Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

HDAC6 Regulates Mitochondrial Transport in Hippocampal Neurons

Figure 3

GSK3β activity regulates both mitochondrial movement and tubulin acetylation.

Inhibition of GSK3β by LiCl or SB216763 promotes mitochondrial movement and increases levels of acetylated tubulin, whereas activation of GSK3β via inhibition of Akt decreases levels of acetylated tubulin in hippocampal neurons. Kymographs (A and B) of mitochondrial motility correspond to Movies S10, S11, S12 and S13, S14, S15 respectively. In the experiment, a segment of axon was imaged continuously for 3 hours with short break to administer drugs. Images were acquired at 10-second intervals. A. Treatment with LiCl. B. Treatment with SB216763. C and D. Quantification of the numbers of moving mitochondria during the period of observation (n = 5). Only mitochondria that moved through the entire field of view were calculated. E and F. Quantification of mean velocities of moving mitochondria (n = 5). G. Western blot analysis of acetylated tubulin in extracts from hippocampal neurons that were treated with LiCl or SB216763. H. Quantification of Western blot shown in G. I. Western blot analysis of acetylated tubulin, phosphorylated Akt (pAkt), and phosphorylated GSK3β (pGSK3β) in extracts from hippocampal neurons that were treated with Akt inhibitor. J. Quantification of Western blot shown in I.

Figure 3

doi: https://doi.org/10.1371/journal.pone.0010848.g003