Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Patterned frequency-modulated oral stimulation in preterm infants: A multicenter randomized controlled trial

  • Dongli Song ,

    Roles Conceptualization, Investigation, Methodology, Project administration, Supervision, Writing – original draft, Writing – review & editing

    dongli.song@hhs.sccgov.org

    Affiliations Pediatrics—Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States of America, Stanford University School of Medicine, Palo Alto, CA, United States of America

  • Priya Jegatheesan,

    Roles Conceptualization, Investigation, Methodology, Project administration, Supervision, Writing – review & editing

    Affiliations Pediatrics—Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States of America, Stanford University School of Medicine, Palo Alto, CA, United States of America

  • Suhas Nafday,

    Roles Investigation, Project administration, Supervision, Writing – review & editing

    Affiliation Pediatrics—Neonatology, Children's Hospital at Montefiore-Weiler Division, Albert Einstein College of Medicine, Bronx, NY, United States of America

  • Kaashif A. Ahmad,

    Roles Investigation, Project administration, Supervision, Writing – review & editing

    Affiliations Pediatrix Medical Group, North Central Baptist Hospital, San Antonio, TX, United States of America, Pediatrics–Neonatology, Baylor College of Medicine, San Antonio, TX, United States of America

  • Jonathan Nedrelow,

    Roles Conceptualization, Investigation, Methodology, Project administration, Supervision, Writing – review & editing

    Affiliation Pediatrics–Neonatology, Cook Children's Medical Center, Fort Worth, TX, United States of America

  • Mary Wearden,

    Roles Investigation, Project administration, Supervision, Writing – review & editing

    Affiliation Pediatrix Medical Group, North Central Baptist Hospital, San Antonio, TX, United States of America

  • Sheri Nemerofsky,

    Roles Investigation, Project administration, Supervision, Writing – review & editing

    Affiliation Pediatrics–Neonatology, Children's Hospital at Montefiore-Wakefield Division, Albert Einstein College of Medicine, Bronx, NY, United States of America

  • Sunshine Pooley,

    Roles Conceptualization, Investigation, Methodology, Project administration, Supervision, Writing – review & editing

    Affiliations Pediatrics—Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States of America, Stanford University School of Medicine, Palo Alto, CA, United States of America

  • Diane Thompson,

    Roles Data curation, Project administration, Supervision, Writing – review & editing

    Affiliation aVenture Consulting, LLC, Leawood, KS, United States of America

  • Daniel Vail,

    Roles Formal analysis, Writing – review & editing

    Affiliation Stanford University School of Medicine, Palo Alto, CA, United States of America

  • Tania Cornejo,

    Roles Project administration, Supervision, Writing – review & editing

    Affiliation Neonatology, Montefiore Medical Center-Weiler, Bronx, New York, United States of America

  • Zahava Cohen,

    Roles Project administration, Supervision, Writing – review & editing

    Affiliation Neonatology, Montefiore Medical Center-Wakefield, Bronx, New York, United States of America

  • Balaji Govindaswami

    Roles Conceptualization, Investigation, Methodology, Project administration, Supervision, Writing – review & editing

    Affiliations Pediatrics—Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States of America, Stanford University School of Medicine, Palo Alto, CA, United States of America

Abstract

Objective

To evaluate the effect of patterned, frequency-modulated oro-somatosensory stimulation on time to full oral feeds in preterm infants born 26–30 weeks gestation.

Study design

This is a multicenter randomized controlled trial. The experimental group (n = 109) received patterned, frequency-modulated oral stimulation via the NTrainer system through a pulsatile pacifier and the control group (n = 101) received a non-pulsatile pacifier. Intent-to-treat analysis (n = 210) was performed to compare the experimental and control groups and the outcomes were analyzed using generalized estimating equations. Time-to-event analyses for time to reach full oral feeds and length of hospital stay were conducted using Cox proportional hazards models.

Results

The experimental group had reduction in time to full oral feeds compared to the control group (-4.1 days, HR 1.37 (1.03, 1.82) p = 0.03). In the 29–30 weeks subgroup, infants in the experimental group had a significant reduction in time to discharge (-10 days, HR 1.87 (1.23, 2.84) p < 0.01). This difference was not observed in the 26–28 weeks subgroup. There was no difference in growth, mortality or morbidities between the two groups.

Conclusions

Patterned, frequency-modulated oro-somatosensory stimulation improves feeding development in premature infants and reduces their length of hospitalization.

Trial registration

ClinicalTrials.gov NCT01158391

Introduction

Feeding development undergoes a series of maturational processes throughout gestation, from non-coordinated sucking and swallowing movements to fully coordinated suck-swallow-breathe that usually occurs after 34 weeks gestation [14]. Unlike term or late preterm infants, very premature infants require parenteral nutrition and gavage feeding prior to reaching maturity for safe and independent oral feeding [5, 6]. During the transition from gavage to full oral feeds (FOF), which may take weeks to months, these infants have limited opportunities for suck and swallow practice and are subjected to frequent non-physiological orofacial stimuli while receiving necessary medical interventions such as endotracheal intubation, continuous positive airway pressure, oral and nasopharyngeal suctioning, and adhesive tapes limiting facial movements. These adverse experiences during a critical period for oral sensory-motor-brain development often result in delayed or abnormal feeding behaviors [7, 8]. Feeding difficulty is a significant contributor to prolonged length of stay (LOS) in the neonatal intensive care unit (NICU) [9]. The negative impact of feeding difficulties may persist into childhood, leading to growth failure and poor neurodevelopmental outcomes [1013], particularly delayed language development [14, 15].

Oral feeding is a complex process which involves suck-swallow-breathe coordination, cardiorespiratory stability, behavioral state organization and neuromuscular support. The progression of feeding maturation follows the Synactive Theory in which the developing fetus/infant integrates multisensory inputs from the environment with internal physiological status and functional demands [16, 17]. Several entrainment strategies have been used to provide developmentally appropriate oral, auditory, olfactory, tactile/kinesthetic and vestibular sensory inputs to facilitate feeding development in the preterm infant [4, 1825]. Among these interventions, oral stimulation is the method most studied and may include using a pacifier offered by caregivers [4, 18], or oral motor interventions performed by therapists [19, 26]. Oral stimulation has been shown to improve sucking skills and feeding performance [2731], shorten the time to achieve FOF and reduce LOS in the NICU [4,18, 19, 26). However, some of the beneficial effects were not observed consistently [3235]. To enhance the efficacy and consistency of oral stimulation via pacifier, Barlow et al. developed a bedside device, the NTrainer system, which delivers consistent patterned and frequency-modulated oro-somatosensory stimulation (PFOS) through a pneumatically pulsed pacifier interface [36]. PFOS has been shown to be more effective than a regular non-pulsatile pacifier in improving preterm infants’ sucking and feeding performance [36, 37]. Thus, PFOS represents a potentially effective therapy for helping preterm infants achieve independent oral feeds. The objective of this multicenter randomized controlled trial was to test the hypothesis that preterm infants who received the PFOS training would transition to FOF earlier than those who received oral suck training with non-pulsatile pacifiers.

Methods

This multicenter randomized controlled trial was conducted from 2011 to 2015 in five NICUs (4 AAP level IIIB and 1 AAP level IIIC) in the United States. This trial was registered at Clinicaltrials.gov (NCT01158391) before the first patient was enrolled. This study was approved by the Institutional Review Board at each participating site: Institutional Review Board of Santa Clara Valley Medical Center, IRB # 10–022; Montefiore-Albert Einstein College of Medicine of Yeshiva University IRB, IRB # 12-12-427; Baptist Health System Institutional Review Board, # BHS130010; Cook Children's Health Care System Institutional Review Board, # 2009–058. Written informed consent was obtained for this study.

Participants

Preterm infants born at 26 0/7-30 6/7 weeks gestation were included (Fig 1). Infants born between 24 0/7–25 6/7 weeks gestation were not included as originally planned because they were medically too unstable to initiate study intervention prior to 32 weeks of gestational age (GA) as specified in the protocol. Infants with chromosomal or congenital anomalies, meningitis, seizures, necrotizing enterocolitis ≥ Bell stage 2, vocal cord paralysis, and those who were already taking feeds orally were excluded. Study investigators obtained written informed consents from parents of eligible infants and enrolled study patients at ≥ 28 0/7 weeks postmenstrual age (PMA). Infants were randomized to the experimental or control group using a centrally generated four block randomization log using SAS v. 9.1 statistical software, stratified at each center by GA subgroup of 26 0/7-28 6/7 weeks and 29 0/7-30 6/7 weeks. The central coordinator assigned the randomization number after a study patient was enrolled. Infants of multiple births were randomized to the same intervention group.

thumbnail
Fig 1. CONSORT flowchart—study subject eligibility and enrollment.

https://doi.org/10.1371/journal.pone.0212675.g001

Study interventions

We followed the previously published NTrainer oral training regimen [36]. Infants in the experimental group received the patterned frequency-modulated oro-somatosensory stimulation delivered via the NTrainer System (Innara Health Inc., Olathe, KS, USA) through a pacifier interface (Philips Avent Soothie Pacifier, Stamford, CT, USA). The pneumatic stimulator in the NTrainer system generates a series of pulses patterned as 6-cycle bursts followed by 2-second pause periods (Fig 2A), which transforms the pacifier into a pulsating nipple. Each NTrainer pulse was frequency modulated (0 to 16 Hz) through the dynamic intraluminal pressure changes to stimulate oral facial nerves [38]. A PFOS training session lasted 20 minutes and consisted of three 3-minute PFOS epochs and two 5.5-minute non-stimulation epochs during which the pneumatic stimulator was switched off (Fig 2B). Infants assigned to the control group received oral suck training using the same type of Soothie pacifier that was not pulsatile during the entire 20-minute session (Fig 2B). Infants were continuously monitored during study sessions, and interventions were halted if an infant showed signs of intolerance to the intervention or instability in vital signs. Both experimental and control interventions were performed by non-blinded occupational and physical therapists or a small group of trained clinical nurses. Other NICU staff including physicians, nurse practitioners and the non-study clinical nurses were blinded. The same NTrainer System was set up at bedside during both experimental and control interventions.

thumbnail
Fig 2. Intervention sessions.

(A) The NTrainer pulses are patterned as 6-cycle bursts followed by 2-second pause periods. (B) An experimental session: three 3-minute PFOS epochs and two 5.5-minute non-stimulation epochs; a control session: a 20 minute no pulse period. PFOS: patterned and frequency-modulated oro-somatosensory stimulation.

https://doi.org/10.1371/journal.pone.0212675.g002

Interventions began between 30–32 weeks postmenstrual age, once infants were tolerating enteral feeds and medically stable (i.e., not on any vasopressor, not mechanically ventilated, and FiO2 less than 40% if on continuous positive airway pressure or high flow nasal cannula ≥ 2 LPM). Infants received full volume gavage feeding during intervention sessions. When the infant’s mother was available for breastfeeding, intervention sessions were not performed. Interventions were performed up to 4 times daily to accommodate breastfeeding attempts. Interventions were stopped after a 2-week training period or when the infant reached full oral feeds, whichever came first. During interventions, if infants were inside isolettes they remained in the isolettes and were cradled in a supportive inclined position. Infants already weaned to open cribs received the interventions while being held in a feeding position on the lap of staff. Oral feeding was initiated after 31 6/7 weeks of gestation and advanced per oral feeding protocol (Fig 3), developed based on the previous publication [39]. If the infant was on high flow nasal cannula (≥ 2 LPM) or continuous positive airway pressure, oral feeding was initiated when FIO2 was <40%. Oral feedings were conducted following developmental care practice which included continuously assessing the infants’ autonomic and motor state, and responding in real time. Infants who showed feeding readiness, including alertness with adequate muscle tone, hand to mouth behavior, rooting or taking pacifier, were allowed to feed at their own pace for up to 30 minutes. If infants showed signs of fatigue or instability, feeding was stopped.

Outcomes

The primary outcome of the study was the number of days from initiation of oral feeds to successful FOF by bottle or breastfeeding. Successful oral feeding was defined as no gavage supplementation and taking at least 120 ml/kg/day of milk (if bottle-fed) for 48 consecutive hours with sufficient weight gain. Secondary outcomes of the study included LOS in NICU, PMA at FOF, PMA at discharge, weight gain (g/kg/day) using the published exponential model [40], and head growth (cm/week) from birth to discharge. Infants were censored for the primary outcome if they died prior to achieving FOF, were discharged home with a gastrostomy tube, or were transferred to another hospital before reaching FOF. Infants were censored for the secondary outcome of LOS if they died or were transferred to another hospital. The study protocol specified collecting data to assess the ability to breastfeed prior to discharge, however, we were unable to collect this data due to lack of consistent documentation. Neonatal outcomes included mortality, necrotizing enterocolitis, late onset sepsis, aspiration pneumonia, and chronic lung disease.

Sample size and statistical analysis

The sample size calculation used the time to FOF (Mean 23 and SD 12 days) which was reported by Simpson et al [39]. The sample size of 210 infants (105 in each group) was calculated to detect a 5-day difference in time to reach FOF between the experimental and control groups, with a two-sided alpha of 0.05 and 80% power (β = 0.2) with allowance for up to 10% censoring of the primary outcome. Subgroup analysis in the GA groups of 26 0/7-28 6/7 weeks and 29 0/7-30 6/7 weeks was planned a priori. Data were collected by investigators at each study site and audited by an independent agency (Cosgrove Consulting, Blue Springs, MO). Intent-to-treat analysis (n = 210) was performed to compare the experimental and control groups. Outcomes between experimental and control groups were compared using generalized estimating equations [41] (StataCorp 2013, StataCorp LP, TX, USA) with a linear link for continuous variables (time to FOF, LOS, PMA at FOF, PMA at discharge, weight gain and head growth), and a logistic link for binary variables (mortality and morbidities), with clustering of errors at the familial level to account for randomization of multiple births to the same intervention group. Time-to-event analyses (time to FOF, LOS) were conducted using Cox proportional hazards models, which also clustered errors at the familial level to account for the randomization of twins and triplets to the same intervention group. This clustering of errors is consistent with previous studies that randomize twins to the same study arm [42]. Time-to-event analysis (time to FOF, LOS) was illustrated as Kaplan-Meier curves.

Results

Subject enrollment

There were 262 eligible infants and 210 were randomized (experimental group n = 109; control group n = 101), including 38 multiple births (32 twins and 6 triplets) (Fig 1). Seven infants (2 experimental, 5 control) did not receive study interventions due to medical instability. There was 6.2% censoring for time to FOF; 7 in the experimental group (1 died, 3 discharged with gastrostomy tube feeding, 3 transferred) and 6 in the control group (2 discharged with gastrostomy tube feeding, 4 transferred). There was 3.8% censoring for LOS; 4 in the experimental group (1 died, 3 transferred) and 4 in the control group (transferred).

Demographics

There was no difference in the baseline characteristics of the infants between experimental and control groups in birth weight, GA, sex, race, ethnicity, antenatal steroid exposure, or study parameters between the experimental and control groups (Table 1).

Compared to the infants in the control group, infants in the experimental group showed significant reduction in time to FOF and LOS (Table 2). Time-to-event analysis showed that there was a significant reduction in time to FOF but not in LOS (Table 2, Fig 4). There is a suggestion of reduction in both PMA at FOF and PMA at discharge in the experimental group, although it did not reach statistical significance. In the 29–30 weeks GA subgroup (Table 2, Fig 4), infants in the experimental group had a significant reduction in LOS and PMA at discharge. This difference was not observed in the 26–28 weeks GA subgroup (Table 2).

thumbnail
Fig 4. Kaplan-Meier curves for time to reach full oral feeds and length of stay.

https://doi.org/10.1371/journal.pone.0212675.g004

The X axis is the time in days to reach the outcome and Y axis is the percentage of infants that reached the outcome. Time to reach full oral feeds in the whole study cohort (A), in the 26–28 weeks GA subgroup (B) and in the 29–30 weeks GA subgroup (C). The length of hospital stay in the whole study cohort (D), in the 26–28 weeks GA subgroup (E) and in the 29–30 weeks GA subgroup (F).

Neonatal outcomes

There was no difference between experimental and control group neonatal mortality or morbidities (Table 3). One infant in the experimental group died of liver failure, unrelated to the intervention. The percentage of infants with chronic lung disease was 17% in the 26–28 weeks GA subgroup (9 in experimental and 10 in control, p = 1.0) and 3% in the 29–30 weeks GA subgroup (0 in experimental and 3 in control, p = 0.08).

Discussion

This multicenter clinical trial showed that infants who received PFOS attained FOF four days faster than the control group and in the 29–30 weeks subgroup, those who received PFOS were discharged from NICU ten days earlier than the control group. This intervention was well tolerated and did not have an adverse impact on growth, neonatal mortality, or morbidity.

Infant sucking may be nutritive associated with swallowing milk or non-nutritive involving minimal swallowing except for infants’ own saliva [4347]. Both types of suck involve the oral-pharyngeal neuromuscular system and are controlled by a neural network known as central pattern generators [3, 48]. Maturation of non-nutritive suck (NNS) has been shown to be a positive predictor for nutritive feeding performance [49]. A safe and effective oral feeding requires coordination between swallow and respiration [5052]. Immaturity and associated respiration complications, such as respiratory distress syndrome and chronic lung disease, increase preterm infants’ risk for aspiration [5355]. Therefore, non-nutritive oral interventions are commonly performed on preterm infants before they are able to orally feed safely. These interventions have been shown to have multiple beneficial effects on feeding development. They accelerate maturation of the central pattern generators [3], improve sucking skills and oral feeding performance [2731]. Swallow practice with small milk boluses enhanced preterm infants oral feeding [32]. Although infants are not fed with milk orally during non-nutritive interventions, oral stimulation may increase saliva production and swallowing practice, which may facilitate synchrony between swallowing and breathing. A study conducted by Fucile et al. [56] has provided direct evidence that oral sensorimotor intervention facilitates suck-swallow-respiration coordination. Behavioral state is an important clinical parameter for assessing oral feeding readiness and performance [57,58]. Several studies have shown that sucking on pacifiers helped infants achieve and sustain a quiet alert state prior to and during oral feeding and improved their feeding readiness and efficiency [5963]. Time to transition from gavage to FOF is a commonly used outcome in studies of infant feeding [4, 19, 26]. A 2016 meta-analysis showed that providing infants with a regular pacifier, compared with providing no intervention, significantly reduced time from initiation of oral feed to FOF (-2.2 days, n = 100) [3]. Importantly, more recent studies show that non-nutritive oral interventions shortened transition time from gavage to breastfeeding and increased breastfeeding rates [6468]. Some of these effects were not observed consistently [3235]. The discrepancies may result from differences in intervention methods, study protocols (i.e., timing, duration, and frequency of interventions) and patient populations, small sample sizes that are not powered to reach statistical significance, or operator-dependent variations [3, 19].

Previous studies have shown that PFOS, delivered by NTrainer through a pulsatile pacifier interface, is more effective than a non-pulsatile pacifier in facilitating NNS maturation in preterm infants [18, 19, 25]. The regular non-pulsatile pacifier training depends on preterm infants’ suck movements which are immature, low amplitude, low frequency (0–2 Hz), and of poor consistency. In contrast, the PFOS provides consistent oral-somatosensory stimuli which mimic the amplitude and frequency of mature NNS bursts [36]. The efficacy of PFOS also critically depends on the characteristics of its frequency modulation (0–16 Hz) [38], which targets the touch frequency spectrum of orofacial mechanoreceptors (0–100 Hz) [69, 70]. This broader stimulation spectrum may generate more effective sensory inputs in inducing neuroplastic changes in brainstem feeding centers and sensory and motor cortices [71. 72].

A large observational study showed that infants born at 26–30 weeks’ gestation, with routine care, attained FOF at 37–39 weeks PMA [73]. In our study, infants who received non-pulsatile pacifier NNS training reached FOF at 36 weeks PMA. Moreover, infants who received PFOS showed further reduction in time to reach FOF by 4 days. These infants were capable of taking sufficient oral feeds at a mean PMA of 35 weeks, a feeding competence comparable to infants born at 35 weeks’ gestation [73]. The previous studies of PFOS have mainly focused on the efficacy of PFOS on NNS development [3638]. This multicenter RCT evaluated the effect of PFOS on nutritive feeding competency. Collectively, results from these studies have demonstrated a consistent positive effect of PFOS throughout oral feeding development, from establishment of NNS to more mature, nutritive feeding.

Our subgroup analysis showed minimum effects of PFOS on FOF and length of NICU stay in the 26–28 weeks GA subgroup (Table 2 and Fig 4). In contrast, a previous study has shown PFOS to be more effective in improving NNS and shortening of NICU stay in less mature infants (23–28 weeks) with chronic lung disease compared to more mature infants (30–34 weeks) with only respiratory distress syndrome or no respiratory complications [74]. Although both studies used the same PFOS entrainment regimen, the timing of initiating intervention was different: our study initiated intervention at 30–32 weeks PMA, while the previous study initiated intervention later, at 34–35 weeks PMA. Thus, the efficacy of PFOS may depend on the timing of intervention, targeting a critical period for feeding development. The timing of intervention in this study may be too early and or too short a duration for infants born at a younger gestation who are at a higher risk for delayed feeding development [5355].

Independent oral feeding is an essential physiologic competency and often a limiting step for discharging preterm infants from the NICU [9]. A recent meta-analysis showed non-nutritive training with a regular pacifier, compared to providing no intervention, reduced LOS (-4.6 days, n = 501) [3]. In our study, in comparison to regular pacifier training, PFOS reduced LOS by 6 days. This reduction, however, did not reach statistical significance in the time-to-event, possibly due to the fact that our study was not powered to show this difference using Cox proportional hazards models. Future studies with larger sample size are needed to determine the effect of PFOS on LOS. In the 28–30 weeks subgroup, we observed a 10-day reduction in LOS. This suggests that the effects of PFOS may not be limited only to the oral system, but may also influence other developmental processes affecting LOS. Mature cardiorespiratory control is another essential physiologic competency for hospital discharge and apnea is a common reason for prolonging NICU stays [75]. Further studies are needed to determine whether PFOS affects maturation of respiratory control as well as other factors influencing infant and parental readiness for discharge.

This clinical trial was conducted in different hospital settings and enrolled infants of diverse racial ethnic backgrounds, making it generalizable in the study preterm infant population. In addition, clinical nurses, occupational and physical therapists performed PFOS interventions, demonstrating that it is feasible in clinical practice.

This study has several limitations. We were not able to study infants born before 26 weeks’ gestation because of their medical instability during the predefined time period of interventions. Apnea, bradycardia, and desaturation are common reasons for feeding intolerance and delayed NICU discharge, but we collected vitals only during training sessions to monitor safety of the interventions. Examining these data until time of discharge might allow evaluation of the impact of PFOS on cardiorespiratory stability. We did not collect data on breastfeeding, parental involvement, or parental readiness to bring their infant home. PFOS training produces effective oral sensory input and can be used as an adjunct tool for therapists and caregivers to support preterm infant oral feeding development. However, its clinical application should be in the context of providing individualized care that is appropriate for the infants’ overall physiological and behavioral development.

Conclusions

PFOS supports feeding development and shortens time to full oral feeds in very preterm infants. It helps them achieve the normal milestone of independent oral feeding and shortens LOS. A better understanding of how GA, chronological age and lung disease interact with the genetic control of feeding development can further improve our ability to effectively utilize different feeding entrainments in clinical practice [76].

Acknowledgments

We would like to thank our infants and their families for participating in the study. We acknowledge the efforts of all physicians, study coordinators, physical and occupational therapists, and nursing staff from all participating centers.

References

  1. 1. Delaney AL, Arvedson JC. Development of swallowing and feeding: prenatal through first year of life. Dev Disabil Res Rev. 2008;14(2):105–17. pmid:18646020
  2. 2. da Costa SP, van den Engel-Hoek L, Bos AF. Sucking and swallowing in infants and diagnostic tools. Journal of perinatology. 2008;28(4):247–57. pmid:18200022
  3. 3. Barlow SM. Oral and respiratory control for preterm feeding. Current opinion in otolaryngology & head and neck surgery. 2009;17(3):179–86.
  4. 4. Foster JP, Psaila K, Patterson T. Non-nutritive sucking for increasing physiologic stability and nutrition in preterm infants. Cochrane Database Syst Rev. 2016;10:CD001071. pmid:27699765
  5. 5. Bakewell-Sachs S, Medoff-Cooper B, Escobar GJ, Silber JH, Lorch SA. Infant functional status: the timing of physiologic maturation of premature infants. Pediatrics. 2009;123(5):e878–86. pmid:19403481
  6. 6. Lau C. Development of infant oral feeding skills: what do we know? Am J Clin Nutr. 2016 Feb;103(2):616S–21S pmid:26791183
  7. 7. Bingham PM. Deprivation and dysphagia in premature infants. Journal of child neurology. 2009;24(6):743–9. pmid:19491116
  8. 8. Browne JV, Ross ES. Eating as a neurodevelopmental process for high-risk newborns. Clinics in perinatology. 2011;38(4):731–43. pmid:22107901
  9. 9. American Academy of Pediatrics Coommittee on Fetus and Newborn. Hospital discharge of the high-risk neonate. Pediatrics. 2008;122(5):1119–26. pmid:18977994
  10. 10. Pagliaro CL, Bühler KE, Ibidi SM, Limongi SC. Dietary transition difficulties in preterm infants: critical literature review. J Pediatr (Rio J). 2016;92(1):7–14.
  11. 11. Mizuno K, Ueda A. Neonatal feeding performance as a predictor of neurodevelopmental outcome at 18 months. Developmental medicine and child neurology. 2005;47(5):299–304. pmid:15892371
  12. 12. Medoff-Cooper B, Shults J, Kaplan J. Sucking behavior of preterm neonates as a predictor of developmental outcomes. Journal of developmental and behavioral pediatrics. 2009;30(1):16–22. pmid:19194323
  13. 13. Crapnell TL, Woodward LJ, Rogers CE, Inder TE, Pineda RG. Neurodevelopmental profile, growth, and psychosocial environment of preterm infants with difficult feeding behavior at age 2 years. The Journal of pediatrics. 2015;167(6):1347–53. pmid:26490123
  14. 14. Adams-Chapman I, Bann CM, Vaucher YE, Stoll BJ. Association between feeding difficulties and language delay in preterm infants using Bayley Scales of Infant Development-Third Edition. The Journal of pediatrics. 2013;163(3):680–5.e1-3. pmid:23582139
  15. 15. Malas K, Trudeau N, Chagnon M, McFarland DH. Feeding-swallowing difficulties in children later diagnosed with language impairment. Developmental medicine and child neurology. 2015;57(9):872–9. pmid:25809143
  16. 16. Als H. Lester BM, Brazelton TB. Dynamics of the behavioral organization of the premature infant: A theoretical perspective. In: Infants Born at risk: Field TM, Sostek AM, Goldberg S, Shauman HH, editors. New York: Spectrum Publication; 1979. Pp. 173–193.
  17. 17. Als H. Curr Opin Pediatr. Developmental care in the newborn intensive care unit. Curr Opin Pediatr. 1998 Apr;10(2):138–42. pmid:9608890
  18. 18. Harding C. An evaluation of the benefits of non-nutritive sucking for premature infants as described in the literature. Arch Dis Child. 2009 Aug;94(8):636–40 pmid:19628881
  19. 19. Greene Z ODC, Walshe M. Oral stimulation for promoting oral feeding in preterm infants. Cochrane Database Syst Rev. 2016:74.
  20. 20. Bingham PM, Abassi S, Sivieri E. A pilot study of milk odor effect on nonnutritive sucking by premature newborns. Archives of pediatrics & adolescent medicine. 2003;157(1):72–75.
  21. 21. Yildiz A, Arikan D, Gözüm S, Taştekın A, Budancamanak I. The effect of the odor of breast milk on the time needed for transition from gavage to total oral feeding in preterm infants. J Nurs Scholarsh. 2011;43(3):265–273. pmid:21884372
  22. 22. Chorna OD, Slaughter JC, Wang L, Stark AR, Maitre NL. A pacifier-activated music player with mother's voice improves oral feeding in preterm infants. Pediatrics. 2014;133(3):462–468. pmid:24534413
  23. 23. Yildiz A, Arikan D. The effects of giving pacifiers to premature infants and making them listen to lullabies on their transition period for total oral feeding and sucking success. J Clin Nurs. 2012;21(5–6):644–656. pmid:21668549
  24. 24. Zimmerman E, Barlow SM. The effects of vestibular stimulation rate and magnitude of acceleration on central pattern generation for chest wall kinematics in preterm infants. J Perinatol. 2012;32(8):614–620. pmid:22157627
  25. 25. White-Traut RC, Nelson MN, Silvestri JM, Vasan U, Littau S, Meleedy-Rey et al. Effect of auditory, tactile, visual, and vestibular intervention on length of stay, alertness, and feeding progression in preterm infants. Dev Med Child Neurol. 2002;44(2):91–97. pmid:11848115
  26. 26. Tian X, Yi LJ, Zhang L, et al. Oral Motor Intervention Improved the Oral Feeding in Preterm Infants: Evidence Based on a Meta-Analysis With Trial Sequential Analysis. Medicine (Baltimore). 2015;94(31):e1310. pmid:26252313
  27. 27. McCain GC. Promotion of preterm infant nipple feeding with nonnutritive sucking. J Pediatr Nurs. 1995 Feb;10(1):3–8 pmid:7891260
  28. 28. Fucile S, Gisel EG, Lau C. Effect of an oral stimulation program on sucking skill maturation of preterm infants. Dev Med Child Neurol. 2005 Mar;47(3):158–62. pmid:15739719
  29. 29. Fucile S, Gisel EG, McFarland DH, Lau C. Oral and non-oral sensorimotor interventions enhance oral feeding performance in preterm infants. Dev Med Child Neurol. 2011 Sep;53(9):829–835. pmid:21707601
  30. 30. Boiron M, Da Nobrega L, Roux S, Henrot A, Saliba E. Effects of oral stimulation and oral support on non-nutritive sucking and feeding performance in preterm infants. Dev Med Child Neurol. 2007 Jun;49(6):439–44. pmid:17518930
  31. 31. Zhang Y, Lyu T, Hu X, Shi P, Cao Y, Latour JM. Effect of nonnutritive sucking and oral stimulation on feeding performance in preterm infants: a randomized controlled trial. Pediatr Crit Care Med. 2014;15(7):608–614. pmid:24977689
  32. 32. Lau C, Smith EO. Interventions to improve the oral feeding performance of preterm infants. Acta Paediatr. 2012 Jul;101(7):e269–74. pmid:22404221
  33. 33. Harding C, Frank L, Van Someren V, Hilari K3, Botting N. How does non-nutritive sucking support infant feeding? Infant Behav Dev. 2014 Nov;37(4):457–64. pmid:24974134
  34. 34. Boiron M, Da Nobrega L, Roux S, Henrot A, Saliba E. Effects of oral stimulation and oral support on non-nutritive sucking and feeding performance in preterm infants. Dev Med Child Neurol. 2007 Jun;49(6):439–44. pmid:17518930
  35. 35. Bragelien R, Røkke W, Markestad T. Stimulation of sucking and swallowing to promote oral feeding in premature infants. Acta Paediatr. 2007 Oct;96(10):1430–2. pmid:17714542
  36. 36. Barlow SM, Finan DS, Lee J, Chu S. Synthetic orocutaneous stimulation entrains preterm infants with feeding difficulties to suck. Journal of perinatology: official journal of the California Perinatal Association. 2008;28(8):541–8.
  37. 37. Poore M, Zimmerman E, Barlow SM, Wang J, Gu F. Patterned orocutaneous therapy improves sucking and oral feeding in preterm infants. Acta Paediatr. 2008;97(7):920–7. pmid:18462468
  38. 38. Barlow S, Lee J, Wang J, Oder A, Oh H, Hall S, et al. Effects of oral stimulus frequency spectra on the development of non-nutritive suck in preterm infants with respiratory distress syndrome or chronic lung disease, and preterm infants of diabetic mothers. J Neonatal Nurs. 2014;20(4):178–88. pmid:25018662
  39. 39. Simpson C, Schanler RJ, Lau C. Early introduction of oral feeding in preterm infants. Pediatrics. 2002;110(3):517–22. pmid:12205253
  40. 40. Patel AL, Engstrom JL, Meier PP, Jegier BJ, Kimura RE. Calculating postnatal growth velocity in very low birth weight (VLBW) premature infants. Journal of perinatology. 2009;29(9):618–22. pmid:19461590
  41. 41. Hibbs AM, Black D, Palermo L, Cnaan A, Luan X, Truog WE, et al. Accounting for multiple births in neonatal and perinatal trials: systematic review and case study. J Pediatr. 2010 Feb;156(2):202–8. pmid:19969305
  42. 42. Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010 May 27;362(21):1959–69. pmid:20472937
  43. 43. Wolff PH. The serial organization of sucking in the young infant. Pediatrics. 1968 Dec;42(6):943–56 pmid:4235770
  44. 44. Hack M, Estabrook MM, Robertson SS. Development of sucking rhythm in preterm infants. Early Hum Dev. 1985 Jul;11(2):133–40. pmid:4029050
  45. 45. Hafström M, Kjellmer I. Non-nutritive sucking in the healthy pre-term infant. Early Hum Dev. 2000 Nov;60(1):13–24. pmid:11054580
  46. 46. Lau C, Alagugurusamy R, Schanler RJ, Smith EO, Shulman RJ. Characterization of the developmental stages of sucking in preterm infants during bottle feeding. Acta Paediatr. 2000 Jul;89(7):846–52. pmid:10943969
  47. 47. Lau C, Kusnierczyk I. Dysphagia. 2001 Winter;16(1):58–67. Quantitative evaluation of infant's nonnutritive and nutritive sucking. Dysphagia. 2001 Winter;16(1):58–67.
  48. 48. Barlow SM. Central pattern generation involved in oral and respiratory control for feeding in the term infant.Curr Opin Otolaryngol Head Neck Surg. 2009
  49. 49. Bingham PM, Ashikaga T, Abbasi S. Prospective study of non-nutritive sucking and feeding skills in premature infants. Arch Dis Child Fetal Neonatal Ed. 2010;95(3):F194–200. pmid:19948525
  50. 50. Mizuno K, Ueda A. The maturation and coordination of sucking, swallowing, and respiration in preterm infants. J Pediatr. 2003;142(1):36–40. pmid:12520252
  51. 51. Lau C.Development of Suck and Swallow Mechanisms in Infants. Ann Nutr Metab. 2015;66 Suppl 5:7–14.
  52. 52. Gewolb IH, Vice FL, Schwietzer-Kenney EL, Taciak VL, Bosma JF. Developmental patterns of rhythmic suck and swallow in preterm infants. Dev Med Child Neurol. 2001 Jan;43(1):22–7. pmid:11201418
  53. 53. Gewolb IH, Vice FL. Abnormalities in the coordination of respiration and swallow in preterm infants with bronchopulmonary dysplasia. Dev Med Child Neurol. 2006;48(7):595–599. pmid:16780630
  54. 54. da Costa SP, van der Schans CP, Zweens MJ, Boelema SR, van der Meij E, Boerman MA, et al. Development of sucking patterns in pre-term infants with bronchopulmonary dysplasia. Neonatology. 2010;98(3):268–277. pmid:20453521
  55. 55. Jadcherla SR, Wang M, Vijayapal AS, Leuthner SR. Impact of prematurity and co-morbidities on feeding milestones in neonates: a retrospective study. J Perinatol. 2010;30(3):201–208. pmid:19812589
  56. 56. Fucile S, McFarland DH, Gisel EG, Lau C. Oral and nonoral sensorimotor interventions facilitate suck-swallow-respiration functions and their coordination in preterm infants. Early Hum Dev. 2012 Jun;88(6):345–50. pmid:21962771
  57. 57. McCain GC. An evidence-based guideline for introducing oral feeding to healthy preterm infants.Neonatal Netw. 2003 Sep-Oct;22(5):45–50 pmid:14598979
  58. 58. Ludwig SM, Waitzman KA. Changing feeding documentation to reflect infant-driven feeding prctice. Newborn & Infant Nursing Reviews. 2007;7(3):155–60.
  59. 59. McCain GC.Behavioral state activity during nipple feedings for preterm infants. Neonatal Netw. 1997 Aug;16(5):43–7. pmid:9325871
  60. 60. Pickler RH1, Frankel HB, Walsh KM, Thompson NM. Effects of nonnutritive sucking on behavioral organization and feeding performance in preterm infants. Nurs Res. 1996 May-Jun;45(3):132–5. pmid:8637792
  61. 61. Gill NE, Behnke M, Conlon M, Anderson GC. Nonnutritive sucking modulates behavioral state for preterm infants before feeding. Scand J Caring Sci. 1992;6(1):3–7. pmid:1579769
  62. 62. Griffith T1, Rankin K, White-Traut R.The Relationship between behavioral states and oral feeding efficiency in preterm infants. Adv Neonatal Care. 2017 Feb;17(1):E12–E19. pmid:27649302
  63. 63. White-Traut RC, Berbaum ML, Lessen B, McFarlin B, Cardenas L.Feeding readiness in preterm infants: the relationship between preterm behavioral state and feeding readiness behaviors and efficiency during transition from gavage to oral feeding. MCN Am J Matern Child Nurs. 2005 Jan-Feb;30(1):52–9. pmid:15622150
  64. 64. Pimenta HP, Moreira ME, Rocha AD, Gomes SC Jr, Pinto LW, Lucena SL. Effects of non-nutritive sucking and oral stimulation on breastfeeding rates for preterm, low birth weight infants: a randomized clinical trial. J Pediatr (Rio J). 2008 Sep-Oct;84(5):423–7.
  65. 65. Bache M, Pizon E, Jacobs J, Vaillant M, Lecomte A. Effects of pre-feeding oral stimulation on oral feeding in preterm infants: a randomized clinical trial. Early Hum Dev. 2014 Mar;90(3):125–9. pmid:24461572
  66. 66. Kaya V, Aytekin A. Effects of pacifier use on transition to full breastfeeding and sucking skills in preterm infants: a randomised controlled trial. J Clin Nurs. 2017 Jul;26(13–14):2055–2063. pmid:27754572
  67. 67. Say B, Simsek GK, Canpolat FE, Oguz SS. Effects of Pacifier Use on Transition time from gavage to breastfeeding in preterm infants: A randomized controlled trial. Breastfeed Med. 2018 Jul/Aug;13(6):433–437. pmid:29912580
  68. 68. Fucile S, Milutinov M, Timmons K, Dow K. Oral Sensorimotor Intervention Enhances Breastfeeding Establishment in Preterm Infants. Breastfeed Med. 2018 Sep;13(7):473–478. pmid:30113209
  69. 69. Trulsson M, Johansson RS. Orofacial mechanoreceptors in humans: encoding characteristics and responses during natural orofacial behaviors. Behav Brain Res. 2002;135(1–2):27–33. pmid:12356430
  70. 70. Barlow SM. Mechanical frequency detection thresholds in the human face. Exp Neurol. 1987;96(2):253–61 pmid:3569454
  71. 71. Barlow SM, Jegatheesan P, Weiss S, Govindaswami B, Wang J, Lee J, et al. Amplitude-integrated EEG and range-EEG modulation associated with pneumatic orocutaneous stimulation in preterm infants. Journal of perinatology. 2014;34(3):213–9. pmid:24310443
  72. 72. Song D, Jegatheesan P, Weiss S, Govindaswami B, Wang J, Lee J, et al. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants. Pediatr Res. 2014;75(1–1):85–92. pmid:24129553
  73. 73. Dodrill P, Donovan T, Cleghorn G, McMahon S, Davies PS. Attainment of early feeding milestones in preterm neonates. Journal of perinatology. 2008;28(8):549–55. pmid:18580883
  74. 74. Barlow SM, Lee J, Wang J, Oder A, Hall S, Knox K, et al. Frequency-modulated orocutaneous stimulation promotes non-nutritive suck development in preterm infants with respiratory distress syndrome or chronic lung disease. Journal of perinatology. 2014;34(2):136–42. pmid:24310444
  75. 75. Eichenwald EC, Blackwell M, Lloyd JS, Tran T, Wilker RE, Richardson DK. Inter-neonatal intensive care unit variation in discharge timing: influence of apnea and feeding management. Pediatrics. 2001;108(4):928–33. pmid:11581446
  76. 76. Barlow SM, Maron JL, Alterovitz G, Song D, Wilson BJ, Jegatheesan P, et al. Somatosensory modulation of salivary gene expression and oral feeding in preterm infants: fandomized controlled trial. JMIR Res Protoc. 2017;6(6):e113. pmid:28615158