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Note S4: Glyph Times 

Time frames 

The glyphs, which are presented in full in Figure S13, not only made predictions of a lunar or solar 

eclipse in a particular month but also what time of day that eclipse might occur. Eclipse times in the 

glyphs are given as integers on a 12-hour scale using the ancient Greek number system with the 

alphabet standing for numbers and an additional symbol ς for 6. The times in the glyphs are modified 

by the Day/Night indicators 
\ and 

\. These will be translated into a 24-hour scale as follows. The 

times are assumed to be equinoctial hours [1] and the reference time for the beginning of the day is 

assumed to be 6.00 am local time. If a lunar eclipse time, n, in a given glyph is preceded by 
\ (of 

the day), the time is taken as t = n. If it is not preceded by 
\, the eclipse is assumed to occur at 

night and the time is taken as t = n + 12. Similarly, a solar glyph time n is interpreted as t = n if the 

symbol 
\ (of the night) is absent and t = n + 12 if it is present. "hours mech" refers to the eclipse 

time in the 24-hour scale described above. In other words, 
\ refers to the period 06:00 hrs - 18:00 

hrs (local time); 
\ refers to the period 18:00 hrs - 06:00 hrs (local time) 

The eclipse times given in the NASA/GSFC eclipse maps [14] (Figure S2, Figure S18, Figure S19) 

are in TD—Terrestrial Dynamic time, which is an absolute time frame. The astronomical reference 

time frame relevant for this study is Universal Time (UT), since this tied to the rotation of the Earth and 

hence can be translated into local times. These two time frames differ by Delta T (T), which 

measures the changes in the Earth's variable rotation: T = TD - UT. In -200, T was 03h33m and in -

100 it was 03h14m [14]. 

Local time depends on longitude, so it is relevant to the intended place of use of the Mechanism: it is 

determined by local Noon, when the Sun is at its local zenith. There are a number of proposed 

locations for the intended use of the Mechanism [4], [16]:  Sicily—longitude 15°, equivalent to UT + 

1.0 hrs; the region of Epiros in north-western Greece—approximate longitude 20°, equivalent to a 

local time of UT + 1.3 hrs; and Rhodes—longitude 28°, equivalent to UT + 1.9 hrs. So plausible 

locations for the Mechanism span much of the ancient Greek empire between 15° and 28° longitude. 

The following equivalents apply to the time frames: 

hours mech + 6 = hours local = UT + 1.0 - 1.9 hours, depending on location 

Previous publication 

A previous publication [4] was deeply pessimistic about the prospects of making sense of the glyph 

times:  

"The glyph times are incomplete as their generation remains obscure." 

"We conclude that the process of generation of glyph times was not sound and may remain 

obscure." 

"We have not discovered a rational or plausible basis for the glyph times. We conclude that the 

generation of the glyph times may not have been well founded and therefore that it may be difficult 

to discover how it was actually done." 

This research article shows that this pessimism was not justified. A model is developed here that is 

not exact but is a very close match with the glyph times. One important research stage was to 

question the previous interpretation of the data and to discover a number of mistakes and probable 

misreadings. 

Analysis of the glyph times 

There are 18 published glyphs [4]. The data is of variable quality: some being certain and some 

uncertain. These are closely examined, since the times are critical to the fit and integrity of the model. 

It should be borne in mind that the interpretations of the text do not just depend on the single X-ray 

CT slices that are illustrated here: they depend on the totality of the data, which can only be viewed in 
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full from the 3D X-ray volumes using 3D X-ray viewing software. Considerable revisions have been 

made to a previous interpretation [4]: in particular, there have been revisions to the assessments of 

the  glyph times in Glyphs 72, 78, 119, 120, 125, 172. The following are notes on the uncertain 

eclipse times. The data concerning the glyph times is shown in Figure S13 with close-ups of 

questioned glyph times in Figure S14 (A) - (I). 

Glyph 13: This is attested by the X-ray CT of Fragment A, which is very indistinct. It probably does 

not contain 
\ and the number is possibly  or , but very uncertain with current data. 

Glyph 72: Figure S14 (A), (B). The X-ray CT data is from a scan of Fragment A, where the quality is 

not good. After , 
\ appears to be very likely. Previously, the text after the 

\
 symbol was read as 

possibly 4], but this is probably not correct. It is very likely to be . 

Glyph 78: Figure S14 (C), (D). There is a clear  after the 
\

 symbol and some possible marks 

between these two. Previously, these marks were interpreted as the 
\ symbol [4], but this is 

incorrect. By direct examination of the 3D X-ray CT volume of Fragment F, the first stroke of what was 

wrongly assumed to be the  of 
\ can clearly be seen to be the continuation of the right-hand curve 

of the  in 
\

. In all other glyphs, the modifiers 
\ and 

\ come directly after  or , so it is very 

unlikely that 
\ would come after 

\
, especially since there is plenty of space after . So it seems 

clear that 
\ can be ruled out. It could be that there is an  (10) after 

\
 or that this is simply a 

random mark. All the established text elements in this glyph are seen as dark lines (low X-ray 

density), surrounded by a light border (high X-ray density)—presumably where the engraving tool 

raised the surface metal at the edge of the scribed line. The possible  has no such border. In 

addition,  here would be too close to the 
\

 symbol. So the conclusion is that the glyph almost 

certainly reads 
\
 (Hour 1). 

Glyph 119: Figure S14 (E), (F). 
\ is clear. There is an  (10) after the 

\
 symbol. It looks as if it is 

just possible that there was a symbol after that. However, close examination of the X-ray CT indicates 

that this is probably not the case. Though most of the evidence of this glyph is from the accretion 

layer, there is some persistence of the text into the plate itself but this does not occur for the marks 

after . The most likely number is 
\  (22). 

Glyph 120:  and the 
\

 symbol can just about be made out. 
\ (day)  is definitely included. The 

symbol after 
\

 was previously interpreted in Nature 2008 as , but this is highly dubious. Possibly 

, but very uncertain. 

Glyph 125: Figure S14 (G), (H). This can be seen in the PTM of Fragment A (AK48a) and in the X-ray 

CT of Fragment A. The diagonal line in (H) is a ring artifact, which is a defect created in the X-ray CT 

process. The solar time is certain. The lunar time in Glyph 125 is the character at top-right of (G), 

which has spilled over into Month 126.  It was previously reported as 4], but the X-ray image in (H) 

strongly suggests that it is probably . It looks very similar to the definite  in Glyph 137 in (I), which 

can be seen on the right of the middle row of characters. The bottom curve of this  has not been 

drawn back to the vertical and could easily be mistaken for  if the top-half were not visible. 

Glyph 172: Figure S14 (J), (K). The lunar eclipse time was previously interpreted as (5) [4], but this 

is not correct. It is at the top-right of the glyph. The small horizontal top stroke that gave the 

impression of an  is evidently not connected to the rest of the symbol. In any case, it would make an 

 that is too large. This must be a random mark. The symbol looks exactly like all the other instances 

of ϛ (6), for example in Glyphs 20 and 25. So this glyph is interpreted as almost certain: lunar ϛ (6) 

and solar  (12). 
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Table S3 summarizes where the glyph times in the data are certain and where uncertain. In some 

cases, the uncertainties mean that no definite options can be identified; in other cases, there are a 

limited number of distinct possibilities. 

Observations of eclipses 

It has been considered that the eclipse times on the Saros dial might have been derived from 

observations of eclipses and work has been done to find such matches [1]. In any given Saros period 

of 223 lunar months, most of the solar eclipses would not have been visible from anywhere in the 

ancient Greek empire. For example, for the "matching" sequence discussed in Note S5, maps of 

eclipse paths [14] show that, out of the 28 solar eclipses in the Saros period, only 8 were visible from 

anywhere in the ancient Greek empire. Lunar eclipses would have been visible at night but not during 

the day. EYM implies that there were 38 predictions of lunar eclipse possibilities and 28 of solar 

eclipse possibilities. So sufficient observations of eclipse times would have needed to have been 

made over several Saros periods to have any chance of getting enough data for all the glyphs. A 

rough estimate might be that a minimum of five Saros periods (90 years) would have been 

necessary—probably more. If fewer observations were available, it could have been that the data was 

a mixture of observation and theoretical extrapolation to fill in the gaps—as with the so-called Saros 

Canon from the astronomy of Mesopotamia [8]. This could possibly have been the source of the data. 

However, this article argues that it is most likely that the eclipse times on the Antikythera Mechanism 

were derived primarily from an arithmetic model, rather than from observations. 

Glyph times and the length of the synodic month 

Graphs of the lengths of the synodic month from Full Moon to Full moon and from New Moon to New 

Moon are shown in Figure S15 (A) and (B). They reveal the essential features that must be modelled. 

These graphs also illustrate the essential difficulty of calculating eclipse times, since they depend on 

the addition of all the previous variable month lengths. Both the lunar and solar anomaly play an 

important role in determining the length of the month, with lunar anomaly dominating. The graphs 

exhibit two periodicities. The higher frequency oscillation follows the phase of the lunar anomaly at 

Full Moon. This produces a beat cycle between the synodic month (with 223 cycles per Saros period) 

and the anomalistic month (with 239 cycles per Saros period). This beat cycle has a frequency, which 

is the difference between the two: in other words (239 - 223) = 16 cycles per Saros period, giving a 

period of 223/16 = 13.94 months. It is known as the Full Moon Cycle (FMC) (Note S1) and is 

equivalent to the cycle that follows the apparent diameter of the Moon, as seen from Earth, as it 

varies from apogee (small) to perigee (large). The second periodicity is seen in the envelopes of the 

functions. This variation shows the beat cycle between the FMC (16 cycles per Saros) and the annual 

cycle (18.03 cycles per Saros). This has a frequency of (18.03 - 16) = 2.03 cycles per Saros. Notice 

the complimentary form of the graphs for months FM-FM and months NM-NM: both in terms of lunar 

anomaly and solar anomaly, they are almost in antiphase for both periodicities. 

The eclipse times depend on the addition of the varying lengths of all previous months. So the 

essential problem is to find a method of calculating month lengths that add up to a match with the 

eclipse time data in the glyphs. 

A flaw in the Antikythera scheme for eclipse times 

The eclipse time scheme on the Saros Dial has an inherent flaw. The idea is that the eclipse times 

repeat every Saros cycle, with a time shift of 8 hours, as shown by the Exeligmos Dial [4]. After three 

Saros periods—the Exeligmos period of just over 54 years—the eclipse times predicted by the 

Mechanism should repeat exactly. In reality, this does not happen. One of the reasons is that the 

Saros period (18.03 years) is not a whole number of years, so the solar anomaly does not repeat after 

a Saros period and its influence on month lengths (and hence eclipse times) also varies. This 

produces significantly different eclipse times in successive Saros periods. Table S4 shows that the 
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accumulative errors can become very large, accumulating to more than five hours over nine Saros 

periods (162 years) in the lunar example in the table. 

Possible models 

A number of approaches to modelling the eclipse times have been considered: kinematic and 

mechanical models, as well as models derived from Babylonian astronomy—both daily increment 

models and monthly models. 

Kinematic & Mechanical models 

It is already known that in the Antikythera Mechanism the lunar position in the zodiac is based on the 

ancient Greek epicyclic theory of lunar motion [1] and the solar position is also likely to have been 

based on an epicyclic model. So it might seem reasonable that the glyph times were generated by a 

kinematic model. Kinematic models that implement these epicyclic theories have been tested to see if 

they match the glyph times, without any good match. In any case, it would have been virtually 

impossible for the ancient Greeks to have made such mathematical calculations of month lengths. 

Modern calculations use trigonometry. Whilst trigonometry is believed to have emerged in Hellenistic 

Greece with the work of Hipparchus and his table of chords [29], the modern trigonometry needed to 

express both lunar and solar positions from the epicyclic theory would have been a near-impossible 

challenge in ancient Greece. The calculation of syzygies requires the solution of a trigonometric 

equation, which expresses either the conjunction or opposition of the ecliptic longitudes of Sun and 

Moon, which has no analytic solution. The Newton-Raphson iterative technique was used to 

determine the times of these syzygies and such methods would not have been available in ancient 

Greece. 

The Antikythera Mechanism itself could have been used to mechanically calculate syzygies by simply 

moving the Sun and Moon pointers so that they are either in conjunction or opposition. However, the 

Mechanism is far too inaccurate to have made meaningful calculations of syzygy times [30]. It barely 

gives accuracies to the nearest day, let alone the nearest hour. It might have been possible to build a 

much larger machine to make these calculations to reasonable accuracy. The negative theoretical 

results about the match with the glyph times makes this seem unlikely—though such a mechanical 

method could have introduced sufficient errors to contradict this argument! 

Daily increment models 

Since Greek geometric theories of lunar and solar motion do not appear to provide a suitable model 

for the glyph times, there is little choice but to examine Babylonian arithmetic methods. It is difficult to 

imagine any other suitable methods that could have been calculated by the ancient Greeks. By the 

era of the Antikythera Mechanism, the Babylonian techniques had reached great heights of 

sophistication and could predict lunar eclipse times with an accuracy of an hour [31] and solar times 

with an accuracy of two hours [32]. It is also known that these Babylonian arithmetic methods 

persisted, even after the work of Ptolemy in the second century AD, for several hundred years into the 

Middle Ages [33]. 

System B methods, which model variable motion with piece-wise linear zigzag functions, will be 

consdered [9], [11]. Much of the astronomy in the Antikythera Mechanism reflects the descriptions in 

the first century BC astronomy primer, Introduction to the Phenomena by Geminos [12], which 

describes a way of determining syzygy times, using the Exeligmos Cycle and Babylonian System B. 

This involves the calculation of the daily positions of Sun and Moon, based on a model that calculates 

the daily incremental positions of these bodies [9], [11]. The increments are calculated from the 

characteristic zigzag functions of Babylonian System B astronomy. The zigzag functions determine 

the variable motions that are generated by the lunar and solar anomalies. It is assumed that the 

motion is constant for each day, where the daily velocity is derived from the zigzag function. The 

ecliptic longitudes of Sun and Moon are then derived by addition of these daily increments. The hour 

of syzygy can then be calculated assuming constant motions for the day of syzygy. By the end of the 
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Saros dial, these models depend on the addition of more than 6,500 daily increments to determine 

lunar and solar longitudes. So they are very finely dependent on the input parameters for the minima 

and maxima of the zigzag functions. Small changes in the second sexagesimal place (one part in 

3,600) radically alter the generated eclipse times. In exploring such models, it is possible to get a 

reasonable match for the lunar glyph times or for the solar glyph times, but not for both with the same 

input parameters. This appears to be true whether the model conforms to the known parameters from 

Babylonian astronomy or whether slightly different parameters are chosen. Such models cannot be 

completely excluded, but no match to all the eclipse times has been found with any acceptable 

accuracy. 

The ZigZag Model, ZZM 

One other type of model developed by the Babylonians calculated month lengths, based more simply 

on zigzag functions that depend on the lunar and solar anomalies. These have proved to be more 

successful for modelling the eclipse times on the Saros Dial. An arithmetic model will be developed 

that closely conforms with the glyph times. The time of syzygy will be taken as being synonymous 

with the eclipse time. Though the time of maximum eclipse is usually a few minutes different from the 

time of syzygy [14], for the purposes of this study, syzygy time is quite accurate enough. An 

assumption is that the times of eclipses on the Saros Dial are the times of maximum eclipse, though 

this is by no means certain, since the Babylonian observations usually recorded the times of first 

contact [8]. Exploration of the idea that the glyph times on the Antikythera Mechanism refer to first 

contact times has not been successful in getting a better fit between the model and the glyph times. 

The model needs to calculate the lengths of each lunar month in a way that closely matches the 

graphs in Figure S15 (A), (B) and which add up to match the glyph times. The model is based on 

Babylonian System B. In this system, the length of the lunar month above 29 days is calculated as the 

addition of a periodic lunar component and a periodic solar component [9], [11]. In the scheme under 

consideration, the lunar component is dependent on the phase of the lunar anomaly at the end of the 

mean lunar month and the solar component on the phase of the solar anomaly at the end of the mean 

lunar month. In the model described here, both of these components are modelled with linear zigzag 

functions, though the Babylonian data suggest that the solar contribution was more complicated in 

System B, using second-order difference functions. This is discussed later. Such functions do not 

appreciably improve the overall match of the model to the glyph times, so the model that is developed 

here uses linear zigzag functions for both lunar and solar anomaly. 

The following notation will be used. FMn refers to the Full Moon in the n
th
 month of the Saros Dial and 

NMn to the n
th
 New Moon. Recall that the months of the Saros Dial start at the first crescent Moon, not 

astronomical New Moon, so FMn comes before NMn in each month. The syzygies in the months 

before the start of the Saros Dial will be referred to as NM0, FM0, NM-1, FM-1 etc. Lunar apogee will be 

referred to as Lapo and perigee as Lper; and similarly Sapo and Sper for the solar equivalents. A graphic 

of the basic set-up is given in Figure S16 (A). 

All of the astronomy for the models will be measured from the Full Moon in the first month of the dial, 

FM1. The model has a number of input parameters. 

Fixed parameters 

The period of the synodic month, psyn = 29.531 days 

The period of the anomalistic month, panom = 27.554 days 

The period of the solar year, py = 365.25 days 

These can be calculated from the Metonic and Saros cycles and the customary length of the solar 

year or they can be derived from Babylonian values. These very small variations make no difference 

to the times generated by the model. 

Parameters tied to the astronomy 
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The parameters defining the minima and maxima of the zigzag functions, m l, Ml, ms, Ms, are tied to the 

astronomy. They need to be chosen so that the minima, mean and maxima of the lunar month lengths 

generated by the model conform well to these parameters for real lunar months [14] (Figure S15). For 

a typical Saros period, these values can be calculated from the NASA/GSFC ephemerides data [14]: 

Minimum lunar month length = 29.27 days 

Mean lunar month length = 29.53 days 

Maximum lunar month length = 29.82 days 

In practice, there is some small leeway in the choice of the minima and maxima parameters, m l, Ml, 

ms, Ms, but only within small percentage differences. The Babylonian figures for these parameters are 

given later. 

Free parameters 

The free parameters are the phases of the lunar and solar anomalies at the astronomical reference 

point, FM1, as well as the times of FM1 and NM1. These will be chosen to create the best possible fit 

between the model and the glyph times. 

Lunar anomaly = Number of days Lapo→FM1 

Solar anomaly = Number of days Sapo→FM1 

Time of FM1 

Time of NM1 

In general, the lunar anomaly input will be a number of days from 0 to panom (27.554 days). However 

the model is designed so that any number can be entered, since the model evaluates the parameter 

modulo panom. For example, negative numbers can be entered and this will be done later to show 

graphically the value of this parameter that optimizes the model. Similarly, the solar anomaly input will 

be the number of days from Sapo to FM1—usually a number from 0 to py (365.25 days). 

Developing ZZM 

Figure S16 (A) shows the basic setup at the start of the Saros Dial. In ZZM the phases of the lunar 

and solar anomalies at the end of the month length are calculated on the basis of mean lunar and 

anomalistic months. The model is the same in principle as the models in System B of Babylonian 

astronomy to determine the lengths of synodic months. In this model, the length of the month is 

considered to be the sum of two components, G and J, where G depends solely on the lunar anomaly 

and J on the solar anomaly. G is a linear zigzag function, and some of its defining parameters are 

preserved [9], [11], [34]. These are expressed in sexagesimal in the customary Babylonian "time 

units", where each time unit is 1/360th of a day = 1/15 hours = 4 minutes: 

ml = 1, 52; 34, 35 = 112.5668 time units = 7.5046 hours 

Ml = 4, 29; 27, 5 = 269.4500 time units = 17.9633 hours 

The function J is a correction for the length of the synodic month that takes into account the solar 

anomaly. The exact details of J are uncertain [9], [11], [13]. It appears to be a function that can be 

either positive or negative, with a mean value of 0. J seems to have been calculated as a second-

order difference function, depending on a first-order linear zigzag difference function H. The 

preserved records for J and H are incomplete and poorly understood. Second order constant 

differences produce quadratic functions and so this process generates a set of linked parabolic arcs 

to model the solar contribution. This procedure does not improve the fit of the model appreciably. 

Since it is significantly more complicated, ZZM sticks to a linear zigzag function for the solar 

contribution. 

ZZM is based on simple linear zigzag functions for the contribution of both lunar and solar anomaly to 

the lengths of the synodic month. 

The lunar parameters that optimize the model are similar to the Babylonian parameters: 

ml = 7.36 hours (Babylonian 7.50 hours) 
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Ml = 18.14 hours (Babylonian 17.96 hours) 

The solar parameters that optimize this model are: 

ms = - 2.12 hours 

Ms = + 2.12 hours (Babylonian maximum of J possibly 2.16 hours [11]) 

The model is built in an Excel spreadsheet, since this readily emulates the columns of Babylonian 

System B. (The Babylonian astronomical cuneiform tablets could be regarded as the precursors of 

modern spreadsheets!) For mathematical formulae, the language of Excel will be used. 

Let the phase of the lunar anomaly in days at FM1 be a1. Assuming mean motions, for month n the 

phase of the lunar anomaly at FMn in units of anomalistic months is: 

an = Mod(a1 + (n-1)*psyn, panom) / panom 

This is a number between 0 and 1 anomalistic months. In line with Babylonian System B, the lunar 

contribution, ln, is the excess hours over 29 days of the length of the lunar month from Fn-1 to Fn.  It is 

calculated using a zigzag function as a weighted mean of Ml and ml, depending on the value of an. If 

the Moon is near apogee, then its apparent velocity is slow and the month is long; and similarly near 

perigee the month is short. 

If an<=0.5, then ln = ((0.5- an)* Ml + an* ml)/0.5 

If 0.5< an, then ln = ((an -0.5)* Ml +(1- an)* ml)/0.5 

In Excel, if X is a condition, then (X) is evaluated as TRUE or FALSE according to whether the 

condition X is true or false. In calculations, such as (X)*1, (X) evaluates as 1 if (X) = TRUE and 0 if (X) 

= FALSE. This can be used to avoid the complications of nested IF formulae. So the above 

expressions for ln can be expressed as the simple and clear formula: 

ln = (an<=0.5)*((0.5< an)*Ml + an*ml)/0.5 + (0.5< an)*((an -0.5)*Ml +(1- an)*ml)/0.5 

The results of graphing this over a number of months with suitable parameters is shown in Figure S16 

(B). 

Practical computation of this function is very simple. A fixed number d is successively subtracted or 

added from the running total until the minimum, ml, or the maximum Ml is reached. At this point the 

reflection principle [9], [11] applies: if subtraction of d would take the function below ml, then the 

amount by which it would fall below ml is added to the minimum. Similarly for additions exceeding Ml. 

This gives rise to a linear zigzag function. It should be noted that, in general, there is no data point at 

the minimum or maximum of the function, but all points fall on the zigzag. 

For the spreadsheet it might seem simpler to directly express the above process of subtraction in 

Excel in order to calculate the contribution of the lunar anomaly. However, at each stage a conditional 

statement would need to be incorporated to decide whether a minimum or maximum had been 

reached, when the reflection principle would apply and would need to be implemented. This would 

lead to far more complex formulae than the expression of a simple weighted mean to calculate the 

lunar contribution, which is exactly equivalent. 

The same set of ideas is used for the solar contribution to the excess hours over 29 days of the length 

of the lunar month. The only difference is that the solar contribution can have either positive or 

negative values and ms = - Ms. This follows the Babylonian models. 

The length of the lunar month is determined by how fast the Moon catches up with the Sun. If the Sun 

is moving quickly near perigee, the Moon takes longer to catch up and the month is long. Conversely, 

when the Sun is near apogee, it moves slower and the month is short. So the zigzag function for the 

solar contribution acts in the opposite way to the lunar contribution: the Sun being near solar apogee 

shortens the month and being near solar perigee lengthens the month. Let the phase of the solar 

anomaly in days at FMn be bn and the solar contribution to the eclipse time in hours be sn. 

bn = Mod(b1 + (n-1)*psyn, py) / py 

sn = (bn<=0.5)*((0.5< bn)*ms + bn*Ms)/0.5 + (0.5< bn)*((bn -0.5)*ms +(1- bn)*Ms)/0.5 
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The results of graphing this over a number of months with suitable parameters is shown in Figure S16 

(C). 

The total month length is calculated by simple addition of the lunar and solar contributions, as 

visualized in Figure S16 (D). All of the above applies in a similar way to the months from NM to NM. 

(The Babylonian technique of adding periodic functions with different periods to approximate a 

continuously varying function lies at the root of the development of Fourier analysis 2,000 years later.)  

The minima and maxima of the zigzag functions are crucial in matching the month lengths of the 

model to real month lengths. Actual month lengths vs model month lengths are graphed over a Saros 

period of 223 months in Figure S15 (C), (D). The graphs of the resulting month lengths are very 

similar in form to the graphs of actual months—though somewhat more spikey. The parameters ml, 

Ml, ms, Ms determine the large and small maxima and minima of these graphs, as well as the mean 

value of the computed month lengths. This is why they are referred to as "tied parameters", since their 

values cannot be altered very much without compromising a reasonable match of the model with 

actual month lengths. The free parameters, Lapo→FM1 and Sapo→FM1 determine the starting phases 

of the short and long frequency variations of the graph and can be chosen at will. The complete model 

can now be explored. Figure S17 shows the model match with arbitrary input parameters for the 

phases of the lunar and solar anomalies at FM1 and the syzygy times at FM1 and NM1. The error 

graphs show the matches between the model and the glyph times. With these parameters, the match 

between glyph times and calculated times is hopelessly inaccurate with a total rms error of 6.45 

hours. To get a good fit to the glyph times, the input parameters must be optimized. 

Optimizing the parameters of the model 

Determining the tied parameters 

Babylonian parameters are used to set the initial tied parameters—in other words, the parameters 

that determine the shape of the synodic month graphs (Figure S15 (C), (D)). A combination of trial-

and-error, graphs and Excel VBA macros was then used to optimize all the parameters.  

Determining the free parameters 

The error between two times will be defined as the clock distance between the times. This is the 

shortest distance round a clock between the two times. For example, the clock distance between 

23:00 hrs and 01:00 hrs is 2, not 22. 

Clock distance (t1, t2) = min(abs(t1 - t2), abs(24 - (t1 - t2))) 

If g = (g1, g2... gn) is a set of glyph times and t = (t1, t2... tn) is a set of corresponding model times: 

                                     
 

   k - tk))
2
)/n) 

The aim is to determine the free parameters that minimize the rms error between the glyph times and 

the model times. The model was designed with the expectation that it would be optimized with Lapo = 

FM1, because of the previous proposal that each quadrant of the Saros Dial was synchronized with 

the Full Moon Cycle [1].  With this assumption, the variation in the rms error due to solar anomaly was 

then graphed, dependent on the number of days that Sapo is before FM1 (Figure 10 (B)). The other 

free parameters are the times of FM1 and NM1. These simply move all the calculated eclipse times up 

and down the y-axis. They are optimized for each choice of the anomaly parameters. Part of this 

process of optimization is shown in the main text in Fig. 9. In the graph in (B) there is an evident 

minimum error for both lunar and solar glyph times with Sapo at 346 days before FM1. Taking this 

value, the rms error for different values of the lunar anomaly at FM1 can be graphed. In the graph in 

(C) there is an evident minimum error at 0 for both lunar and solar glyph times. The minimum for lunar 

eclipse times is at nearly exactly the same point as for solar times. 

Lunar and solar anomalies 
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In order to use the model, the lunar and solar anomalies must be observed. The solar anomaly is 

easy to measure, since it is tied to the annual cycle. The lunar anomaly is much harder. Ancient 

observations were far too inaccurate to measure lunar anomaly directly, by observing the Moon's 

variable motion relative to the stars. The ancient Babylonians discovered an astonishing relationship 

between so-called horizontal observations of the Sun and Moon near opposition and the lunar 

anomaly. So ancient astronomers could keep track of the phase of the lunar anomaly. This 

Babylonian scheme was uncovered in some remarkable research [35], [36]. 

The model with optimal parameters 

Now the fit of the model to the glyphs can be assessed with optimal parameters. The results are 

shown in the main text in Figure 10 (A). Notice that the input times for FM1 and for NM1 have been 

optimized independently. The reason for this is discussed below. Though this is not a perfect model, it 

is certainly a good model. It should be remembered that each eclipse time generated by the model 

represents the addition of all the calculated month lengths after the initial time of FM1. So the errors in 

the calculations of month lengths in the model are presumably very small. It might be expected that 

the fit of the model to the glyph times would work well in the early months but become progressively 

worse, but this is not the case. 

The uncertain glyph times  

Lunar 

Glyph Time options ZZM ZZM rounded 

120 12? 11.34 11 

Solar 

Glyph Time options ZZM  ZZM rounded  

13 1, 4, 13, 16 13.95 14  

Earlier it was discussed how some of the glyph times are uncertain, with a number of possible 

options. Here it is shown that ZZM calculates times that are consistent with one of the identified 

options in the uncertain data. In each case, the calculated time is only one hour different from the best 

option that fits the model. 

Second-order difference models 

As mentioned earlier, the System B models appear to have used second-order difference functions 

for the solar anomaly contribution [9], [11], [13]. Though the exact details of the parameters of the 

Babylonian model are unclear, there are not many choices about how it might have worked. The first-

order zigzag H generates a second-order function J that is phase-shifted relative to the first-order 

zigzag and whose values are not symmetrical relative to the x-axis. It is fairly easy to fix these 

problems to produce a "normed" function that works in the way that is wanted. 

Some defining parameters for the second-order solar anomaly contribution in sexagesimal are 

recorded [11], including: 

M = variously: Version 1: 32;28,6  Version 2: 32;28  Version 3: 32;28,5,15 time units 

 = 32.4667 time units (to four places of decimals for all versions) = 2.1644 hours 

It is hard to know how to interpret this maximum if J is dependent on another function H, with its own 

minimum and maximum. It is possible to reconstruct a linear zigzag function H (with suitable 

parameters that preserve the minimum, mean and maximum of actual month lengths), so that J is a 

second-order difference function. M is far too large to define the maximum of the first-order zigzag 

function H that generates the second-order function J. It could well refer to the maximum of the 

derived second-order function J, which are optimized when M = 2.12 for the lunar times. The details of 

how second-order difference functions might have worked are not given here, since it does not 

improve the fit of the model to the glyph times. 

Surprisingly, the Babylonians are not known to have used second order zigzag functions for the lunar 

contribution, despite the fact that it is appreciably larger than the solar contribution. It is a natural 
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extension of the idea of using second-order differences for the solar contribution. It is not difficult to 

design a model, using second-order differences for both lunar and solar contributions. This generates 

much smoother graphs of month lengths than ZZM, which are remarkably like actual month lengths, 

though it does not improve the overall fit with the glyph times. If the input parameters are optimized for 

the lunar glyphs alone, then it does give a better result, with an rms error of 1.0 hours. 

Discussion of errors 

If the glyph times were accurately calculated using an arithmetic model, then this model should give 

exact results when the final figures are rounded. Since ZZM does not exactly match the glyph times, it 

cannot be the original arithmetic model or else there were mistakes in the calculations. A number of 

attempts have been made to eliminate the errors in the model. As discussed, second-order difference 

models have been tried without appreciable improvement. Another approach has been to emulate on 

a spreadsheet the rounding of calculations to a fixed number of sexagesimal places—again without 

success. It may have been that there were other types of rounding errors. These were not in general 

well understood in antiquity [37]: 

"In general it must be said that the ancients were little concerned about the influence of rounding 

off and accumulated errors. Often the errors are of the same order of magnitude as the effect 

under consideration. Apparently it was only under the influence of modern analysis that we have 

learned to consider the evaluation of errors as an essential part of numerical methods." 

It does not appear that the error problem lies in the fact that ZZM calculates syzygy times, when first 

eclipse contact times were intended, since the pattern of errors is not systematic in this way. It may be 

that the answer lies in the subtle corrections that were often made in Babylonian astronomy. It is 

difficult to identify patterns in the errors because the calculated eclipse times are the summation of a 

large and variable number of month lengths—so obscuring errors in calculating individual month 

lengths. An exact model will hopefully be identified eventually but the basic input parameters—

particularly the lunar and solar anomalies—will probably not change. Finding such a model is a 

challenge for experts in ancient Babylonian astronomy. (I have not yet checked System A models.) 

However, ZZM does give a very good approximation to the glyph times. For example, the lunar time 

for Glyph 190 is exact, despite the fact that ZZM adds up 189 calculated month lengths from FM1 to 

reach this time. ZZM is comparable to the first few terms of the Fourier expression of a function: it 

incorporates the essential phase inputs, but does not quite result in the detailed accuracy of a perfect 

match. ZZM's optimizing parameters have already given convincing support to the structural theory 

that the Saros Dial was synchronized with the Full Moon Cycle. In the next section, the implications 

for determining epoch by combining the parameters of EYM and ZZM are explored.  


