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Structure-Dynamics Relationships in Bursting Neuronal
Networks Revealed using a Prediction Framework —
Supporting information

S1 Supporting information on the methods

S1.1 Network generation algorithms

In this section we show the pseudo-codes for generating the networks with higher occurrence of feed-
ferward loops (Algorithm S1) and the networks with higher occurrence of directed loops of length L
(Algorithm S2). The MATLAB implementations for the algorithms are given in ModelDB entry 147117.
Both algorithms are given the number of nodes N , the in-degree distribution fID, and the strength
parameter W as attributes. The algorithms start with an empty connectivity matrix M ∈ {0, 1}N×N
that is updated every time a connection is made, and finally they output M .

Algorithm S1 Scheme for FF networks.

for node index i ∈ {1, . . . , N} do
· Draw number of inputs ni ∼ fID.
for input index j ∈ {1, . . . , ni} do
· Give weights ak to all nodes k 6= i that do not yet project to i s.t. ak = 1 + |{l|Mkl ∧Mli}|.
· Compute the probability to draw node k as P (k) =

aWk∑
k a

W
k

.

· Randomly pick k according to the probability mass distribution P and create a connection from
k to i.

end for
end for

In Algorithm S1 all inputs of a node i are set successively before setting the inputs of other nodes. The
connectivity graph is updated every time a connection is made, and hence also the probability distribution
P (k) of possible inputs changes with every step. These probabilities are given on the basis of the number
of disynaptic paths they have to the considered node i. That is, higher priority is given to nodes that
project to the input nodes of node i. Conversely, in Algorithm S2 the edges are set in such a way that
the node i for which the input is selected is changed in every iteration. By default, the node i is selected
as the node that was last chosen as an input to another node. This promotes the creation of chains in the
early stage of the iteration, which is crucial for the succesful creation of loops in the later stage. In case
the node that was last chosen as input already has all its inputs set, the node to be updated is picked by
random on the basis of the number of unset inputs of each node. This is also done in the first iteration
of the algorithm.

In addition, the weighting scheme in the picking of inputs in Algorithm S2 is more diverse than that
in Algorithm S1. The highest priority (4 + εk points) is given to such nodes k that, if chosen as an input
to i, would create a loop of length L from i to itself without shortcuts. The second highest priority (3) is
given to such nodes that would not create a loop of length L, but would not either create a shorter loop
from i to itself. The third highest priority (2 + ε′k) is given to nodes that would create a loop of length
L, but would simultaneously create shorter loops. The lowest priority (1) is given to the rest, i.e., the
nodes that, if chosen as input to i, would create a loop shorter than L but would not add loops of length

L. Further difference between nodes on the first or third priority level is given by εk = (ML−1)ik

(N−2
L−2 )

L−2 and

ε′k = (ML−1)ik
(N−1)L−2 , both of which are proportional to the number of paths of length L that would be formed

if the node k was chosen as input. To ensure that these extra terms are subsidiary to the named four
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Algorithm S2 Scheme for loopy networks of length L.

for node index i ∈ {1, . . . , N} do
· Draw number of inputs ni ∼ fID.

end for
while not all edges set do

if this is the very first edge or if the node that was last selected has already been set all its inputs
then
· Give weights bi to all nodes i such that bi is the number of inputs of i that have not yet been set.

· Compute the probability to draw node i as P (i) =
aWk∑
i a

W
i

.

· Randomly pick i according to the probability mass distribution P
else
· Set i to be the node that was selected as the input node in the last round.

end if
For each l < L and each possible input k, calculate (M l)ik, i.e., the number of existing paths of
length l from node i to node k. Give weights ak to all nodes that do not project to i as follows.
for node index k ∈ {1, . . . , N} \ {i} \ {l|Mli = 1} do

if ∀l = 1, . . . , L− 2 : (M l)ik = 0 then
if (ML−1)ik > 0 then

· Set ak = 4 + (ML−1)ik

(N−2
L−2 )

L−2

else
· Set ak = 3

end if
else
if (ML−1)ik > 0 then

· Set ak = 2 + (ML−1)ik
(N−1)L−2

else
· Set ak = 1

end if
end if
· Compute the probability to draw node k as P (k) =

aWk∑
k a

W
k

.

· Randomly pick k according to the probability mass distribution P and create a connection from
k to i.

end for
end while
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priority levels, we show that εk, ε
′
k ≤ 1 as follows.

Proof for εk:

It can be shown that (ML−1)ik ≤
(
N−2
L−2

)L−2
. As the choice of k as an input would not create loops

shorter than L, the minimum path length from i to k has to be L − 1. The maximum number of such
paths is attained by (if possible) ordering the remaining N − 2 nodes into L − 2 layers, each of which
contains a maximum of d(N − 2)/(L− 2)e nodes. In this construction i projects to all nodes in the first
layer, the nodes of the first layer nodes project to all nodes in the second layer, and continuing until the
last layer, where all nodes project to k. The maximum number of paths of length L − 1 from i to k is
then (N−2L−2 )L−2.
Proof for ε′k:
We can show by induction that ∀k : (M t)ik ≤ (N − 1)t−1 in any graph of interest. Since no graph can
have more paths than the fully connected graph, that is, a graph M where Mij = 1 ∀j 6= i and Mii = 0
∀i, it suffices to show the result for that particular graph.

1. The statement is true for t = 1, as the number of paths of length 1 from i to any node are either 0
or 1.

2. Suppose the statement is true for t = t0 − 1. Then, the number of paths of length t0 from i to
any k is

∑N
j=1(M t0−1)ijMjk =

∑N
j=1, j 6=k(M t0−1)ij ≤ (N − 1)(N − 1)t0−1 = (N − 1)t0 . Hence, the

statement is true for t = t0.

Thus, ∀k : ε′k ≤ 1 in any graph M .
In both algorithms the limit case W = ∞ is allowed. In this case, after calculating the weights ak,

the probability mass is divided equally between the nodes that have the exact maximum weight max ak,
and other nodes are given zero probability mass. This can be shown in a simple limit value analysis as
follows. Consider the weight for node k 6= i.

1. Suppose ∃j such that ak < aj . Then
aWk∑
l 6=i a

W
l

≤ aWk
aWj

=
(
ak
aj

)W
→ 0. Hence,

aWk∑
l 6=i a

W
l

→ 0.

2. Suppose ak = max
l 6=i

al. Denote I = {l 6= i|al = ak}, and denote the size of the set by n = |I| < N .

If all nodes have the maximum weight ak, i.e., n = N − 1, we have
aWk∑
l 6=i a

W
l

= 1
N−1 , and hence the

statement is true. Otherwise, let us consider the remaining nonempty set J = {1, . . . , N} \ {i} \ I.

Let us choose j = arg max
l∈J

al. Thus, we have
aWk∑
l 6=i a

W
l

=
aWk∑

l∈I a
W
l +

∑
l∈J a

W
l

≥ aWk
naWk +(N−1−n)aWj

=

1

n+(N−1−n)
(

aj
ak

)W → 1
n . On the other hand we have

aWk∑
l 6=i a

W
l

≤ aWk
naWk

= 1
n . Hence, we have

aWk∑
l6=i a

W
l

→ 1
n .

S1.2 Truncated power-law distribution

In this work, both binomial and power-law distributions are used for the in-degree of the networks. The
power-law distribution is truncated as follows:

fPOW
ID (n|N,α, p) =

 1−
∑N−1
k=nmin

akα, n = nmin

anα, nmin < n < N
0, otherwise

, (S1)

where nmin ∈ N and a ∈ [0,∞) are chosen such that p = 1
N−1EfPOW

ID
[n], and nmin is minimized with

the restriction that 1−
∑N−1
k=nmin

akα be non-negative. The slope of the power-law distribution is chosen
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α = −2 throughout this work, based on the data from functional connectivity graphs [S1]. In the following
we show that such a and nmin exist for every N ∈ N, α ∈ R, and p ∈ [0, 1].

Let N ∈ N be the number of nodes in the network, p ∈ [0, 1] the desired connection probability, and
α ∈ R the slope of the power-law distribution. Let N > 1 — otherwise, the connection probability is
undefined. Let us show that there exist a ∈ [0,∞) and nmin ∈ N such that the function

g(n|N,α, a, nmin) =

 1−
∑N−1
k=nmin+1 ak

α, n = nmin

anα, nmin < n ≤ N − 1
0, otherwise

, (S2)

is a probability density function on Ω = {0, 1, . . . , N − 1} and satisfies

Eg[n] = p(N − 1). (S3)

First, we find that g(·|α, a, nmin) is a well-defined probability density function if and only if nmin =

N − 1, or nmin < N − 1 and a ∈ [0, 1/
∑N−1
k=nmin+1 k

α]. Let us now study the Equation S3.

• If p = 1, we find that nmin = N − 1 satisfies Equation S3 for any a.

• If p < 1, we find that nmin = N − 1 cannot satisfy the Equation S3 for any a. Consider now an
arbitrary nmin ∈ {0, 1, . . . , N − 2}. The expectation value

Eg[n] = (1−
N−1∑

k=nmin+1

akα)nmin +

N−1∑
k=nmin+1

akα+1 = a

(
N−1∑

k=nmin+1

kα+1 − nmin

N−1∑
k=nmin+1

kα

)
+ nmin

is a monotonically increasing function w.r.t. a. For a = 0 we have Eg[n] = nmin, as for other

extreme a = 1/
∑N−1
k=nmin+1 k

α we have

Eg[n] =

∑N−1
k=nmin+1 k

α+1∑N−1
k=nmin+1 k

α
. (S4)

As in the summation terms the index k ≥ nmin + 1 and kα is non-negative, we have

N−1∑
k=nmin+1

kα =

N−1∑
k=nmin+1

kα · 1 ≤
N−1∑

k=nmin+1

kα(k − nmin) =

N−1∑
k=nmin+1

kα+1 − nmin

N−1∑
k=nmin+1

kα,

which gives us
N−1∑

k=nmin+1

kα+1 ≥ (nmin + 1)

N−1∑
k=nmin+1

kα

and further ∑N−1
k=nmin+1 k

α+1∑N−1
k=nmin+1 k

α
≥ nmin + 1.

Hence, the range of expectation values Eg[n] covers at least the range [nmin, nmin+1]. Hence, there is
at least one nmin for which a can be chosen (the choice is unique because of the strict monotonicity)
such that Equation S3 is satisfied and g(·|N,α, a, nmin) is a probability density function. Since there
are a finite number of viable values of nmin, we may choose the smallest one and the corresponding
a. �
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S1.3 The LIF and HH models

The parameters for LIF model are taken from [S2] with the following exceptions. In [S2] the background
current Ib has differing values for every neuron, making some neurons in the network intrinsically active
pacemakers and others excitable only with positive input. In this work we set all the neurons of a given
type (excitatory, inhibitory) to the same mean level by their spontaneous activity. The noise level was
chosen such that the neurons express spontaneous spikes with a rate of ≈ 10 spikes/min when no inputs
are given. The lack of pacemakers prevents the network from having a prominent heterogeneousity that
is not due to the structure of the network. The synaptic weights η are tuned such that a RN with a
connection probability p = 0.2 produces approximately 10 bursts/min, see the end of this section for exact
values. The values of the other synaptic parameters (U , τrec, τfacil, τI) are set as the mean value given in
[S2] without perturbation. The simulations are carried out in PyNEST with time step dt = 0.2ms.

The HH model is taken from the Appendix in [S3] with some retuning for our purposes. Here too we
apply random current Ib(t) to the membrane potential such that the neurons fire spontaneously with a
moderate rate (8.1 spikes/min for excitatory neurons and 137 spikes/min for inhibitory neurons; these
values fit fairly well to experimental data [S4]). Euler-Maruyama method with time step dt = 0.0025ms
is used for the integration. The Kdr conductance for excitatory neurons is set gKdr = 6mS/cm2 instead
of the 3mS/cm2 stated in [S3] — the value 6mS/cm2 (given in a ModelDB entry corresponding to their
article) was found to give the correct shape of action potentials.

The proportions of the synaptic currents are similar to [S3] with the exception that also the inhibitory–
inhibitory currents are considered. The dynamics for AMPA currents are modeled according to the
Appendix of [S5]. The model for NMDA currents is a combination with both the synaptic depression
from [S5] and the dynamics of slow rise-time from [S3]. The values of the parameters, when different,
are taken from the Appendix of [S3]. The synaptic depression affects both AMPA and NMDA currents
through the amount of glutamate resources TGlu ∈ [0, 1]. In the following, all the model equations and
parameters are listed.

The membrane potential of a LIF neuron obeys

Cm
dVm
dt

= − Vm
Rm

+ Isyn + Ib,

with Cm=30pF and Rm=1GΩ. The threshold potential is 15mV, the reset potential is 13.5mV, and the
refractory period is 3ms for excitatory neurons and 2ms for inhibitory neurons. The synaptic current Isyn
to the neuron j is the sum of the currents from the presynaptic cells:

Ijsyn =


η(1.0pA ·

NE∑
i=1

Mijyij − 3.0pA ·
N∑

i=NE+1

Mijyij), if j excitatory

η(4.0pA ·
NE∑
i=1

Mijyij − 4.0pA ·
N∑

i=NE+1

Mijyij), if j inhibitory

,

where the neurons are assumed to be ordered such that the excitatory population consists of neurons
with indices 1, . . . , NE and the inhibitory population of neurons NE+1, . . . , NE+NI . Thus, the synaptic
currents are functions of the dynamic synaptic variables yij , each of which is determined by the following



6

set of equations:

du

dt
= − u

τfacil
+ U(1− u)δtsp(t)

dx

dt
=

z

τrec
− uxδtsp(t)

dy

dt
= − y

τI
+ uxδtsp(t)

dz

dt
=

y

τI
− z

τrec
,

(S5)

where tsp is the time instant of a presynaptic spike. The parameters are as follows: U(E → E) = U(I →
E) = 0.5, U(E → I) = U(I → I) = 0.04, τrec(E → E) = τrec(I → E) = 800ms, τrec(E → I) = τrec(I →
I) = 100ms, τI(E → E) = τI(I → E) = τI(E → I) = τI(I → I) = 3ms, τfacil(E → E) = τfacil(I →
E) = 0ms, τfacil(E → I) = τfacil(I → I) = 1000ms. The background current Ib, chosen independently for
each neuron, is a stepwise constant random (Gaussian) current with mean 12pA and standard deviation
7.3pA. The value of the background current is re-initialized every 1ms.

The time course of an excitatory HH neuron is determined by

Cm
dVm
dt

= −INa − INaP − IKdr − IK−slow − IL − IE→E
AMPA − IE→E

NMDA − IGABA + Ib,

where Cm = 1µF/cm2. The sodium currents INa obey the following equations:

INa(Vm, h) = gNam
3
∞(Vm)h(Vm − VNa)

dh

dt
= (h∞(Vm)− h)/τh(Vm)

m∞(V ) = (1 + exp(−(V − θm)/σm))−1

h∞(V ) = (1 + exp(−(V − θh)/σh))−1

τh(V ) = 0.1 + 0.75 · (1 + exp(−(V − θth)/σth))−1

INaP(Vm) = gNaPp∞(Vm)(Vm − VNa)

p∞(V ) = (1 + exp(−(V − θp)/σp))−1,

where gNa = 35mS/cm2, VNa = 55mV, θm = −30mV, σm = 9.5mV, θh = −45mV, σh = −7mV,
θth = −40.5mV, σth = −6mV, gNaP = 0.2mS/cm2, θp = −47mV, and σp = 3mV. The potassium
currents are described by the following equations:

IKdr(Vm, n) = gKdrn
4(Vm − VK)

dn

dt
= (n∞(Vm)− n)/τn(Vm)

n∞(V ) = (1 + exp(−(V − θn)/σn))−1

τn(V ) = 0.1 + 0.5 · (1 + exp(−(V − θtn)/σtn))−1

IK−slow(Vm, z) = gK−slowz(Vm − VK)

dz

dt
= (z∞(Vm)− z)/τz

z∞(V ) = (1 + exp(−(V − θz)/σz))−1,
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where gKdr = 6mS/cm2, VK = −90mV, θn = −33mV, σn = 10mV, θtn = −27mV, σtn = −15mV,
gK−slow = 1.8mS/cm2, θz = −39mV, σz = 5mV, and τz = 75ms. The leak current obeys

IL(Vm) = gL(Vm − VL),

where gL = 0.05mS/cm2 and VL = −70mV.
Inhibitory neurons in networks of HH neurons are described by the Wang-Buzsaki model as follows:

Cm
dVm
dt

= −IINa − IIKdr − IIL − IE→I
AMPA − IE→I

NMDA − IGABA + Ib.

The currents are described as follows:

IINa(Vm, h) = gINa(mI
∞(Vm))3h(Vm − V I

Na)

dh

dt
= αh(Vm)(1− h)− βh(Vm)h

mI
∞(V ) = αm(V )/(αm(V ) + βm(V ))

αh(V ) = 0.35 exp(−(V + 58)/20)

βh(V ) = 5/(1 + exp(−(V + 28)/10))

αm(V ) = 0.5(V + 35)/(1− exp(−(V + 35)/10))

βm(V ) = 20 exp(−(V + 60)/18)

IIKdr(Vm, n) = gIKdrn
4(Vm − V I

K)

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

αn(V ) = 0.05(V + 34)/(1− exp(−(V + 34)/10))

βn(V ) = 0.625 exp(−(V + 44)/80)

IIL(Vm) = gIL(Vm − V I
L),

with gINa = 35mS/cm2, V I
Na = 55mV, gIKdr = 9mS/cm2, V I

K = −90mV, gIL = 0.1mS/cm2, and V I
L =

−65mV.
The synaptic currents in the HH model are the AMPA and NMDA currents elicited by excitatory

neurons and the GABA currents elicited by the inhibitory neurons. The AMPA and NMDA currents
express synaptic depression [S5]. For an excitatory neuron (j ≤ Ne), they can be described as follows:

IE→E
AMPA,j(Vm, {sAMPA}) = gE→E

AMPA(Vm − VGlu)η

NE∑
i=1

MijsAMPA,i

dsAMPA,i

dt
= kfPTGlu,is∞(Vi)(1− sAMPA,i)− sAMPA,i/τAMPA

dTGlu,i

dt
= −kts∞(Vi)TGlu,i + kv(1− TGlu,i)

s∞(V ) = (1 + exp(−(V − θs)/σs))−1,

IE→E
NMDA,j(Vm, {sNMDA}) = gE→E

NMDAfNMDA(Vm)(Vm − VGlu)η

NE∑
i=1

MijsNMDA,i

dxNMDA,i

dt
= kxNs∞(Vi)(1− xNMDA,i)− (1− s∞(Vi))xNMDA,i/τ̃NMDA

dsNMDA,i

dt
= kfNTGlu,ixNMDA,i(1− sNMDA,i)− sNMDA,i/τNMDA

fNMDA(V ) = (1 + exp(−(V − θNMDA)/σNMDA))−1,



8

where θs = −20mV, σs = 2mV, kfP = 1ms−1, τAMPA = 5ms, gE→E
AMPA = 0.08mS/cm2, VGlu = 0mV,

kt = 1ms−1, kv = 0.001ms−1, kxN = 1ms−1, τ̃NMDA = 14.3ms, kfN = 1ms−1, τNMDA = 100ms,
gE→E
NMDA = 0.07mS/cm2, and σNMDA = 10mV. The value of θNMDA is dependent on the magnesium

concentration as follows: θNMDA = 10.5mV · ln([Mg2+]o/38.3mM). Here, the magnesium concentration
of [Mg2+]o = 0.7mM is used, which is a typical value in cortical cultures.

The AMPA and NMDA currents to inhibitory neurons (j > NE) differ from the corresponding currents
to excitatory neurons only through the synaptic conductances:

IE→I
AMPA,j(Vm, {sAMPA}) = gE→I

AMPA(Vm − VGlu)η

NE∑
i=1

MijsAMPA,i

IE→I
NMDA,j(Vm, {sNMDA}) = gE→I

NMDAfNMDA(Vm)(Vm − VGlu)η

NE∑
i=1

MijsNMDA,i

(S6)

where gE→I
AMPA = 0.2mS/cm2 and gE→I

NMDA = 0.05mS/cm2. The GABA currents to both excitatory and
inhibitory neurons are described as follows:

IGABA,j(Vm, {sGABA}) = gGABA(Vm − VGABA)η

N∑
i=NE+1

MijsGABA,i

dsGABA,i

dt
= kfAs∞(Vi)(1− sGABA,i)− sGABA,i/τGABA,

where kfA = 1ms−1, τGABA = 10ms, gGABA = 0.05mS/cm2, and VGABA = −70mV. The background
current is a zero-mean Brownian white noise term, described as Ib(t) = 0.9µA/cm2 ·Wt, where Wt is
the independent Wiener process (the “time derivative” of dimensionless Brownian motion).

The initial state of the system is chosen such that all neurons are at or near rest. In LIF model this
is done by setting all membrane potentials to the reset value, and in HH model the membrane potential
and gating variable values are given by steady states of unconnected, noiseless neurons. In the beginning
all synaptic resources are set to the maximum value (x = 1 and y = z = 0 in LIF model, and TGlu = 1
in HH model).

The values of the synaptic weights η used in this work are given below:
HH, N = 100 LIF, N = 100 LIF, N = 900

E 0.144 14.52 2.81
EI 0.177 17.21

S2 Supporting results on network structure

S2.1 NETMORPH networks have roughly binomial in-degree distribution

Fig. S1 shows that the in-degree distribution in 2-dimensional NETMORPH networks with continu-
ous boundaries is fairly well approximated by binomial distribution. This is opposite to 2-dimensional
NETMORPH networks without the boundary continuity that are characterised by broader in-degree
distribution, as we have shown in [S6]. Hence, we consider NM networks comparable to networks with
binomial in-degree.
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S2.2 FF networks have high number of feed-forward loops but relatively low
clustering coefficient

Fig. S2 shows the clustering coefficient of FF networks as a function of parameter W , together with the
RN, LCN1, LCN2, and NM networks. One can observe the rising of the CC in FF networks with the
parameter W , which yet remains lower than the CC in locally connected networks LCN1 and LCN2. Fig.
S3 in turn shows the number of FF-motifs in FF networks with varying parameter W , and for comparison
the corresponding number in RN, LCN1, and NM networks. The number of FF-motifs is calculated as
the number of such ordered triples, whose edges form the functional form of motif 5 (see Fig. 1), i.e.
|{(i, j, k) ∈ {1, ..., N}3|Mij ∧Mjk∧Mik}|. The amount of FF-motifs in FF networks is increased with the
increase of parameter W . The abundance of FF-motifs in LCN1 networks is explained by the frequent
occurrence of motif 13, each of which in itself contains six permutations of the FF-motif. The extreme
FF networks acquire a comparable number of FF-motifs, yet they preserve the relatively low degree of
clustering, as seen in Fig. S2.

S2.3 Loopy networks express loops in their eigenvalue spectra

One way to illustrate the occurrences of loops in a graph is to plot the eigenvalue spectrum of the
connectivity matrix into the complex plane. Consider as an example a perfect ring graph M , consisting
ofN nodes, where each node has exactly one input and one output, and where the nodes form a traversable
ring. The Nth power of the underlying connectivity matrix is an identity matrix, in which all eigenvalues
are 1. By basic linear algebra, these eigenvalues must be the Nth powers of the eigenvalues of M , and
hence the eigenvalues of M are evenly distributed on the unit circle in C. Fig. S4 shows the eigenvalue
spectra of L2, L3, L4 and L6 networks with different parameters W , and for comparison, the eigenvalue
spectra of RN, LCN and NM networks. In the extreme cases W =∞ the division of the eigenvalues to 2,
3, 4 or 6 horns is evident. This is fairly non-trivial in the case of denser L6 networks: Since the connection
probability is as high as 0.2 or 0.3, it would be reasonable that the abundance of connections break the
loopy structure of the network. This abundance does bring up malformations in the star-shaped spectra
in the case of p = 0.3, but not notably in the case of p = 0.2.

S2.4 The relation of mean node-betweenness and mean shortest path length

The mean value of node-betweenness correlates highly with the mean path length. In this section we will
analytically derive the connection of these two quantities. The mean betweenness value is calculated as

NB =
1

N

N∑
i=1

NBi =
1

N

N∑
i=1

N∑
j = 1
j 6= i

N∑
k = 1

i 6= k 6= j
PLjk <∞

s
(i)
jk

s
(tot)
jk

. (S7)

The term s
(i)
jk is the number of such shortest paths from j to k where the node i lies on, and s

(tot)
jk

represents the total number of shortest paths from j to k. The nodes k where no path from j to k exists
are excluded from the summation, and hence the quantity is well-defined for any graph.

Let us denote the length of shortest path from j to k by Ljk. A necessary and sufficient condition for
i lying on the shortest path from j to k is that there be a path of length l ∈ {1, . . . , Ljk − 1} from j to i
and a path of length Ljk − l from i to k. The total number of such paths can be counted as the product
of the number of paths of length l from j to i and the number of paths of length Ljk − l from i to k.
This can be expressed using the elements of the lth and (Ljk − l)th exponent of the connectivity matrix
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as (M l)ji · (MLjk−l)ik. Hence, the total number of shortest paths from j through i to k is calculated by
summing this over all possible lengths l as

s
(i)
jk =

Ljk−1∑
l=1

(M l)ji · (MLjk−l)ik,

while the total number of shortest paths is simply

s
(tot)
jk = (MLjk)jk.

These can be substitued into Eq. S7, and changing the order of summation gives us

NB =
1

N

N∑
j=1

N∑
k = 1
k 6= j

PLjk <∞

Ljk−1∑
l=1

N∑
i = 1

j 6= i 6= k

(M l)ji · (MLjk−l)ik
(MLjk)jk

.

Ordered this way, we notice that the summation over running variable i is actually nothing more than
the matrix multiplication of M l and MLjk−l. The elements corresponding to i = j and i = k can
be excluded, as they cannot contribute to the summed value. If they did, i.e., if (M l)jj · (MLjk−l)jk or
(M l)jk ·(MLjk−l)kk were greater than zero, then there would exist a path of length l < Ljk or Ljk−l < Ljk
from j to k, contradicting with our definition of Ljk. Thereby, we are left with the formula for average
node-betweenness

NB =
1

N

N∑
j=1

N∑
k = 1
k 6= j

PLjk <∞

Ljk−1∑
l=1

(MLjk)jk
(MLjk)jk

=
1

N

N∑
j=1

N∑
k = 1
k 6= j

PLjk <∞

(Ljk − 1).

Hence, the mean node-betweenness is proportional to the mean (non-harmonic, infinite path lengths
excluded) path length substracted by the overall proportion of pairs connected by a path of edges. The
non-harmonic mean path length in turn correlates with the harmonic mean path length: They are both
generalized power means of the same data with exponents 1 and −1, respectively.

S3 Supporting data on network simulations

Fig. S5 shows an overview of the activity properties obtained for different extreme (W = ∞) networks.
The properties shown are the spike count (SC), the burst count (BC), the average burst length (BL), and
the average number of spikes in a burst, i.e., the burst size (BS). Each bar shows the mean and standard
deviation of the named activity property in 150 network simulations. The results of purely excitatory
(E) networks with medium connectivity (p = 0.2), modeled by HH, is shown for all activity properties
and both in-degree distributions. The statistics of burst count in the excitatory-inhibitory (EI) networks,
networks with different connection probabilities, and LIF networks are shown for reference.

The difference in network activity between the network classes (RN, LCN1, LCN2, FF, L2, L3, L4,
L6 and NM) is evident. The main trend in networks with binomially distributed in-degree is that the
LCN1, LCN2 and NM networks produce the most networks bursts and also the longest bursts. However,
in networks with power-law distributed in-degree some of the loopy networks express higher burst count
than LCN1s. In addition, the variance of burst count is less negligible than in their counterparts with
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binomial in-degree, suggesting that considering a network class as a unity may not be feasible. This serves
as an extra motivation for exploring graph theoretic properties of the networks and their contribution to
the dynamics.

Fig. S6 shows the results of the prediction framework for larger (N=900) networks. The different
panels correspond to the results shown in Figs. S5, 6, 8, and 9. The figure justifies that our conclusions
hold for the bigger networks as well.
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