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Table 1:
KEGG pathways represented in the yeast kinetic model

Pathway Number of reactions
Purine and pyrimidine biosynthesis 27
Lipid metabolism 19
Valine, leucine, and isoleucine biosynthesis 17
Glycolysis / gluconeogenesis 16
Nucleotide salvage pathway 15
Tyrosine, tryptophan, and phenylalanine metabolism 15
Arginine and proline metabolism 12
Carbohydrate and lipid metabolism 11
Histidine metabolism 10
Biosynthesis of secondary metabolites 9
Cofactor and prosthetic group biosynthesis 9
Alternate carbon metabolism 8
Transport, outer membrane porin 8
Citric acid cycle 7
Glycerophospholipid metabolism 7
Glycerolipid metabolism 5
Membrane lipid metabolism 5
Pentose phosphate pathway 5
Threonine and lysine metabolism 5
Biosynthesis of unsaturated fatty acids 4
Cell envelope biosynthesis 4
Cysteine and methionine metabolism 4
Glycine and serine metabolism 4
Lysine biosynthesis 4
Oxidative phosphorylation 4
Alanine and aspartate metabolism 3
Anaplerotic reactions 3
Sulfur metabolism 3
Alanine, aspartate, and glutamate metabolism 2
Folate metabolism 2
Methionine metabolism 2
N-glycan biosynthesis 2
Pentose and glucuronate interconversions 2
Riboflavin metabolism 2
Starch and sucrose metabolism 2
Miscelleneous 28

The table lists metabolic pathways (as defined in the KEGG database) covered by the yeast kinetic model. For this table,
reactions were uniquely assigned to one of the pathways.
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Table 2:
Steady state fluxes calculated from models 61, 64, 172, 176, and 177 in
BioModels Database

Reaction Assigned flux (mM/s) Model flux (mM/s)
alcohol dehydrogenase, reverse reaction (acetaldehyde -> ethanol) 1.17 8.19 ×10−1

ATPase, cytosolic 5.95 ×10−1 4.17 ×10−1

enolase 1.76 1.23
fructose-bisphosphate aldolase 7.33 ×10−1 6.23 ×10−1

glucose-6-phosphate isomerase 7.33 ×10−1 5.99 ×10−1

glyceraldehyde-3-phosphate dehydrogenase 1.06 1.23
glycerol-3-phosphatase 5.10 ×10−2 4.53 ×10−2

glycerol-3-phosphate dehydrogenase (NAD) 1.49 ×10−1 1.04 ×10−1

hexokinase (D-glucose:ATP) 8.66 ×10−1 1.81 ×10−1

phosphofructokinase 6.06 ×10−1 6.23 ×10−1

phosphoglycerate kinase 8.75 ×10−1 1.23
phosphoglycerate mutase 1.76 1.23
pyruvate decarboxylase 1.25 8.18×10−1

pyruvate kinase 1.06 1.21
triose-phosphate isomerase 3.95 ×10−1 6.23×10−1

To obtain a set of flux data, we selected a group of metabolic models from BioModels Database [5] that are yeast-specific
and contain glucose as the primary carbon source (models 61, 64, 172, 176, and 177). Each model was run to a steady
state from its operating state and the resulting flux for each reaction was noted. Where more than one model provided
flux values for the same reaction, the median value was used.

Table 3:
Yeast specific intracellular metabolite concentrations taken from models
61, 64, 172, 176, and 177 in BioModels Database

Intracellular metabolite Concentration (mM)
2-phospho-D-glyceric acid 5.15 × 10 −2

3-phospho-D-glyceric acid 3.63 × 10 −1

3-phospho-D-glyceroyl dihydrogen phosphate 1.09 × 10 −4

acetaldehyde 1.20 × 10 −1

AMP 1.26
ATP 1.09
ADP 1.72
beta-D-glucose 6-phosphate 4.96 × 10 −1

carbon dioxide 1.00
D-fructose 1,6-bisphosphate 1.34
D-fructose 6-phosphate 1.05 × 10 −1

D-glucose 9.88 × 10 −2

ethanol 5.00 × 10 +1

glyceraldehyde 3-phosphate 4.36 × 10 −2

glycerol 1.50 × 10 −1

glycerone phosphate 6.02 × 10 −1

NAD(+) 1.50
NADH 8.67 × 10 −2

phosphoenolpyruvate 2.71 × 10 −2

pyruvate 6.06 × 10 −2

sn-glycerol 3-phosphate 1.29 × 10 +1

The intracellular metabolite concentrations were taken from yeast-specific models in BioModels Database that use glu-
cose as the primary carbon source. Where concentrations were not known, the intracellular concentrations were taken to
be the median value of the intracellular values, 0.549 mM.
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Table 4:
Extracellular metabolite concentrations taken from yeast footprinting me-
dia

Extracellular metabolite Concentration (mM)
ammonium 3.80× 10+1

D-glucose 1.11× 10+1

glycerol 1.76
sulphate 4.22 × 10+1

succinate(2−) 1

The extracellular metabolites were taken from yeast-specific models in BioModels Database that use glucose as the
primary carbon source. For unknown extracellular values median value of all extracellular concentrations was used (24.5
mM).

Table 5:
Equilibrium constants taken from models in BioModels Database.

Reaction Equilibrium constant
hexokinase (D-glucose:ATP) [glucose→ ...] 2.00×103
glucose-6-phosphate isomerase [glucose-6-p. → ...] 2.90×10−1

fructose-bisphosphate aldolase [fructose-1,6-bisphosphate→ ...] 4.50×10−1

glyceraldehyde-3-phosphate dehydrogenase [glyceraldehyde-3-p. → ...] 3.20×103
phosphoglycerate mutase [3-phosphoglycerate→ ...] 6.70
enolase [2-phosphoglycerate→ ...] 6.50×103

Where appropriate, equilibrium constants were taken from models available in BioModels Database that use glucose as
their primary carbon source (models 61, 64, 172, 176, and 177). All transport reactions were set to have equilibrium
constants of 1.

Table 6:
Extracellular metabolite concentrations manually adjusted

Extracellular metabolite Concentration (mM)
carbon dioxide 0

Transport reactions were set to have a fixed equilibrium value of 1 because the metabolite is only being moved across a
membrane. For export reactions assigned with the median extracellular concentration value this caused problems with
the reaction directionality. The above concentrations were adjusted to ensure that the behaviour of the cell was consistent
with the flux data. Only concentrations computed using the approximation values were allowed to be adjusted.
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Table 7:
Allosteric Regulators

Reaction Species Value
glyceraldehyde-3-phosphate dehydrogenase glyceraldehyde-3-phosphate 0.0012
phosphoglycerate mutase 2-phospho-D-glyceric acid 0.8
pyruvate decarboxylase pyruvate 2.75
phosphoglycerate kinase ATP 0.525
glucose-6-phosphate isomerase D-glucose 0.7
glucose-6-phosphate isomerase beta-D-glucose-6-phosphate 0.7
phosphofructokinase ATP 4
alpha-alpha trehalose-phosphate synthase UDP-glucose 6

Known inhibition constants taken from the BRENDA database

.
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Figure A:
Fluxes after an increase in extracellular glucose concentration
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Flux changes after an increase in extracellular glucose for a selection of reactions within the cen-
tral carbon metabolism. These provide an indication of behaviour around key points of branching.
(–) standard model; (- -) regulation model.
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Figure B:
Fluxes after a decrease in extracellular glucose concentration
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Flux changes after a decrease in extracellular glucose for a selection of reactions within the cen-
tral carbon metabolism. These provide an indication of behaviour around key points of branching.
(–) standard model; (- -) regulation model.
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Figure C:
Concentrations after an increase in extracellular glucose concentration
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Concentration changes after an increase in extracellular glucose, in the balances of
ATP/ADP/AMP, NAD/NADH, and NADP/NADPH. Amino acids isoleucine and homoserine are
also shown. (–) standard model; (- -) regulation model.
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Figure D:
Concentrations after a decrease in extracellular glucose concentration
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Concentration changes after a decrease in extracellular glucose, in the balances of
ATP/ADP/AMP, NAD/NADH, and NADP/NADPH. Amino acids isoleucine and homoserine are
also shown. (–) standard model; (- -) regulation model.

9



Figure E:
Concentrations in glycolysis after an increase in extracellular glucose con-
centration
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Concentration changes of glycolytic metabolites after an increase in extracellular glucose. These
are located at key branching points along the glycolysis network and give an indication of short
term intracellular pool responses to extracellular glucose perturbations. (–) standard model; (- -)
regulation model.
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Figure F:
Concentrations in glycolysis after a decrease in extracellular glucose con-
centration
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Concentration changes of glycolytic metabolites after a decrease in extracellular glucose. These
are located at key branching points along the glycolysis network and give an indication of short
term intracellular pool responses to extracellular glucose perturbations. (–) standard model; (- -)
regulation model.
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Figure G:
Scaled flux control coefficients in the yeast metabolic model

L−threonine deaminase

glycerol−3−phosphate dehydrogenase (fad)

fumarate reductase

glycerol−3−phosphate/dihydroxyacetone phosphate acyltransferase

1−acyl−sn−gylcerol−3−phosphate acyltransferase

isa acyl−CoA

succinate−CoA ligase (ADP−forming)

malate dehydrogenase

fumarase

inorganic diphosphatase

ATPase, cytosolic

adenylate kinase

diacylglycerol acyltransferase

nucleoside−diphosphate kinase (ATP:CDP)

diacylglycerol pyrophosphate phosphatase

g
lu

c
o
s
e
 t
ra

n
s
p
o
rt

C
O

2
 t
ra

n
s
p
o
rt

a
m

m
o
n
ia

 t
ra

n
s
p
o
rt

lip
id

 p
ro

d
u
c
ti
o
n

A
T

P
 s

y
n
th

a
s
e

s
u
c
c
in

a
te

 t
ra

n
s
p
o
rt

g
ly

c
e
ra

ld
e
h
y
d
e
−

3
−

p
h
o
s
p
h
a
te

 d
e
h
y
d
ro

g
e
n
a
s
e

O
2
 t
ra

n
s
p
o
rt

fr
u
c
to

s
e
−

b
is

p
h
o
s
p
h
a
te

 a
ld

o
la

s
e

e
th

a
n
o
l 
tr

a
n
s
p
o
rt

s
u
lf
a
te

 u
n
ip

o
rt

g
lu

c
o
s
e
−

6
−

p
h
o
s
p
h
a
te

 i
s
o
m

e
ra

s
e

g
lu

c
o
s
e
−

6
−

p
h
o
s
p
h
a
te

 i
s
o
m

e
ra

s
e

p
h
o
s
p
h
o
g
ly

c
e
ra

te
 m

u
ta

s
e

s
u
c
c
in

a
te

−
C

o
A

 l
ig

a
s
e
 (

A
D

P
−

fo
rm

in
g
)

Figure 1: Scaled flux control coefficients in the yeast metabolic model (compare Figure 3B in
article). Absolute values are shown by circle areas, blue and white circles represent positive and
negative values, respectively. Rows and columns correspond to the controlled and controlling
reactions. The reactions were sorted by overall (sum of square) control coefficients; only the
fifteen highest-ranking reactions are shown, respectively, for rows and columns.
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Figure H:
Control Patterns within the regulation model
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Figure 2: Fluxes and control coefficients in the yeast metabolic model with allosteric regulation
(compare Figure 3 in article). (a) Fluxes obtained from Geometric FBA. Only selected reactions
with large fluxes are depicted, co-substrates are not shown (flux directions and magnitudes shown
by arrows). (b) Control coefficients. Top: control exerted by the glucose transporter (GluT).
Unscaled flux control coefficients are shown in shades of blue (positive values) and red (negative
values). Bottom: control exerted by the biomass production reaction. High-flux reactions respond
most strongly: an increased glucose import increases the glycolytic flux, while increased biomass
production directs fluxes to other pathways and thereby decreases the glycolytic flux. (c) Scaled
flux control coefficients in the yeast metabolic model. Absolute values are shown by circle areas,
blue and white circles represent positive and negative values, respectively. Rows and columns
correspond to the controlled and controlling reactions. The reactions were sorted by overall (sum
of square) control coefficients; only the fifteen highest-ranking reactions are shown, respectively,
for rows and columns.
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Note i:
Aspects of implementation, method extensions, and alternative approaches
to data integration

(a) Data input and output Models are most frequently constructed to answer specific biological
questions, and they refer to certain experimental conditions or states of the cell, which limits their
validity to these conditions. As such, the fluxes must only be taken from bottom-up models that
are valid under the exact conditions that will be investigated using the final model, and reflect only
a single set of external conditions which influence the steady state. The flux data should include
information about reactions that cannot carry any flux within the organism (e.g. where there is
a strain-specific gene-knockout), and should also include broad reaction directionality for uptake
reactions (e.g. the cell must import oxygen, so the reaction oxygen [ex] → oxygen [in]
must hold a positive flux). Flux data taken from experiments performed under the investigable
growth conditions can also be used.

For the generation of a more specific large-scale metabolic model, it would be advised that
the metabolite concentrations are collected using metabolomic quantification and footprinting
techniques that are specific to the desired organism and biological state. Where more metabolite
data are available, it may also be possible to use thermodynamic FBA to help improve the es-
timated values of metabolites with unknown concentrations [3]. The assignment of many of the
metabolite concentration values, through their relationship with the mass-action ratios, have a
direct impact on the bounds for computing the equilibrium constants, and therefore the favoured
direction of the transport reactions. If these produce flux directions that are contrary to known net-
work behaviour (either from models or experimental knowledge) or where they cause issues with
equilibrium fitting, they should be altered to more accurately reflect the known system behaviour.

Regarding kinetic and thermodynamic constants, only a small number of equilibrium con-
stants are known from models, and some extra data can be found in the literature. Coupled to
this there are some methods such as ‘eQuilibrator’ [2] which can allow for the computation of
potential equilibrium constants based on the structural properties of the metabolites associated
with a given reaction, and corresponding Gibbs free energies. These can be used, but we would
recommend reflecting “confidence” levels in the values with their bounds during balancing: that
is, correctly calculated data or constants taken from models are fixed, and other data have in-
creasing boundary sizes as confidence in the values reduces. It is important to note that the
values of all equilibrium constants must be above the mass action ratio for the reaction.

(b) Steps of the workflow For computing the flux solution, also other FBA methods could
be used, which are described in [1] or [4], as well as other objective functions in conjunction
with flux data. When restricting the full network to a network of interest, it is important to
consider what the model will be used for: retention of all important pathways to the investigation
is important. The efficiency of parameter balancing is upmost dependent on the quality of the
input parameters. The less confidence there is in the origin of the parameters (i.e. heterogenous
sources or measuring conditions) the broader the corresponding standard deviations have to
be set in order to not bias the outcome of the posterior distribution. On the contrary, if certain
parameters need to be kept very close to the input value, either the standard deviation can be
chosen very tightly, or inequality constraints can be set for the optimisation process. The latter will
allow the value to move between lower and upper bounds, but not beyond. For the optimisation
process an algorithm of convex minimisation is sufficient.

The initial construction of the model requires that all rate laws take a generic form as above,
but it is possible to vary the mechanistic behaviour of the reactions to reflect behaviour that may
be more appropriate to different organisms. In vitro measured kinetic rate laws can be substituted
in if desired, but this is recommended after the model has been scaled to the correct steady state
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(Step 5). To insert the rate law, we need to ensure that it matches the model in its equilibrium
constant, its mass-action ration, and its reaction rate. The first two quantities have to be imposed
on the network model beforehand, during its construction.

Adjust model to steady-state flux. The correct rate can be obtained by adjusting the max-
imal velocity in the rate law. We recommend that alterations are again kept to scaling of Vm (or
to scaling of enzyme concentrations, if the maximal velocities Vm are represented as products
of enzyme concentrations and catalytic constants). If the network is not reduced in earlier steps
there will be a large number of inactive reactions, which must be set to 0 manually. The reactions
should be set to 0 during this step, but perhaps with modifications that ‘activate’ Vm to a positive
value under certain conditions. Metabolic control analysis reflects only the current state of the
system. Once a reaction is identified as having a large flux control, it can be replaced by an in
vitro calculated rate law for that reaction. If a rate law substitution is made (or parameters are
altered owing to new information) then the MCA should be recalculated so a new reflection of the
steady state is included.

Note ii:
Checking flux distributions for thermodynamic feasibility

A thermodynamically feasible flux distribution has to agree with the chemical potential differ-
ences in the network. For ideal chemical mixtures, the chemical potentials µi can be expressed
in terms of the concentrations ci and the chemical potentials µ(0)

i at standard concentration c = 1
mM as

µi = µ(0) +RT ln ci. (1)

The reaction affinity – defined as the negative reaction Gibbs free energy – is given by

Al = −∆µl = −
∑
i

nil µi. (2)

The reaction affinity determines the flux direction: flux and affinity need to have the same sign un-
less the flux vanishes. Therefore, to ensure that a flux distribution is thermodynamically feasible,
we need to check whether there exists a set of chemical potentials µi such that

vl 6= 0 ⇒ sign(vl) = sign(Al) (3)

for all reactions l. This can be checked by linear programming, as we will explain now. By
inserting Eq. (1), the reaction affinities can be written in terms of concentrations by

Al = −
∑
i

nil µ
(0)
i −

∑
i

nilRT ln ci = RT lnKeq,l −RT
∑
i

nil ln ci

= RT ln

(
Keq,l∏
i c

nil
i

)
(4)

Thermodynamics requires that a non-zero reaction rate has the same sign as the corresponding
reaction affinity. However, if reactions are close to equilibrium (A ≈ 0), but show a finite flux,
a large enzyme level may be required. To avoid extreme enzyme demands, we may require
reactions with non-zero fluxes to show reaction affinities above some threshold value, |Al| ≥
Amin. One possibility to choose Amin is by predefining the corresponding ratio of forward and
reverse rates, given by

ln
v+l
v−l

=
A

RT
(5)
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Postulating that the forward flux v+l must not exceed the (positive) net flux by more than a 100-
fold, we obtain the condition

10 ≥
v+l

v+l − v
−
l

⇒ 1

10
≤ 1−

v−l
v+l

= 1− exp

(
− Al

RT

)
⇒ − Al

RT
≤ ln(1− 1

10
)

⇒ Al ≥ −RT ln(1− 1

10
) ≈ RT 1

10
≈ 0.25 kJ/mol (6)

With these formulae, it is easy to check a given flux distribution for thermodynamic correct-
ness. If a set of concentrations and standard chemical potentials is given, we just have to compute
the reaction affinities and see if they show the correct signs and exceed the necessary thresholds.
If no information is given except for the flux distribution, we can check if there exists a vector of
chemical potentials that agree with the fluxes. We can formulate this as a set of linear constraints
on µ:

µmin ≤ µ ≤ µmax

vl > 0⇒ −
∑
i

nil µl > Amin

vl < 0⇒
∑
i

nil µl < −Amin (7)

where low thresholds µmin and high thresholds µmax are chosen to bound the solution space.
Standard linear programming can be used to check if these constraints can be satisfied.
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