PARALLELSTRUCTURE

A PACKAGE TO PROVIDE R FRAMEWORK TO RUN GENETIC ANALYSIS
SOFTWARE STRUCTURE AND MAKE USE OF MULTI-CORE COMPUTERS

1 INTRODUCTION

This Package provides a R framework to make use of multi-core computers when
running analysis in the population genetics software STRUCTURE(Pritchard,
Stephens & Donnelly (2000)). STRUCTURE is one of the most widely used
population genetic software of the last decade. Introduced in year 2000, it has
brought outstanding contribution to the field of population genetics by provid-
ing a user friendly tool for analyzing multi-locus genotype data to investigate
population structure, hybridization, population admixture ...etc. Distributed
as free software, http://pritch.bsd.uchicago.edu/structure.html| the pro-
gram comes in two versions: A user friendly graphic interface and a command
line version. STRUCTURE analyses rely on multiple MCMC re-sampling and
are thus often time consuming.

In general, one efficient way to speed up computing processes is to distribute
tasks on several computing units (core/CPU). This solution imposes itself as
the most common one since shared memory multi-core processors are now read-
ily available on the market. Even common laptops are usually equiped with at
least dual-core processors, and 4 to 8 core are becoming the norm. However,
STRUCTURE does not support native multi-processor tasking. Nevertheless,
it is possible to use STRUCTURE on multiple cores by simply opening several
graphic-interface windows at the same time, or by using scripts to run STRUC-
TURE on the command line version and perform several STRUCTURE analysis
simultaneously.

Opening several graphic windows remains a suboptimum solution as the user
needs to to run manually each analysis after the previous one is done. It is thus
a poorly automatized solution.

Using script programming can make a more efficient use of the multi-core pro-
cessors by automatically distributing analyses to all available cores/CPUs and
renewing the task of each core/CPU when a given job is completed. This so-
lution is more efficient but requires specific script programming and parallel
programming skills.

The present package provides a R framework to run genetic analysis in
STRUCTURE and make efficient use of multi-core computers. It consists is
a R script that imports STRUCTURE command line options into an R func-
tion, and run several STRUCTURE analysis in parallel by using either Rmpi

http://pritch.bsd.uchicago.edu/structure.html

package (MPI_structure function) or parallel package (parallel_structure func-
tion).

2 CONTENT

The package consists in two main functions, MPI_structure() and parallel_structure()
as well as an example data file and corresponding joblist file. The two func-
tions MPL structure() and parallel_structure() are equivalent as they perform
the same task and work with the same input file and parameter set. The
difference between them is the method that the function relies on for dis-
tributing jobs among CPUs: MPIL structure() relies on the R package Rmpi
whereas parallel_structure() relies on R package parallel. Rmpi is distributed
in the CRAN repository for MacOS, but will require manual installation under
Windows (See section install Rmpi for windows in this document or from
the Rmpi webpage http://www.stats.uwo.ca/faculty/yu/Rmpi/.. Parallel
package is distributed with R since version 2.14.0 but is still under development.
parallel_structure() might not be fully functional under Windows architecture,
and should not be used in GUI or embedded environments as it may cause
crashes. We thus strongly recommend to use MPI_structure() function by de-
fault in Windows. For Unix users, both MPI_structure() and parallel_structure()
are available parallel_structure() would require R to run from the terminal.

A list of tasks to be performed is stored in a joblist file. In joblist file,
each line corresponds to an individual job. While STRUCTURE input format
requires a different dataset for each set of population, ParallelStructure offers
the possibility for the user to work from a large input file containing all the
populations one might need to analyze in STRUCTURE. Then, a set of ”jobs”
is defined in which all or only a subset of population can be included. This
avoids making a different input file for each population subset. For each job,
the user defines the set of populations to be included, STRUCTURE parameter
K, burin and number of iteration. If all population in the data must be analyzed
pairwise (all VS all), the list of populations for the given job can be replaced
by ”pairwaise.matrix” (see job T11 in example joblist)

 http://www.stats.uwo.ca/faculty/yu/Rmpi/

3 USE

Standard documentation is available from R command

?ParallelStructure
?MPI_structure
?parallel_structure

MPI _structure and parallel_structure functions take many arguments, most
of which are directly imported from STRUCTURE command line instructions.
(see http://pritch.bsd.uchicago.edu/software/readme_2_1/node33.html

Ohter arguments are specific to ParallelStructure functions:

-infile: name of the datafile, eg: ”structure_data”

-outpath: folder to write result files e.g ”example/results/”

-joblist: name of the joblist file e.g ”example/joblist1”

-n_cpu: number of core/CPU to be used for computation.

-structure_path: R must find the location of executable STRUCTURE com-

mand line file. this can be achieved in different ways:

Either in R: copy the location of STRUCTURE executable in a local variable
my_path , eg: for MacOS
my_path="/Applications/Structure.app/Contents/Resources/Java/bin/”

or Windows my_path="c:/Program Files (x86)/Structure2.3.4/bin/”

Then, run the function in R with following arguments:

MPI_structure(structure_path=my_path, joblist=’joblistl.txt’,n_cpu=4,
infile=’example_data.txt’,outpath=’structure_results/’,numinds=987,

numloci=9,printghat=1)

Alternatively it is possible to make STRUCTURE executable file available
from any place in the computer (in such case, set structure_path=NULL when
calling the R function): On MacOS: copy the STRUCTURE executable com-
mand line from /Applications/Structure.app/Contents/Resources/Java/bin/
into usr/local/bin or on Windows, copy the address c:/Program Files (x86)/Structure2.3.4/bin/
into the environment variable :
Right click ”My Computer” and choose ”Properties”. Click ” Advanced system

 http://pritch.bsd.uchicago.edu/software/readme_2_1/node33.html

settings” to get a new window.

Click ”Environment Variables. Locate variable "PATH”

Do not erase environment variables already present in the list. Add
at the end of Variable value: ”;c:/Program Files (x86)/Structure2.3.4/bin/”

3.1 Example
-1 call ParallelStructure in R:

library(ParallelStructure)

-2 make a directory to store result files called ”structure_results”
in R for unix:

system(’mkdir structure_results’)
OR in R for Windows:
shell (’mkdir structure_results’)
-3 call example data file and joblisfile from the R package

data(structure_data)
data(structure_jobs)

-4 Write datafile and joblist file as text files in the working directory

write(t(structure_jobs) ,ncol=length(structure_jobs[1,]),file=’joblistl.txt’)
write(t(structure_data) ,ncol=length(structure_datal1l,]),file=’example_data.txt’)

-5 Run STRUCTURE job with MPI_structure function:
If STRUCTURE executable is accessible from environment variables: Run

MPI structure
MPI_structure(structure_path=NULL, joblist=’joblistl.txt’,n_cpu=4,
infile=’example_data.txt’,outpath=’structure_results/’,numinds=987,
numloci=9,printghat=1)
If STRUCTURE executable is NOT accessible from environment variables:
first define the location of STRUCTURE executable:
my_path="/Applications/Structure.app/Contents/Resources/Java/bin/"

OR

my_path="c:/Program Files (x86)/Structure2.3.4/bin/"
then run MPI_structure
MPI_structure(structure_path=my_path, joblist=’joblistl.txt’,n_cpu=4,
infile=’example_data.txt’,outpath=’structure_results/’,numinds=987,

numloci=9,printghat=1)

4 OUTPUTS

ParallelStructure will run STRUCTURE for all specified jobs in the joblist file,
and write the output _f files in the directory specified in parameter ”outpath”.
If parameters printghat=1 or plot_output=1, _q files and graphs in pdf format
are also produced in the same directory. ParallelStructure also produces one
.csv file called "results_summary” in the working directory. This file contains a
table that summarises for each job listed in the joblist file: main job parameters
(job ID, k, number of iteration and burnin, as well as result summary statistics
log likelihood of the data, mean and variance of the log likelihood, and mean
value of alpha)

5 INSTALL

5.1 MacOS
5.1.1 Rmpi

Install Rmpi from the CRAN repository, or follow the instruction in http:
//www.stats.uwo.ca/faculty/yu/Rmpi/| for manual installation.

5.1.2 ParallelStructure

Download binary file from http://r-forge.r-project.org/R/?group_id=1636
Then install ParallelStructure package from local .tar.gz archive by typing in R

install.packages("ParallelStructure_1.0.tar.gz",type=’source’)

OR from R-forge repository by typing in R:

install.packages("ParallelStructure", repos="http://R-Forge.R-project.org")

http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://r-forge.r-project.org/R/?group_id=1636

5.2 Windows
5.2.1 Rmpi

Rmpi for Windows is not available from CRAN repository. To install Rmpi,
follow the next steps or look at the instruction from: http://www.stats.uwo.
ca/faculty/yu/Rmpi/| for manual installation.

1- Install MPICH2 for windows (32 or 64 bit depending on the R version
you are using) http://www.mpich.org/downloads/

During installation you will have to specify a pass phrase, keep the default
"behappy” or change it for a new one.

2- Go to your program files (or program files(x86) if you installed 32 bit
version). search for MPICH2 folder and run wmpiregister. You need to register
your username id and password for your computer session. click on "register”
and ”OK”

3- Add MPICH2 bin directory to PATH environment variable:
Right click "My Computer” and choose ”Properties”. Click ” Advanced system
settings” to get a new window.
Click ”Environment Variables. Locate variable ”PATH”
Do not erase environment variables already present in the list. Add
at the end of Variable value:

";C:\Program Files\MPICH2\bin"
(OR ";C:\Program Files x(86)\MPICH2\bin" if you installed 32 bit version)

4- open ”command prompt” as administrator. make sure you are on ”C” drive.
(if not, type ”¢:” to change drive), then type
smpd -install -phrase behappy (or change "behappy” by the passphrase you en-
tered in step 1)

then type

smpd -status
it should return ”smpd running on ”hostname” ”

5- Download Rmpi for Windows here: http://www.stats.uwo.ca/faculty/
yu/Rmpi/

Launch R with administrator to install Rmpi. Use the option ”install from
local .zip file”

Quit R and launch R with normal user. Try the following codes to see if
Rmpi runs properly

library (Rmpi)
mpi.spawn.Rslaves ()
mpi.parReplicate (20, mean(rnorm(1000000)))

http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://www.mpich.org/downloads/
http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://www.stats.uwo.ca/faculty/yu/Rmpi/

mpi.close.Rslaves()

5.2.2 ParallelStructure

Download binary file from http://r-forge.r-project.org/R/?group_id=1636
Then install ParallelStructure package from local .zip archive by typing in R

install.packages("ParallelStructure_1.0.zip",repos=NULL)

OR from R-forge repository by typing in R:

install.packages("ParallelStructure", repos="http://R-Forge.R-project.org")

5.3 Linux
5.3.1 Rmpi

Rmpi for Linux is not available from CRAN repository. To install Rmpi, fol-
low the instructions from: http://www.stats.uwo.ca/faculty/yu/Rmpi/| for
manual installation. However, because Linux runs R from Terminal

by default, Linux users can simply install ParallelStructure package

without Rmpi, and use the function parallel_structure() instead of
MPI_structurte() . This only requires R version 2.14 or later.

5.3.2 ParallelStructure

Download binary file fromhttp://r-forge.r-project.org/R/7group_id=1636
Then install ParallelStructure package from local .tar.gz archive by typing in R

install.packages("ParallelStructure_1.0.tar.gz",type=’source’)

OR from R-forge repository by typing in R:

install.packages("ParallelStructure", repos="http://R-Forge.R-project.org")

6 WARNING: USE OF POPINFO

Using ParallelStructure functions with usepopinfo=1 may produce
STRUCTURE output files with a column of population IDs that does
not match the initial input data file. Details and possible solutions

http://r-forge.r-project.org/R/?group_id=1636
http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://r-forge.r-project.org/R/?group_id=1636

are given bellow:

In STRUCTURE, a column of population IDs (popID) can be included
in the input file (see option POPDATA). If USEPOPINFO=0, pop.ID is not
used as prior information to assist clustering, pop_ID is then just a convenient
information to separate the individuals in the output graph, and can contain
any user defined list of integers as population identificator. However, if USE-
POPINFO=1, pop_ID is used as prior information to assist clustering, STRUC-
TURE will need that the integers in pop_ID are equal or smaller than
K. e.g., if STRUCTURE runs with parameter K=3, pop_ID can only
contain integers from 1 to 3.

ParallelStructure offers the possibility to analyse large datasets in multiple ways
without need for the user to split the data manually and generate multiple sub-
datasets. The scripts in ParallelStructure will generate these sub-datasets au-
tomatically.

For example: if the main dataset contains five populations, and pop_ID is a
column of integers from 1 to 5,

pop-ID

1

1

and the analyses to be performed are stated in the joblist file as:
T1 1,2,3 3 1000 10000
T2 3,4,5 3 1000 10000

Job T1 will consist in the analysis of populations 1,2 and 3
Job T2 will consist in the analysis of populations 3,4 and 5

ParallelStructure will automatically generate one sub-datafile for each job:
with population 1,2 and 3 for job T1, and with populations 3,4 and 5 for job
T2. For job T2 however, pop_ID will need to be converted and IDs 3,4 and 5
will be converted into 1,2 and 3 in order to match STRUCTURE’s requirements
that pop_ID contains only integers from 1 to n where n is equal or smaller than
K. When USEPOPINFO=1, this conversion is done automatically by
ParallelStructure scritps. The output files (_f and _q) contain the converted
pop-IDs wich are different from the original data file pop_IDs. The user can
chose bertween two options to deal with pop_IDs:

1- Using ParallelStructure functions with option revert_convert=1. With
this option, ParallelStructure will import STRUCTURE output files (_q and _f)
in R, change the population IDs into the original ones and write the files back

into the "outpath” directory. During that process, STRUCTURE output files
are slightly modified (number of space separators in the individual assignment
table). We would thus warn the users that revert_convert=1 might be a source
of bugg when using resource programs such as CLUMPP or Structure harvester
to analyse STRUCTURE outputs. The function was tested on the example
data file with USEPOPINFO=1 and REVERT_CONVERT=1. The resulting _f
and _q files were successfully uploaded into structure harverster, however, other
data files might not work as well. We invite the users to be careful and report
such bugg to the authors

2- Doing nothing: (using ParallelStructure functions with default option
revert_convert=0) This is the best way to preserve STRUCTURE output files
untouched and ready to be imported into resource programs such as CLUMPP
or Structure harvester. Using a column of individuals IDs that also contain a
population indicator (e.g. popl.l, popl.2 ... pop2.1, pop2.2 etc...) is also a
convenient way to keep easily interpretable output files.

	INTRODUCTION
	CONTENT
	USE
	Example

	OUTPUTS
	INSTALL
	MacOS
	Rmpi
	ParallelStructure

	Windows
	Rmpi
	ParallelStructure

	Linux
	Rmpi
	ParallelStructure

	WARNING: USE OF POPINFO

