Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Modeling the structural implications of an alternatively spliced Exoc3l2, a paralog of the tunneling nanotube-forming M-Sec

Fig 2

Sanger sequencing of the alternative splice variant of murine Exoc3l2.

A. Sanger sequencing of the 818 bp product confirmed its identity as Exoc3l2. The sequence spanning the splice junction between exon 6 (E6) and exon 7 (E7) is presented in the left panel, and that spanning exon 10 (E10) and exon 11 (E11) is presented in the right panel. Above each plot five bases from the intronic sequence that is adjacent to each exons splice site are presented (i.e. i6-7 and i10-11). B. Sanger sequencing results from the second 250 bp product amplified using P4:5 with P11 and cDNA from mouse heart (H1 and H2), kidney (K1) and liver (L1) were aligned using MAFFT software to an Exoc3l2 mRNA reference sequence. The position of the novel alternative splice site between Exoc3l2 exon 6 (E6) and exon 11 (E11) was confirmed in each example. The alternatively spliced versions of E6 and E11 are colored in green. C. An example of the Sanger sequencing plots for the 250 bp alternatively spliced Exoc3l2. The novel splice junction is between an alternative 5’ donor site in exon 6 (E6) and an alternative 3’ acceptor site in exon 11 (E11). Five intronic bases adjacent to E6’ and ‘E11 are presented above the Sanger plot (i.e. i6-11). D. Gene map of murine Exoc3l2 illustrating the splicing pattern for the canonical (Exoc3l2) and alternative (Exoc3l2a) variants.

Fig 2

doi: https://doi.org/10.1371/journal.pone.0201557.g002