig O, Navarro JC, Tocher DR, et al. Effects of dietary lipid level on growth, fatty acid profiles, antioxidant capacity and expression of genes involved in lipid metabolism in juvenile swimming crab, Portunus trituberculatus. Br J Nutr. 2020;123(2):149–60. pmid:31603067.
  24. 24. Ma L, Kaneko G, Xie J, Wang G, Li Z, Tian J, et al. Safety evaluation of four faba bean extracts used as dietary supplements in grass carp culture based on hematological indices, hepatopancreatic function and nutritional condition. PeerJ. 2020;8:e9516. pmid:32704454
  25. 25. Yu Y, Liu Y, Yin P, Zhou W, Tian L, Liu Y, et al. Astaxanthin Attenuates Fish Oil-Related Hepatotoxicity and Oxidative Insult in Juvenile Pacific White Shrimp (Litopenaeus vannamei). Mar Drugs. 2020;18(4). pmid:32316590
  26. 26. Zong L, Xing J, Liu S, Liu Z, Song F. Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells. Ecotoxicol Environ Saf. 2018;147:26–33. pmid:28822947.
  27. 27. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24. pmid:18216768
  28. 28. Senn T, Hazen SL, Tang WH. Translating metabolomics to cardiovascular biomarkers. Prog Cardiovasc Dis. 2012;55(1):70–6. pmid:22824112
  29. 29. Tao T, He T, Mao H, Wu X, Liu X. Non-Targeted Metabolomic Profiling of Coronary Heart Disease Patients With Taohong Siwu Decoction Treatment. Front Pharmacol. 2020;11:651. pmid:32457630
  30. 30. Longobardi V, Kosior MA, Pagano N, Fatone G, Staropoli A, Vassetti A, et al. Changes in Bull Semen Metabolome in Relation to Cryopreservation and Fertility. Animals (Basel). 2020;10(6). pmid:32575657
  31. 31. Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, et al. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR Biomed. 2019;32(10):e4112. pmid:31184789
  32. 32. Xie G, Ma X, Zhao A, Wang C, Zhang Y, Nieman D, et al. The metabolite profiles of the obese population are gender-dependent. J Proteome Res. 2014;13(9):4062–73. pmid:25132568
  33. 33. Guo YS, Tao JZ. Metabolomics and pathway analyses to characterize metabolic alterations in pregnant dairy cows on D 17 and D 45 after AI. Sci Rep. 2018;8(1):5973. pmid:29654235
  34. 34. Wang P, Ng QX, Zhang H, Zhang B, Ong CN, He Y. Metabolite changes behind faster growth and less reproduction of Daphnia similis exposed to low-dose silver nanoparticles. Ecotoxicol Environ Saf. 2018;163:266–73. pmid:30056340.
  35. 35. Zhao B, Feng L, Liu Y, Kuang SY, Tang L, Jiang J, et al. Effects of dietary histidine levels on growth performance, body composition and intestinal enzymes activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition. 2012;18(2):220–32.
  36. 36. Zehra S, Khan MA. Dietary lysine requirement of fingerling Catla catla (Hamilton) based on growth, protein deposition, lysine retention efficiency, RNA/DNA ratio and carcass composition. Fish Physiol Biochem. 2013;39(3):503–12. pmid:22968345.
  37. 37. Wu G, Morris SM, Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336 (Pt 1):1–17. pmid:9806879
  38. 38. Emadi M, Kaveh K, Bejo MH, Ideris A, Jahanshiri F, Ivan M, et al. Growth Performance and Blood Parameters as Influenced by Different Levels of Dietary Arginine in Broiler Chickens. journal of Animal and Veterinary Advances. 2010;9(1):70–4.
  39. 39. Biancucci M, Mattioli R, Moubayidin L, Sabatini S, Costantino P, Trovato M. Proline affects the size of the root meristematic zone in Arabidopsis. BMC Plant Biol. 2015;15:263. pmid:26514776
  40. 40. Mattioli R, Costantino P, Trovato M. Proline accumulation in plants_ not only stress. Plant Signaling & Behavior. 2009;4(11):1016–18.
  41. 41. Suekawa M, Fujikawa Y, Esaka M. Exogenous proline has favorable effects on growth and browning suppression in rice but not in tobacco. Plant Physiol Biochem. 2019;142:1–7. pmid:31247444.
  42. 42. Yebra L. Aminoacyl-tRNA synthetases activity as a growth index in zooplankton. Journal of Plankton Research. 2004;26(3):351–6.