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1 Analysis of alternate chemotaxis models

Foxman et al. [1] proposed that the preferential migration of cells toward distant chemokine
sources may be explained by sensory adaptation at the receptor level. This hypothesis was
further tested in the computational work by Wu et al. [2], who showed the sensory adapta-
tion could explain the cell migration patterns observed by Foxman et al.. We conducted a
broader examination of different chemotaxis models and compared them to our experimen-
tal results. As we demonstrate, a mechanism based on sensory adaptation alone will not
generate sustained and robust oscillations.

1.1 Baseline model for chemotaxis

We first consider a simple model of the chemotaxis towards a single chemoattractant in one
dimension where there is no receptor desensitization or internalization. In this model, we
assume that cells move in the direction where the number of bound receptors on their surface
C is greatest. In one spatial dimension, we can represent this mathematically as

dx

dt
∝ ∂C

∂x
,

where x denotes the position of the cell and t time. Implicit in this model is the assumption
that cells move in proportion to the gradient ∂C/∂x. As cells can move only so fast, we
assume that

dx

dt
= v

χ|S|
1 + χ|S|

sign(S)

where v is the maximal velocity, χ the chemotaxis coefficient, and S
∆
= dC

dx
. This form is

chosen so that the velocity will saturate when S is large. The reason we take the absolute
value of S is to account for negative values or left-ward movement. Note that when S is
small,

dx

dt
≈ vχS.

To determine C and S, we assume that receptor-ligand binding is described by the following
reaction

R + L
kon−⇀↽−
koff

C,
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where L denotes the attractant and R the receptor. If we assume mass action kinetics and
fixed number of total receptors Rtot, then C is determined by the differential equation

dC

dt
= konL(Rtot − C)− koffC.

Using this differential equation, we can determine S as follows:

dS

dt
=

d

dt

(
∂C

∂x

)
,

=
∂

∂x

(
dC

dt

)
,

=
∂

∂x
(konL(Rtot − C)− koffC) ,

= kon(Rtot − C)
dL

dx
− (konL+ koff )

dC

dx
,

= kon(Rtot − C)
dL

dx
− (konL+ koff )S.

We can extend this model to include two different types of attractants and receptors,
yielding

d

dt

[
CA
CB

]
=

[
kon,ALA(Rtot − CA)− koff,ACA
kon,BLB(Rtot − CB)− koff,BCB

]
d

dt

[
SA
SB

]
=

[
kon,A(Rtot − CA)dLA

dx
− (kon,ALA + koff,A)SA

kon,B(Rtot − CB)dLB

dx
− (kon,BLB + koff,B)SB

]
dx

dt
=

vχ(SA + SB)

1 + χ(SA + SB)
≈ vχ(SA + SB) (shallow gradients)

where the subscripts A and B denote the specific attractant and cognate receptor. Note that
the model assumes that cells employ a vector-sum mechanism where it moves in the direction
determined by the sum of the two gradients, where the two attractants are weighted equally.
This system of equations can also be nondimensionalized by substituting

C̄ =
C

Rtot

, L̄ =
L

kD
, τ = koff t, S̄ =

σS

Rtot

,

χ̄ =
χ0Rtot

v/koff
, x̄ =

x

σ
, v̄ =

v

σkoff
.

where σ is the characteristic length, such as the separation between the two chemoattractant

sources, and kD
∆
=

koff
kon

. We can also aggregate these characteristic parameters with a new
dimensionless variable

α =
vRtotχ0

σ2koff
.
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This yields the new dimensionless system of equations:

d

dτ

[
C̄A
C̄B

]
=

[
L̄A(1− C̄A)− C̄A
L̄B(1− C̄B)− C̄B

]
d

dτ

[
S̄A
S̄B

]
=

[
(1− C̄A)dL̄A

dx̄
− (1 + L̄A)S̄A

(1− C̄B)dL̄B

dx̄
− (1 + L̄B)S̄B

]
dx̄

dτ
= α(S̄A + S̄B).

If we then assume that the two chemokines form opposing linear concentration gradients,
for instance:

LA(x) = TA

(
− x

xs

)
LB(x) =

TB
xs
x

we can insert the corresponding expressions into L̄i and dL̄i

dx̄
, and solve this system of equations

using an ODE solver.

Figure A1: α > 1 gives rise to dampened oscillations around the stable fixed point, corresponding
to the channel midpoint where the two linear gradients intersect.

From the solution, we note that α > 1 gives rise to damped oscillation around the stable
steady state, while smaller α leads to monotonic convergence. This suggests that the rate of
the receptor kinetics, relative to the speed of cell motion, dictates the asymptotic behavior
of the cell (i.e. whether it oscillates). Overall, we find that this simple model is unable
to produce sustained oscillatory behavior observered in our experiments. Moreover, the
frequency of oscillations vary significantly as the parameter α is modified.
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1.2 Receptor internalization

We next add an additional layer of complexity to the model by introducing an intermediate
state that accounts for receptor internalization.

R + L C

I

kon

koff

kIkR

where kI and kR represent the rate of receptor internalization and the recycling rate, respec-
tively. If we again assume mass action kinetics, then this reaction scheme is described by
the differential equations

dC

dt
= konL(Rtot − C − I)− koffC − kIC

dI

dt
= kIC − kRI

dS

dt
= kon(Rtot − C − I)

dL

dx
− (konL+ koff + kI)S

For a two receptor model, the governing equations are

d

dt

[
CA
CB

]
=

[
kon,ALA(Rtot − CA − IA)− koff,ACA − kI,ACA
kon,BLB(Rtot − CB − IB)− koff,BCB − kI,BCB

]
d

dt

[
IA
IB

]
=

[
kI,ACA − kR,AIA
kI,BCB − kR,BIB

]
d

dt

[
SA
SB

]
=

[
kon,A(Rtot − CA − IA)dLA

dx
− (kon,ALA + koff,A + kI,A)SA

kon,B(Rtot − CB − IB)dLB

dx
− (kon,BLB + koff,B + kI,B)SB

]
dx

dt
≈ vχ0(SA + SB) (shallow gradients)

As before, we can nondimensionalize the equations using the definitions

C̄ =
C

Rtot

, L̄ =
L

kD
, τ = koff t, S̄ =

σS

Rtot

, k̄I =
kI
koff

,

Ī =
I

Rtot

, χ̄ =
χ0Rtot

v/koff
, x̄ =

x

σ
, v̄ =

v

σkoff
, k̄R =

kR
koff

,

α =
vRtotχ0

σ2koff
.
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and obtain the dimensionless set of equations:

d

dτ

[
C̄A
C̄B

]
=

[
LA(1− C̄A − ĪA)− C̄A − ¯kI,AC̄A
LB(1− C̄B − ĪB)− C̄B − ¯kI,BC̄B

]
d

dτ

[
ĪA
ĪB

]
=

[
¯kI,AC̄A − ¯kR,AĪA
¯kI,BC̄B − ¯kR,B ĪB

]
d

dτ

[
S̄A
S̄B

]
=

[
(1− C̄A − ĪA)dL̄A

dx̄
− (1 + L̄A + ¯kI,A)S̄A

(1− C̄B − ĪB)dL̄B

dx̄
− (1 + L̄B + ¯kI,B)S̄B

]
dx

dτ
= α(S̄A + S̄B)

Solving this system of equations using an ODE solver, we obtain the following behaviors.
Note that due to the introduction of additional variables, we have more degrees of freedom.

Figure A2: [Left] Fixed kI,A/kR,A = kI,B/kR,B = 1. [Right] α = 10 is fixed and kI,A/kR,A =
kI,B/kR,B is varied.

In this case, we again note that α > 1 gives rise to dampened oscillations around the
stable fixed point, while α ≤ 1 leads to monotonic convergence. Increasing α has the effect
of increasing frequency. Meanwhile, a larger kI/kR gives rise to a smaller amplitude in the
damped oscillator.

We might also assume that both the internalized(I) and bound(C) states of the receptor
can simultaneously contribute to the chemotactic response. In this instance, we need an
additional set of variables to denote the internal gradient of I, or J = dI

dx
for the two receptor
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types, resulting in the following:

d

dt

[
CA
CB

]
=

[
kon,ALA(Rtot − CA − IA)− koff,ACA − kI,ACA
kon,BLB(Rtot − CB − IB)− koff,BCB − kI,BCB

]
d

dt

[
IA
IB

]
=

[
kI,ACA − kR,AIA
kI,BCB − kR,BIB

]
d

dt

[
SA
SB

]
=

[
kon,A(Rtot − CA − IA)dLA

dx
− (kon,ALA + koff,A + kI,A)SA − kon,ALAJA

kon,B(Rtot − CB − IB)dLB

dx
− (kon,BLB + koff,B + kI,B)SB − kon,BLBJB

]
d

dt

[
JA
JB

]
=

[
kI,ASA − kR,AJA
kI,BSB − kR,BJB

]
dx

dt
≈ vχ0(SA + SB + JA + JB) (shallow gradients)

As before, if we nondimensionalize using the following definitions

C̄ =
C

Rtot

, L̄ =
L

kD
, τ = koff t, S̄ =

σS

Rtot

, k̄I =
kI
koff

,

Ī =
I

Rtot

, χ̄ =
χ0Rtot

v/koff
, x̄ =

x

σ
, v̄ =

v

σkoff
, k̄R =

kR
koff

,

α =
vRtotχ0

σ2koff
.

and obtain the dimensionless equations

d

dτ

[
C̄A
C̄B

]
=

[
LA(1− C̄A − ĪA)− C̄A − ¯kI,AC̄A
LB(1− C̄B − ĪB)− C̄B − ¯kI,BC̄B

]
d

dτ

[
ĪA
ĪB

]
=

[
¯kI,AC̄A − ¯kR,AĪA
¯kI,BC̄B − ¯kR,B ĪB

]
d

dτ

[
S̄A
S̄B

]
=

[
(1− C̄A − ĪA)dL̄A

dx̄
− (1 + L̄A + ¯kI,A)S̄A − L̄AJ̄A

(1− C̄B − ĪB)dL̄B

dx̄
− (1 + L̄B + ¯kI,B)S̄B − L̄BJ̄B

]
d

dτ

[
J̄A
J̄B

]
=

[
¯kI,AS̄A − ¯kR,AJ̄A
¯kI,BS̄B − ¯kR,BJ̄B

]
dx

dτ
= α(S̄A + S̄B + J̄A + J̄B)

Note that this model, however, requires that the internalized receptors retain spatial
heterogeneity, which may not be an accurate assumption. Again, we can solve this system
using an ODE solver.
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Figure A3: [Left] Fixed (kI,A, kR,A) = (kI,B, kR,B) = (1, 1). [Right] α = 10 is fixed and
(kI,A, kR,A) = (kI,B, kR,B) is varied.

From the plots we note that the behavior is fairly similar to the previous case, though
the additional signaling from internalized receptors leads to slightly different dynamics. In
particular, we can note a stronger overall response and faster cell movement. Otherwise,
increasing α still has the effect of increasing frequency, while a larger kI and kR still yield a
smaller amplitude.

In both models of receptor internalization, the asymptotic behavior is still convergence to
the stable fixed point at the center of the channel. The analysis suggests that internalization
alone cannot produce a stable limit cycle in a robust manner.

1.3 Receptor desensitization and internalization

For the next example we add an additional desensitized (but not internalized) receptor state
to the model to examine how the transient behavior is affected. This network structure was
employed by Wu et al. to demonstrate preferential migration of cells toward the distant
source [2].

R + L C

DI

kon

koff

kdeskres

kint

krec

By following a derivation similar to the previous cases, we obtain the following system of
equations.
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d

dτ

[
C̄A
C̄B

]
=

[
LA(1− C̄A − ĪA − D̄A)− (1 + kdes,A)C̄A + kres,AD̄A

LB(1− C̄B − ĪB − D̄B)− (1 + kdes,B)C̄B + kres,BD̄B

]
d

dτ

[
D̄A

D̄B

]
=

[
kdes,AC̄A − kres,AD̄A − ¯kI,AD̄A

kdes,BC̄B − kres,BD̄B − ¯kI,BD̄B

]
d

dτ

[
ĪA
ĪB

]
=

[
¯kI,AD̄A − ¯krec,1ĪA
¯kI,BD̄B − ¯krec,2ĪB

]
d

dτ

[
S̄A
S̄B

]
=

[
(1− C̄A − D̄A − ĪA)dLA

dx
L̄A − (1 + L̄A + kdes,A)S̄A

(1− C̄B − D̄B − ĪB)dLB

dx
L̄B − (1 + L̄B + kdes,B)S̄B

]
dx

dτ
= α(S̄A + S̄B)

Note from the results that despite the increase in degrees of freedom, again the asymptotic
behavior is that of convergence toward the stable fixed point (at the channel median).

Figure A4: [Top left] Fixed kint = krec = kdes = kres = 1, α varied. [Top right] α = 10,
kint = kdes = kres = 1 fixed and krec is varied. [Bottom left] α = 10, kint = krec = kres = 1 fixed
and kdes is varied. [Bottom right] α = 10, kint = krec = kdes = 1 fixed and kres is varied.

As with the previous models, the asymptotic behavior is that of either monotonic con-
vergence or damped oscillation toward a stable fixed point, in the case of linear gradients. In
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their paper, Wu et al. used nonlinear gradients defined using a power law. However, while
their model predicted preferential migration of cells toward the distant source, it was not
evident whether the cells would oscillate back and forth between the two sources as observed
in our experiments.

1.4 Internal memory model

It is well understood that in isotropic chemoattractant environments, neutrophils exhibit
directional persistence, in which their migrational steps are directionally-correlated on the
order of several minutes [3]. This phenomenon could be attributed to a form of internal
memory, in which detected signals are amplified and sustained over the same timeframe,
with attenuation of signal decay. The next network model applies this concept by adding an
additional internal state variable, which serves to provide short-term memory of the current
processed signal within the cell. The goal was to see if this approach could lead to sustained
oscillatory motion in the linear gradients.

Using the following network model,

receptor level internal gradient

RA + LA CA

IA

kact−−→ S
kdec−−→

RB + LB CB

IB

kon

koff

kon

koff

kintkrec

kintkrec

∇CA

∇CB

we constructed the corresponding system of equations, where the internal interpreted gradi-
ents ∇CA and ∇CB were used to influence the state variable through a rate kact.
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d

dt

[
CA
CB

]
=

[
kon,ALA(Rtot − CA − IA)− koff,ACA − kint,ACA
kon,BLB(Rtot − CB − IB)− koff,BCB − kint,BCB

]
d

dt

[
IA
IB

]
=

[
kint,ACA − krec,AIA
kint,BCB − krec,BIB

]
d

dt

[
∇CA
∇CB

]
=

[
kon,A(Rtot − CA − IA)dLA

dx
− (kon,ALA + koff,A + kint,A)∇CA

kon,B(Rtot − CB − IB)dLB

dx
− (kon,BLB + koff,B + kint,B)∇CB

]
dS

dt
= kact(∇CA +∇CB)− kdecS

dx

dt
≈ αS

Figure A5: [Left] Fixed α = 1 and let kact/kdec vary. However, fixing kact/kdec and changing
α has a similar effect. In either case, controlling the amplitude of the oscillation also affects the
frequency. [Right] The effect of changing the concentration of both chemoattractant maxima with
other parameters unchanged.

We can observe from the equations that modifying the parameter α and the ratio kact/kdec
are tightly related - increasing either of them appears to enlarge both the frequency and
the amplitude of the response. From the simulations, it was also evident that this system
was particularly sensitive to parameter changes, and in some cases, where the activation of
the signal was significantly faster than the decay rate, the system became unstable. The
application of realistic parameter choices from the literature resulted in similarly sensitive
results, with minor changes in the source concentration resulting in vastly different behaviors.
This high sensitivity appears to be incompatible with the robust oscillatory response that
was observed over a wide range of conditions.

1.5 Oelz-Schmeiser-Soreff (OSS) model

In contrast to the network-based kinetics models, Oelz et al. [4] used a relaxation model
to argue their case. They demonstrated that cells can in fact undergo preferential migra-
tion to the distant source, under the simple condition that their sensitivities do not adapt
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immediately to the local concentrations. This was the first model to predict, under cer-
tain parameter ranges, that cells might exhibit oscillatory dynamics between two opposing
chemokine gradients. The basis of their argument was that a Hopf bifurcation around the
steady state could lead to a stable limit cycle, and hence show sustained oscillation in the
cell trajectory.

Their model took the following form (considering only the deterministic dynamics and
using slightly different nomenclature):

ẋ = (SA∇LA + SB∇LB)

ṠA = α1(χ̂1(LA)− SA)

ṠB = α2(χ̂2(LB)− SB)

where α was defined as the rate of adaptation of the sensitivity to its target value. χ̂ was
defined as:

χ̂i(L) = χmini +
1

(AL)i + 1
χmax
i −χmin

i

.

In their analysis, they then applied the parameters A = I, αi = 1, Smin = 0 and
Smax =∞, which simplified the model to

ẋ =
1

ε
(SA∇LA + SB∇LB)

ṠA =
1

LA
− SA

ṠB =
1

LB
− SB

Using concentrations in the form of Gaussian point sources centered at xi with spread
Ti,

Li(x) = exp

(
−|x− xi|2

Ti

)
.

they then showed that the single critical point of the system is given by
x∞
y∞
S1∞
S2∞

 =


x1TB+x2TA
TA+TB

0
1/LA
1/LB

 .

The eigenvalues of the linearized system around this point are

λ1 = −2(TA + TB)

εTATB
, λ2 = −1,

λ3 = −p
2

+

√
p2

4
− q, λ4 = −p

2
−
√
p2

4
− q,

where

p =
2(TA + TB)

εTATB
− 8(x2 − x1)2

ε(TA + TB)2
+ 1 and q =

2(TA + TB)

εTATB
.
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Since the complex conjugate pair λ3 and λ4 cross the imaginary axis when q > p2

4
, a Hopf

bifurcation is observed (when ε satisfies p < 0). We can also confirm this through simulation.

Figure A6: Cell trajectories in Gaussian gradients located at x = 0 and x = 4, with varying
initial positions.

The key to this argument, however, is the Gaussian concentration profile used in the
analysis. In particular, our experimental results suggest that cells can exhibit sustained
oscillatory motion even in the presence of opposing linear gradients. However, we can show
that the choice of linear gradients can lead to different asymptotic behavior.

Let xA = 0 and xB = xs be the position of the two chemokine maxima, where we define
the opposing linear concentration gradients by

LA(x) = TA −
TA
xs
x

LB(x) =
TB
xs
x

Plugging this new concentration profile into the model (and omitting y due to symmetry),
we find that the critical point of the system is now given by x∞

S1∞
S2∞

 =

 xs
2

1/LA
1/LB


regardless of the choice of TA and TB. The eigenvalues of the linearized system around this
point are then

λ1 = −1, λ2 = −1

2
−
√
εx4

s − 32x2
s

2
√
εx2

s

, λ3 = −1

2
+

√
εx4

s − 32x2
s

2
√
εx2

s

.

Note that in this case, the real parts of all eigenvalues are always negative, implying
asymptotic convergence to the stable fixed point. Moreover, λ2 and λ3 become complex
when (εx4

s − 32x2
s) < 0 or

1

ε
<
x2
s

32
,
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which gives us the condition for damped oscillation as opposed to monotonic convergence.
This can also be demonstrated via simulation as shown below. One may note that the
amplitude of the damped oscillation is dependent on the distance between the initial position
and the stable fixed point, contrary to what was observed experimentally. Our results showed
that the neutrophils were strongly robust against variation in the initial conditions, leading
to comparable amplitudes in the oscillatory response.

Furthermore, the sustained oscillations observed in the Oelz model under opposing gaus-
sian gradients was a result of Hopf bifurcation and a particular selection of parameters. It
remains unclear whether this mechanism would be sufficiently robust against the varying
chemoattractant conditions to which we exposed our cells experimentally. We also find that
in the linear gradient case, the OSS model exhibits asymptotic convergence to a stable fixed
point under all parameter choices.

Figure A7: Cell trajectories in dual opposing linear gradients between x = 0 and x = 4, with
varying initial positions. Note the damped oscillatory behavior instead of the stable limit cycle
observed under dual Gaussian gradients.

1.6 Feedback-based model

We consider here a simplified version of the feedback-based model discussed in the main text.
The goal is to separate the feedback-based component of the model from the pseudopod-
based component. As we demonstrate, the latter is not necessary for oscillatory motion –
rather, only the feedback-based component is.

If we assume deterministic dynamics, then a simplified version of the feedback-based
model can be described by the following set of differential equations:

ẋ = α (mA∇LA +mB∇LB)

ṁA = ε
fA

fA + fB
−mA

ṁB = ε
fB

fB + fB
−mB

where
fA = χA

(
1 + kampm

2
A

)
and fB = χB

(
1 + kampm

2
B

)
13



and

χA =
1

1 + LA
and χB =

1

1 + LB
.

For simplicity, we have cast this equation in dimensionless form. The parameter α is the
dimensionless chemotaxis coefficient and the parameter ε provides the relative time scales
for the cell motion and the feedback loops governing the weights mA and mB.

As can be seen from the figure below, this simple model generates oscillatory motion that
is robust to the initial positions.

Figure A8: Cell trajectories in dual opposing linear gradients between x = −1 and x = 1, with
varying initial positions. The parameter used for the simulation are: α = 1, ε = 20, and kamp = 20.

The parameter α determines the period of these oscillations and the parameter kamp the
amplitude. The later can also be seen from the magnitude of the threshold shown Figure
S7. The only requirement of oscillations is that the parameter ε be sufficiently large relative
to α. In other words, the positive feedback loop must operate on a fast time scale than cell
motion, otherwise the oscillations will not occur.

Figure A9: Cell trajectories in dual opposing linear gradients between x = −1 and x = 1 for
varying values of the parameter kamp (ranging from 1 to 20). The parameter used for the simulation
are: α = 1 and ε = 20. Note the amplitude increases as kamp increases.
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Figure A10: Cell trajectories in dual opposing linear gradients between x = −1 and x = 1 for
varying values of the parameter α (Left: 0.5, Middle: 1, and Right: 5). The parameter used for
the simulation are: ε = 20α and kamp = 20.
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