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Appendix S1. Derivation of Eq 3 and why dmin is not a good measure of lost caps.  

Abercrombie (1946) derived the following relation between the expected true particle 

count (Ntrue) and actual crude particle count (Nmeasured) of a section of thickness T, also 

known as the Abercrombie correction formula: 

𝑁𝑡𝑟𝑢𝑒

𝑇
=

𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑇+𝜇𝐷
    Eq A1.1a 

Dividing both sides of this equation by the cross-sectional area over which the particles 

are counted (Areaxy) gives: 

𝑁𝑡𝑟𝑢𝑒

𝐴𝑟𝑒𝑎𝑥𝑦∙𝑇
=

𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐴𝑟𝑒𝑎𝑥𝑦∙(𝑇+𝜇𝐷)
   Eq A1.1b 

Substituting in terms λ3D and λ2D used in this study gives: 

𝜆3𝐷 =
𝜆2𝐷

(𝑇+𝜇𝐷)
     Eq A1.1c 

However, this relation is only correct if there are no lost caps. If there are lost caps, 

then μD must be scaled smaller. Using the Keiding fixed-ϕ model (1972), scaling of μD 

can be achieved via cosϕ (Fig 1) and λ3D can be estimated via the following (Cruz-

Orive, 1983): 

𝜆3𝐷 =
𝜆2𝐷

(𝑇+𝜇𝐷 cos 𝜙 )
     Eq A1.2a 

𝜆3𝐷 =
𝜆2𝐷

𝜁
      Eq A1.2b 

which is Eq 3 of this study. Floderus (1944) derived a similar expression with respect 

to the section penetration depth of the smallest observable cap (hmin): 

𝜆3𝐷 =
𝜆2𝐷

(𝑇+𝐷−2ℎ𝑚𝑖𝑛)
    Eq A1.3 

and this expression was later recast by Konigsmark (1970) as a function of dmin, the 

diameter of the smallest observable cap: 

𝜆3𝐷 =
𝜆2𝐷

(𝑇+[𝐷2−𝑑𝑚𝑖𝑛
2 ]

1/2
)
   Eq A1.4 

using the trigonometric relation: 

2ℎ𝑚𝑖𝑛 = 𝐷 − [𝐷2 − 𝑑𝑚𝑖𝑛
2 ]

1/2
  Eq A1.5 
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For analysing images, Eq A1.4 has proved more useful than the original Floderus 

equation since dmin can be directly measured from the sample of measured 2D 

diameters. However, an underlying assumption of the Floderus/Konigsmark correction 

is that all particles are the same size. If there is a distribution of particle size, then each 

particle will have its own minimum observable diameter (δmin) and dmin will be the 

minimum of all δmin (Fig 6C1 and S8C1). Depending on the spread of the δmin 

distribution, the difference between dmin and the mean δmin can be large, in which case 

the dmin correction will create a large underestimation of λ3D. Moreover, there is a high 

probability that dmin is an outlier, i.e. an unusually small value; this could happen when 

conditions for identifying small caps are better than average, or when there are false 

positive measurements. 

Our 3D analysis of MFT vesicles showed the Keiding model accurately describes the 

δmin-D relation of the vesicles (Fig 6C1 and S8C1) and therefore gives an accurate 

estimate of λ3D via Eq 3 (Fig 11). This is in contrast to the dmin correction which 

underestimated λ3D for the same datasets by 13–20% and the Abercrombie correction 

which underestimated λ3D by 22–24% (Table 5; ET10 and ET11). However, under ideal 

conditions where there are few lost caps, differences between λ3D estimated via the 

Keiding model and the dmin and Abercrombie corrections are expected to be small. For 

example, our analysis of GC nuclei in planar sections, where ϕ = 20°, showed only a 

2–6% difference between estimated λ3D. 
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Appendix S2. Estimation of the volume fraction of spherical particles from the 

area fraction of their 2D projections. 

The relation between the volume fraction (VF) of spherical particles and their observed 

area fraction (AF) in a 2D projection was derived by Weibel and Paumgartner (1978; 

their Eq 13 and 37) and is as follows: 

𝑉𝐹 = 𝐾𝑣 ∙ 𝐴𝐹     Eq A2.1 

where 

𝐾𝑣 =
2𝑚3

(2𝑚3 + 3𝑔 ∙ 𝑚2 − 3𝛸2 + 𝛸3)
 

𝑚2 =
(𝜇𝐷

2 + 𝜎𝐷
2)

𝜇𝐷
2  

𝑚3 =
𝜇𝐷 ∙ (𝜇𝐷

2 + 3𝜎𝐷
2)

𝜇𝐷
3  

𝑔 =  
𝑇

𝜇𝐷
 

𝛸 =
2ℎ𝑚𝑖𝑛

𝜇𝐷
 

Here, m2 and m3 are dimensionless moments for a Gaussian distribution and μD = 2μR. 

Because ϕ is a better descriptor of the lost-cap distribution than hmin or its equivalent 

dmin (Appendix S1; Fig 6C1 and S8C1), we express X as a function of ϕ rather than 

hmin by first defining X with respect to dmin via Eq A1.5: 

𝛸 =
2ℎ𝑚𝑖𝑛

𝜇𝐷
=

(𝜇𝐷−[𝜇𝐷
2 −𝑑𝑚𝑖𝑛

2]
1/2

)

𝜇𝐷
    Eq A2.2a 

𝛸 = 1 − [1 − (
𝑑𝑚𝑖𝑛

𝜇𝐷
)

2

]
1/2

   Eq A2.2b 

and substituting dϕ = μD·sinϕ for dmin: 

𝛸 = 1 − 𝑐𝑜𝑠𝜙     Eq A2.2c 

To test this relation, we can consider the ideal scenario of a planar section with no lost 

caps (ϕ = 0°), in which case g = 0, X = 0, Kv = 1 and VF = AF, which is expected (Weibel 
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and Paumgartner, 1978). We can also consider the scenario where all particles have 

the same diameter (D), in which case σD = 0, m2 = m3 = 1 and: 

𝐾𝑣 =
2

[2+3𝑔−3𝛸2+𝛸3]
     Eq A2.3a 

𝐾𝑣 =
2

[3𝑔+3𝑐𝑜𝑠𝜙−𝑐𝑜𝑠3𝜙]
    Eq A2.3b 

𝐾𝑣 =
2

[3𝑔+𝑐𝑜𝑠𝜙∙(2+ 𝑠𝑖𝑛2𝜙) ]
    Eq A2.3c 

which is equivalent to Eq 31 of Weibel and Paumgartner if one substitutes dϕ for dmin 

(i.e. dmin/D → dϕ/D = sinϕ). Finally, we computed the VF of the Monte Carlo simulations 

in Fig 4C using Eq A2.1 and A2.2c and found close agreement to the true VF (Fig 

10C). Likewise, the VF computed via the same equations for our ET z-stack analysis 

showed close agreement to the VF computed via our 3D analysis (Fig 11; Table 2). 
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Fig S1. Monte Carlo simulation of a 2D projection of spherical particles. 

2D projection of a planar section (T = 0, ϕ = 40°) through the middle of a Monte Carlo 

simulation (Materials and Methods) in which spherical particles were randomly 

distributed in a cuboid geometry (26 × 26 × 104 u.d.) where VF = 0.40. F(d) was a 

Gaussian distribution with normalised mean (Eq 5; μD ± σD = 1.00 ± 0.09 u.d.). Red 

circles denote particles reflected at the x and y borders, i.e. periodic boundary 

conditions, shown only for display purposes (i.e. they do not contribute to any size or 

density analysis). The geometry z-dimension was deep enough to accommodate 100 

such projections. The simulation was computed via D3D 

(https://github.com/SilverLabUCL/D3D). 
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Fig S2. Replication of the original Keiding-model fits to G(d) of liver cell nuclei. 

G(d) of liver cell nuclei (blue circles) computed from Table 1 of Keiding et al. (1972) for 

patients 601, 2003 and 1037. Distribution x-axes radii (units of mm) were converted to 

diameters (units of μm) via the following conversion factor: Θ = 2×1000/2300 μm/mm, 

where 2300 corrects for magnification. The maximum likelihood estimation (MLE) fits 

of Keiding et al. (black lines) were computed by plugging the parameters from their 

Table 2 (f, β, ϕ, p1, p2) into a modified version of Eq 1 (NMKeidingChi3) that includes 

the weighted sum of 3 G(d) as described by Keiding et al. (their Eq 4.1) using a chi 

distribution for F(d) (K-Chi3; Eq 6) and converting β from units of square radii (mm2) to 

square diameters (μm2) by multiplying by Θ2. For comparison, MLE fits were 

recomputed using a Gaussian distribution for F(d) (red lines; K-Gauss3; 

NMKeidingGauss3; Eq 5) where μD and σD were computed from f and β. The overlap 

of these two curves (K-Chi3 vs. K-Gauss3) demonstrates the estimated chi 

distributions from the MLE fits are approximately Gaussian, which is expected since f 

is large for these fits (104, 208 and 70). As a last comparison, the same modified 

version of Eq 1 (NMKeidingGauss3) was curve fitted to the 3 G(d) using our LSE 

routine (blue dashed lines) resulting in nearly equivalent curves and parameters (Table 

4).  
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Fig S3. Keiding-model curve fit to G(d) of Wicksell’s corpuscle problem. 

Curve fit of Eq 1 (red solid line) to G(d) of Wicksell’s corpuscle problem (1925; green 

circles) where F(d) was defined by the chi distribution (K-Chi; Eq 6). F(d) derived from 

the fit (red dashed line and circle; μD ± σD = 5.75 ± 2.18 mm) matches Wicksell’s F(d) 

computed via a finite-difference unfolding algorithm (black circles; μD ± σD = 5.82 ± 

2.24 mm). Keiding-model fit f = 3.67 ± 0.33, β = 10.31 ± 0.61 mm2, ϕ = 25 ± 3°, χ2 = 

0.0001. X-scale of Wicksell includes 18-fold magnification. T = 0.018 mm. Note, 

assuming a Gaussian function for F(d) (K-Gauss; Eq 5) resulted in a poor fit (χ2 = 

0.002). 
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Fig S4. The Keiding model accurately estimates F(d) and ϕ from G(d) for true ϕ 

< ϕcutoff (500 vs. 2000 simulated diameters). 

Left column: average ΔμD, ΔσD and Δϕ of Keiding-model fits to simulated G(d) 

computed from ~500 diameters (red circles; data from Fig 4C) and ~2000 diameters 

(black circles) for true ϕ = 10–80°, T = 0 u.d., CVD = 0.09. Red and black dashed lines 

denote respective ϕcutoff (~55 and 60°; Eq 8). Data x-scales shifted ±0.8° to avoid 

overlap. Bottom inset: ϕcutoff vs. 1/√n for simulations (gray circles) and Eq 8 (gray line; 

CVD = 0.09). Right column: 68% confidence interval (σΔ) of ΔμD, ΔσD and Δϕ (averaged 

across true ϕ = 10–40°) vs. 1/√n (n = 300, 500 and 2000 diameters) curve fitted to a 

linear function (dashed lines). 
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Fig S5. The ϕ-accuracy test using estimated ϕcutoff. 

Δϕ of Keiding-model fits to simulated G(d) versus the difference between estimated ϕ 

and estimated ϕcutoff, where estimated ϕcutoff was computed via Eq 9 using estimated 

μD and σD. These plots show that if estimated ϕ < estimated ϕcutoff (left side of graphs) 

there is a high probability |Δϕ| < 4° for G(d) computed from ~500 diameters (A1; red 

shading; data from Fig 4C), |Δϕ| < 3° for G(d) computed from ~2000 diameters (A2; 

data from Fig S4) and |Δϕ| < 5° for G(d) computed from ~300 diameters (not shown). 

For the simulations, true ϕ = 20–80°, T = 0 u.d., CVD = 0.09, with 100 simulated G(d) 

per true ϕ. A few data points are off scale. 
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Fig S6. 3D analysis of MFT vesicles in ET z-stacks. 

A. Example curve fit of an ellipse (Eq 10; red solid line) to the equivalent xy-radius 

(½darea) vs. z-stack image number (z#) relation of a MFT vesicle (black circles; vesicle 

#20) from z-stack ET10 where the z-axis was centered at z# = 0. Top graph shows 

residuals (nm) between data and fit. Red dashed lines denote measured ϕ for the 

vesicle’s north and south poles computed as ϕ = sin-1(δmin/D), where δmin is the 

minimum diameter measured at the given pole.  
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B. Probability density of eccentricity factor (E; 0.1 bins) for curve fits of Eq 10 to the xy-

radius vs. z# relations, as in A, of vesicles in ET10 (red; n = 132) and ET11 (blue; n = 

233). For ET10 and ET11, Sz was fixed to 0.63 and 0.53 nm, respectively, the values 

necessary to obtain an average E = 1.00, i.e. an average z-axis diameter equal to the 

average xy-axis diameter (isotropic conditions). These Sz are 1.7- and 1.4-fold larger 

than the acquisition Sz (0.38 nm) indicating the sections after imaging were 60% and 

70% of their original thickness, a shrinkage that is consistent with previous findings 

(Luther et al. 1988). The narrow E distributions (σ = ±0.15 and ±0.16) indicate spherical 

dimensions. See Fig S7, S8D and 6D for corresponding plots of parameter D, i.e. F(d). 

C. Probability density (per °) of θlong (orientation of longest vesicle diameter; 20° bins) 

for ET10 (red; n = 122) and ET11 (blue; n = 271) showing the vesicles have no 

systematic orientation in the xy-plane, consistent with a random orientation. For a given 

vesicle, θlong was measured on the z-plane where the vesicle has a maximum darea. 

D. Discretization error of measured ϕ (Δϕ = measured ϕ – true ϕ) as a function of z-

stack z-resolution (Sz) for Monte Carlo simulations where true CVϕ = 0.2 and VF = 0.35. 

Data is the average of 100 sections (μΔ ± σΔ). Orange square denotes conditions for 

the ET z-stacks of MFT vesicles (Fig 6 and S8; nonblind analysis; assuming true ϕ = 

40°). Pink square denotes conditions for TEM z-stack of GC nuclei (Fig S9; nonblind 

analysis; assuming true ϕ = 5°). Inset: cartoon of a particle sectioned within a z-stack. 

Dashed red lines denote the particle’s ϕ. 
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Fig S7. F(d) of cerebellar MFT vesicles and GC nuclei is well described by a 

Gaussian distribution. 

Comparison of LSE curve fits of a Gaussian distribution (Eq 5; red line), chi distribution 

(Eq 6; purple line) and gamma distribution (Eq 7; yellow line) to F(d) (black line) in Fig 

S8D (ET10; n = 132 diameters) and 6D (ET11; n = 233 diameters) and three F(d) from 

a previous study (Rothman et al. 2016; AZ1–3; n = 80, 78, 98 diameters) all computed 

from ET z-stacks of MFT vesicles. The fits overlap and show little difference in 

residuals (nm), χ2 and μD ± σD (circles ± error bars). For fits to the gamma distribution, 

d0 was fixed at 10 nm, a value determined by an initial round of fits where d0 was 

allowed to vary. Similar results were found for F(d) of GC nuclei measured from a TEM 

z-stack (Fig S9D; Nguyen et al. 2023; gamma d0 fixed at 4 μm). 
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Fig S8. The Keiding model accurately estimates F(d) and ϕ from G(d) for true ϕ 

< ϕcutoff (vesicles ET10). 

Same as Fig 6 for ET10. 

A. One of 291 serial images of a 3D ET reconstruction (ET10) of a cerebellar MFT 

section 182 nm thick. 141 vesicles, including 24 caps, were tracked and outlined 

through multiple z-planes (i.e. a nonblind particle detection) and their darea computed 

as a function of z-plane number. This image shows outlines for 9 representative 

vesicles, overlaid with outlines from images above and below. Scale bar 50 nm. 
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B. Black semi-circle and shading denote F(d) = μD ± σD = 46.0 ± 4.0 nm for all 

measured 3D diameters (D; n = 132). Black dotted lines and shading denote measured 

ϕ: μϕ ± σϕ = 41 ± 9° (CVϕ =0.2; n = 249, measures of north and south poles, including 

caps). Fit E = 1.00 ± 0.15 (n = 132). Fits to the smallest caps were not included (n = 

9). 

C1. δmin vs. D (circles; n = 249) with line fit (black line; χ2 = 6583, r = 0.2, R2 = 0.03) 

and Keiding-model fit (red solid line; fit ϕ = 39.9 ± 0.4°; χ2 = 7233, r = 0.2, R2 = 0.2). 

C2. ϕ vs. D for data in C1 with line fit (black line; r = -0.3, R2 = 0.1) and μϕ = 41° (red 

solid line). ϕ = sin-1(δmin/D). 

C3. Probability density (per °) of measured ϕ in C2. with Gaussian fit (gray line; Eq 5) 

and fit ϕ (red line) and ϕcutoff from D (black dashed line; ~60°; Eq 8). 

D. Measured F(d) (black line and circle; see B) vs. G(d) (green circles; n = 7083 

outlines). A curve fit of Eq 1 to G(d) (red solid line; μD = 46.2 ± 0.1 nm, σD = 4.0 ± 0.1 

nm, ϕ = 41 ± 1°; T fixed to 0 nm) resulted in estimated F(d) (red dotted line and circle) 

nearly the same as measured F(d) and estimated ϕ the same as μϕ (C3). 
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Fig S9. Size and density analysis of cerebellar GC nuclei computed from a TEM 

z-stack. 

A. TEM image of a cerebellar section of a WT mouse (P40) from the online z-stack of 

Nguyen et al. (2023; see Data Availability; z-stack plane z# = 150). Outlines were drawn 

around the outer contour of visually identified GC nuclei (yellow; blind detection) and 

darea computed from the outlines. A subset of nuclei (n = 30) were tracked through 

multiple z-planes in steps of 5 (0.2 μm) with one shown here (cyan; nonblind detection; 

overlaid outlines from images above and below). Pink dashed line illustrates a 

measurement of a nuclei’s xy-orientation with respect to its long diameter (θlong = 144°). 

Only a subregion of the analysis is shown. Scale bar 6 μm. 

B. Equivalent xy-radius (r = ½darea) vs. z# relation of the 30 nuclei tracked through 

multiple z-planes (lines), including the nucleus in A (cyan circles). The r-z# relations 

were curve fitted to an ellipse (Eq 10), with one fit shown here for the nucleus in A 

(black line; D = 6.47 ± 0.04 μm, E = 0.96 ± 0.01). For all fits, Sz was fixed to 40 nm, the 

value necessary to obtain an average E = 1.00, i.e. an average z-axis diameter 
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approximately equal to the average xy-axis diameter (isotropic conditions). This Sz is 

similar to that reported by Nguyen et al. (45 nm). Z-axes were centered at z# = 0. Inset: 

probability density of E (black circles; 0.15 bins) curve fitted to a Gaussian function 

(gray line; Eq. 5). The narrow E distribution (σ = ±0.17) indicates spherical dimensions. 

Measures of δmin and ϕ are not reported due to a large discretization error for this 

dataset (Fig S6D). 

C. Probability density (per °) of θlong, illustrated in A, showing the GC nuclei have no 

systematic orientation in the xy-plane, consistent with a random orientation (n = 107; 

20° bins). For a given nucleus, θlong was measured on the z-plane where the nucleus 

has a maximum darea, described in D. 

D. G(d) (green circles; 0.25 μm bins; n = 688 outlines) computed from darea as in A 

(blind detection) for 15 z-planes interior to the z-stack (z# = 100–450 in steps of 25). A 

curve fit of Eq 1 (red solid line) to G(d) resulted in an estimate of F(d) (red dotted line 

and circle; μD = 6.64 ± 0.03 μm, σD = 0.55 ± 0.03 μm) that matched the measured F(d) 

(black line and circle; μD ± σD = 6.73 ± 0.51 μm; ΔμD = -1.3% and ΔσD = +8.0%) with a 

ϕ (10 ± 2°) that was determinable (ϕcutoff ≈ 45°; Eq 9). Measured F(d) was computed 

by tracking GC nuclei (n = 107) through multiple z-planes and measuring darea on the 

plane where the nuclei appeared to have a maximum cross-sectional area (i.e. max 

darea); this method of estimating D is likely to have overestimated D in comparison to D 

computed via a curve fit to the r-z# relation (B; ΔμD = +1.7%; n = 30). Repeating the 

analysis for G(d) computed from the data in B (nonblind detection; n = 974 outlines) 

gave a similar estimated F(d) (μD = 6.63 ± 0.02 μm, σD = 0.52 ± 0.02 μm; ΔμD = -1.4% 

and ΔσD = +1.8%) but smaller ϕ (6 ± 1°; ϕcutoff ≈ 48°). The small difference in ϕ between 

the blind and nonblind analysis (ϕbias = 4°) indicates the blind nuclei detection was 

capable of identifying nearly all caps. Note, these estimates of μD are 1.4-fold larger 

than that estimated for our analysis of GC nuclei in TEM images (Table 3). 

E. GC nucleus density computed via the 2D analysis: λ3D = λ2D / ζ = 1.88 × 106 mm-3 

(solid red line; Eq 3) where λ2D = 820 / (15 × 4429 μm2) = 12.3 × 103 mm-2 (n = 15 TEM 

images from D; blind detection) and ζ = 6.58 μm (Eq 2); dotted red line shows λ3D for 

the 15 z-planes as a function of distance from the z-stack center (VF = 0.29; Eq 4). 

This estimated λ3D is similar to that computed via a 3D analysis (black line; λ3D = 

N3D/Volumexyz = 206/105,335 μm3 = 1.96 × 106 mm-3; VF = 0.31 via Eq 4) and the 3D 

reconstruction of Nguyen et al. (1.87 × 106 mm-3; their Fig 2). Comparison of the 2D 

versus 3D estimates of VF showed similar results (2D: VF = Kv·AF = 0.29 where AF = 

0.30 and Kv = 0.99; Eq A2.1 and B.2c). While estimates of λ3D are 3-fold smaller than 

that for our analysis of GC nuclei in TEM images, estimates of VF are only 1.2-fold 

smaller (Table 3). Left and right axes are equivalent scales for μD ± σD = 6.64 ± 0.55 

μm. 

Only a subset of the original TEM z-stack was analysed: coordinate pixels x = 124016–

146544, y = 95976–108264, z = 70–495 in z-steps of 5; however, images for z = 135, 

175 and 445 were non-existent in the online database and substituted with z = 136, 

176 and 446. Images were down-sampled by a factor of 10, giving Sxy = 40 nm/pixel. 
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Fig S10. The Keiding-model fixed-ϕ assumption introduces only small errors 
when estimating F(d) and ϕ from G(d) (z-stack simulations). 

A. Distribution of lost caps, L(d), for the Keiding-model fit to G(d) of ET10 (Fig S8D) 

where ϕ = 41° (red solid line; CVϕ = 0; see Fig 3F) and Gaussian distribution ϕ = 41 ± 

9° (black solid line; CVϕ = 0.2). The difference between these two distributions (red 
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dashed line) matches the residuals (nm) of the Keiding-model fit to G(d). Hence, the 

deviation of the Keiding-model fit from G(d) at 20–40 nm can be explained by the 

difference between a model that assumes a fixed ϕ (the Keiding model, 1972) and a 

Gaussian ϕ. L(d) was computed via simulations. F(d) is shown for comparison (gray 

line) and goes off scale. 

B1. χ2 comparison of experimental G(d) of ET10 to G(d) computed from a Monte Carlo 

model that assumes either a fixed ϕ as in the Keiding model (CVϕ = 0; red solid line 

denotes 50% probability and shading denotes 16–84% probability computed from 100 

repetitions per μϕ) or a Gaussian ϕ that matches the experimental data (CVϕ = 0.2; 

black solid line and shading). The Gaussian-ϕ model had significantly smaller χ2 than 

the fixed-ϕ model. To simulate the z-stack data, F(d) of the simulated particles was 

matched to the measured F(d) (μD ± σD = 46 ± 4 nm) and 2D diameters were computed 

from particle projections within an xy-plane (0.28 × 0.28 μm; T = 0 nm) that was z-

shifted 290 times in 0.6 nm steps. The number of analysed particles (~140) and 2D 

diameters (~6600) was similar that of the experimental data for μϕ = 41°. μϕ was the 

only free parameter and was varied between 37–48° in steps of 0.5°, or 1° outside this 

region. Circles denote best-match μϕ of the fixed-ϕ model (41.5°) and Gaussian-ϕ 

model (41.0°), as described below. Particle VF = 0.45. Red vertical dashed line 

denotes ϕ of the Keiding-model fit to experimental G(d). Black vertical dashed line 

denotes measured μϕ. ϕcutoff ≈ 60° (Eq 8). 

B2. Experimental G(d) (bottom; green circles) compared to best-match simulated G(d) 

in B1, where simulated G(d) are the average for 100 repetitions for μϕ = 41° (red and 

black lines). Differences between experimental and simulated G(d) (top) shows the 

Gaussian-ϕ model is a better match to experimental G(d). 

C. Average ΔμD, ΔσD and Δϕ of curve fits of Eq 1 to the 100 G(d) of the best-match 

simulations in B1, computed with respect to ‘measured’ μD, σD and μϕ of the particles 

in the projection. Black dashed lines denote ΔμD, ΔσD and Δϕ of the experimental data. 

Errors of the Gaussian-ϕ model match the experimental errors better than those of the 

fix-ϕ model. 

To find the best-match μϕ for the given experimental G(d), the sum of squared 

differences (χ2) was computed between the experimental G(d) and simulated G(d). 

Cumulative distribution functions (CDFs) of χ2 were computed from the 100 simulated 

G(d) at a given μϕ. From the CDFs, χ2 values with 50% probability (χ2-50%) were 

computed as a function of μϕ, as well as χ2 values with 16 and 84% probabilities 

representing ±σ. The μϕ with smallest χ2-50% was deemed the best match. Confidence 

intervals above and below the best-match μϕ denote the range of μϕ whose χ2 are not 

significantly different to that of the best-match μϕ, computed via a KS test (p > 0.05). 
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Fig S11. The Keiding-model fixed-ϕ assumption introduces only small errors 

when estimating F(d) and ϕ from G(d) (2D projection simulations). 

Average ΔμD, ΔσD and Δϕ of curve fits of Eq 1 to 100 G(d) computed from simulations 

as in Fig 4 for ~500 particles with a fixed or Gaussian ϕ for μϕ = 10–50° (CVϕ = 0 or 

0.2; red vs. black) and T = 0 and 1 u.d. (open and closed circles). Fixed-ϕ simulation 

data is from Fig 4C. ϕcutoff ≈ 55° (Eq 8). 
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Fig S12. Keiding-model fits to G(d) of cerebellar GC somata. 

G(d) (green circles) computed from outlines of GC somata (n = 494–638; 0.3 μm bins) 

measured from confocal images of the GC layer (Fig 2A1 and 2A2) where each row is 

for a different rat (R1, R5, R6) and each G(d) is computed from 1–3 images of a 

confocal z-stack. There were 2–3 tissue sections per rat (SL1, SL2, SL3). Each G(d) 

was curve fitted to Eq 1 (red solid lines) resulting in estimates for F(d) (red dotted lines 

and circles) and ϕ. Estimated ϕcutoff was computed via Eq 9. For all but two fits, 

estimated ϕ < estimated ϕcutoff. Comparisons of the diameter distributions within rats 

showed significant differences (KS test; p < 0.05), even after alignment on their mean 

μD. 
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Fig S13. Keiding-model fits to G(d) of cerebellar GC nuclei. 

G(d) (gray lines) computed from outlines of GC nuclei (n = 35–158 diameters; 0.5 μm 

bins) measured from TEM images of the GC layer (Fig 2B1 and 2B2) where each plot 

is for a different mouse (M15, M18, M19, M21). G(d) within mice (n = 6 or 7) were not 

significantly different and therefore pooled (green circles; n = 416–519 diameters; 0.25 

μm bins). The resulting 4 pooled G(d) were curve fitted to Eq 1 (red solid lines) resulting 

in estimates for F(d) (red dotted lines and circles) and ϕ. Estimated ϕcutoff was computed 

via Eq 9. Image IDs: M15 = M15.L3.11, 12, 15, 22, 25, M15.L4.04, 08 (n=7); M18 = 

M18.N2.02, 05, 08, 51, M18.N3.17, M18.N4.10, 15 (n = 7); M19 = M19.O2.06, 12, 13, 

20, 38, 44 (n = 6); M21 = M21.P5.16, 19, 33, 48, 52, 59 (n = 6). 
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Fig S14. Analysis of aligned G(d) of cerebellar GC nuclei. 

A. Pooled G(d) for each mouse in Fig S13 (gray lines) aligned at their mean μD (4.80 

μm; black dashed line). After alignment, none of the 4 distributions were significantly 

different (KS test; p > 0.16) and were therefore pooled into a single G(d) (green circles; 

n = 1882 diameters; 0.1 μm bins). B. Aligned and pooled G(d) from A curve fitted to 

Eq 1 (red solid line; μD = 4.80 ± 0.01 μm, σD = 0.37 ± 0.01 μm, ϕ = 20 ± 1°; estimated 

ϕcutoff = 50°) with estimated F(d) (red dotted line and circle). C. The Keiding-model fit in 

B, which assumed a Gaussian function for F(d) (K-Gauss; Eq 5), compared to fits that 

assumed a chi distribution for F(d) (K-Chi; Eq 6; purple line; f = 84.0 ± 6.3, β = 0.28 ± 

0.02 μm2, ϕ = 20 ± 1°; μD ± σD = 4.81 ± 0.37 μm) and gamma distribution for F(d) (K-

Gamma; Eq 7; orange line; f = 80.9 ± 6.2, β = 0.041 ± 0.003 μm, ϕ = 20 ± 1°, d0 fixed 

at 1.5 μm; μD ± σD = 4.82 ± 0.37 μm). Comparison of F(d) from the fits show overlapping 

distributions (circles and error bars). 
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Fig S15. Keiding-model fits to G(d) of cerebellar MFT vesicles. 

G(d) (blue circles) computed from outlines of MFT vesicles (n = 152–428; 2 nm bins) 

measured from TEM images of the GC layer (Fig 2C1 and 2C2) where each row is for 

a different mouse and each column is for a different MFT. Each G(d) was curve fitted 

to Eq 1 (red solid lines) resulting in estimates of F(d) (red dotted lines and circles). For 

all fits, ϕ has a large error and is greater than estimated ϕcutoff (Eq 9) indicating ϕ is 

indeterminable and G(d) ≈ F(d) (Fig 4C). Gaussian fits to the same G(d) (Eq 5; black 

dashed lines and circles) overlap the Keiding-model fits and estimated F(d). 
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Fig S16. Analysis of aligned G(d) of cerebellar MFT vesicles. 

A. G(d) of the 8 MFTs in Fig S15 (gray lines) aligned at their mean μD (45.7 nm; black 

dashed line). After alignment, only 2 of the 28 pairings of the distributions were 

significantly different (KS test; p < 0.02) both of which included the distribution with 

largest σD (gray dotted line; M15.L1.45). The aligned G(d) that were not significantly 

different (n = 7) were pooled into a single G(d) (blue circles; n = 1839 diameters; 1 nm 

bins). B. Aligned and pooled G(d) from A (blue circles) curve fitted to Eq 1 (red solid 

line; μD = 45.4 ± 0.1 nm, σD = 4.0 ± 0.2 nm, ϕ = 83 ± 267°) with estimated F(d) (red 

circle and error bars) and ϕcutoff. As in Fig S15, ϕ is indeterminable and G(d) ≈ F(d). A 

Gaussian fit to G(d) (Eq 5; black dashed line and circle; μD = 45.4 ± 0.1 nm, σD = 4.0 ± 

0.1 nm) overlaps the Keiding-model fit and estimated F(d). C. The Keiding-model fit in 

B, which assumed a Gaussian function for F(d) (K-Gauss; Eq 5), compared to fits that 

assumed a chi distribution for F(d) (K-Chi; Eq 6; purple line; f = 61.8 ± 1.9, β = 33.9 ± 

1.0 nm2, ϕ = 90 ± 49°; μD ± σD = 45.5 ± 4.1 nm) and gamma distribution for F(d) (K-

Gamma; Eq 7; orange line; f = 127.0 ± 3.3, β = 0.36 ± 0.01 nm, ϕ = 89 ± 137°, d0 fixed 

at 0 nm; μD ± σD = 45.6 ± 4.0 nm). Comparison of F(d) from the fits shows overlapping 

distributions (circles and error bars). 
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Fig S17. Estimating the 2D density of GC somata and nuclei and MFT vesicles 

from 2D images. 

A. To compute λ2D of GC somata of rats in a confocal image, a rectangular ROI (119.0 

× 126.3 μm) was drawn within the GC layer and two adjacent borders were designated 

as inclusive and the other two as exclusive (blue and red). Somata were counted if 

they touched the inclusive borders or were completely contained within the ROI; they 

were not counted if they touched the exclusive borders. λ2D = 21,354 mm-2, computed 

as count (321) per ROI area (15032 μm2). Somata were outlined if they were well 

delineated, otherwise they were marked via crosses (yellow). Scale bar 20 μm. Image 

ID R5.SL2.1. 

B. Same as A for GC nuclei of mice in a TEM image. ROI = 88.0 × 65.3 μm. n = 130 

nuclei. λ2D = 22,619 mm-2. Scale bar 10 μm. Image ID M18.N2.51. 

C. Same as A for MFT vesicles of mice in a TEM image. ROI = 1147 × 561 nm. n = 

209 vesicles. λ2D = 324.5 μm-2. Scale bar 150 nm. Image ID M15.L1.48. 
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Fig S18. The Keiding model accurately estimates λ3D from λ2D for true ϕ < 

estimated ϕcutoff (500 vs. 2000 simulated diameters). 

Left column: average Δζ (top) and Δλ3D (bottom) vs. true ϕ for the simulations in Fig 

S4, computed from ~500 and ~2000 diameters (red and black circles) for T = 0 u.d. as 

described in Fig 10. Dashed lines denote estimated ϕcutoff (~43 and 48°). Data x-scales 

shifted ±0.8° to avoid overlap. 

Right column: 68% confidence interval (σΔ) of Δζ and Δλ3D (open circles; averaged 

across true ϕ = 10–40°) vs. 1/√n (n = 300, 500 and 2000 diameters) curve fitted to a 

linear function (dashed lines). Data from disector simulations with no added bias is 

shown for comparison (solid squares; Fig 12, ϕbias = 0°). 
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Fig S19. The Keiding-model fixed-ϕ assumption introduces only small errors 

when estimating λ3D from λ2D. 

A. Average Δζ (top) and Δλ3D (bottom) for simulations of the z-stack analysis in Fig 

11A2 (ET11) where lost caps are defined by a fixed-ϕ or Gaussian-ϕ model (CVϕ = 0 

or 0.2; red vs. black symbols) and the scanning xy-plane (T = 0 nm) was z-shifted 261 

times in 0.5 nm steps resulting in ~10,500 2D diameters. Δζ and Δλ3D were computed 

as described in Fig 10 (open circles; true ϕ = μϕ). For the volumetric analysis, estimated 

λ3D = N3D/(Areaxy·ζ) where ζ was computed via μD and μϕ of those vesicles sampled by 

the z-stack (3D; N3D ≈ 200; closed squares). Simulation true λ3D = 10,825 μm-3 (VF = 

0.45), μD = 42.7 nm, μϕ = 42.0°, Areaxy = 0.117 μm2. Equivalent ζ and λ3D for the ET z-

stack analysis of MFT vesicles (ET11) is shown for comparison (black solid and dashed 

lines) which are consistent with the Gaussian-ϕ simulations. Estimated ϕcutoff ≈ 51° (Eq 

9). 

B. Average Δζ (top) and Δλ3D (bottom), for the fix-ϕ and Gaussian-ϕ simulations in Fig 

S11 (CVϕ = 0 or 0.2; red vs. black) and T = 0. The small positive biases in Δζ for the 

Gaussian-ϕ simulations indicate estimated ζ is marginally too large (i.e. Eq 2 is only 

approximately correct for Gaussian-ϕ conditions); however, these biases created 

negligible biases in λ3D for μϕ < 50°. Estimated ϕcutoff ≈ 43° (Eq 9). Fixed-ϕ data is from 

Fig 10.   
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