Figure 1.
Calibrated ages for the corrected textile dated samples.
The table displays the data corresponding to these probability distributions at 68.2% and 95.4% probability. The shaded areas denote the accepted archaeological age range for the Badarian (top of picture) and Naqada IIC period (bottom) respectively. (Figure generated using OxCal 4.1 (Bronk Ramsey 2009)).
Figure 2.
33.30.44 Tomb No. 3538, Badarian Period, Mostagedda.
The most convincing depiction of the ‘toffee-like’ (presumed) ‘resin’ was effected in the light microscope using HD illumination.
Table 1.
Mostagedda ‘mummy’ textiles, origin of balm samples, the abundance of ancient ‘resin’ in the textiles, and their chemical composition.
Figure 3.
Chemical analyses of samples taken from the bodies and their wrappings in this research.
Histograms show the distributions of diterpenoid acids: P = pimaric acid, S = sandaracopimaric acid, I = isopimaric acid, A = abietic acid, D = dehydroabietic acid, O = 7-oxodehydroabietic acid, R = retene, MD = methyl dehydroabietate, MO = methyl 7-oxodehydroabietate present in samples where pine resin has been specifically identified (see Table 1). The retene, methyl dehydroabietate and methyl 7-oxodehydroabietate reflect the degree of heating/processing the pine resin has undergone, prior to application to the linen/bodies as part of the ancient recipes.
Figure 4.
Reconstructed gas chromatography-mass spectrometry (GC-MS) total ion chromatogram (TIC) of the trimethylsilylated total lipid extract of 33.30.44 2.
Peak identities (‘n’ indicates carbon chain length; where shown, i indicates degree of unsaturation): filled triangles, Cn:i indicates fatty acids; filled squares, Cn indicates α,ù-dicarboxylic acids; filled inverted triangles, Cn:i indicates 2-hydroxy fatty acids; open inverted triangle, Cn:i indicates 2,3-dihydroxy fatty acid. Also shown are the structures of four aromatic acids identified: benzoic acid, 4-hydroxybenzoic acid, vanillic acid (4-hydroxy-3-methoxybenzoic acid) and syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid); one monoterpenoid: thymol; six diterpenoids: pimaric acid (P), sandaracopimaric acid (S), isopimaric acid (I), dehydroabietic acid (D), abietic acid (A) and 7-oxo-dehydroabietic acid (O) (labeled as in Figure 3) and four steroidal compounds identified: stigmasta-3,5,22-triene, cholesterol, cholesta-3,5-dien-7-one and β-sitosterol; the letters ds represent a disaccharide. Inset displays a partial reconstructed GC-MS TIC of this sample focusing on the diterpenoid (resin) acids and showing the molecular structures of five of those identified: pimaric acid, isopimaric acid, dehydroabietic acid, abietic acid and 7-oxodehydroabietic acid.
Figure 5.
Chemical analyses of samples taken from the bodies and their wrappings in this research.
Histograms show the distributions of C15+ n-alkanes from samples containing a natural petroleum seep (the samples containing the highest abundance of natural petroleum for each burial are presented; see Table 1).
Figure 6.
Plot of Pr/n-C17 versus Ph/n-C18 cross plot showing the source and depositional environments of the natural petroleum seeps (the samples containing the highest abundance of natural petroleum for each burial are presented; see Table 1): 44 = 33.30.44 3, 72 = 33.30.72 1, 33.30.80 4, 30 = 33.30.30 1, 53 = 33.30.53 1, 59 = 33.30.59 1, 92 = 33.30.92 2.