ATTCTTTGCCAGATATCAACCAAACACACAAACCCAGTTTAGCCACCAGTAGTAGTAG -37
GAGGAACGATACGTCCTCAAACCAAAATAAAAAAAAATGACATCCTCAACAACGACGGACGCA 27
M T S S T T T D A 9
ACCGATTCGGAGTTCGACCAGAGGAAGCTTCAATGCTTGGAAATGCTCAACGCAACCACCGAA 9030
TTCACCACAACCCGGTCTGGACCTTTCTGCAGGGGAACCTGGGATGGTTGGCTCTGTTGGCCG 153
 51
GATACTGCGGCTGGCGAATCTGCACTGCTACCCTGCCCAGATTTCATGGATGGATTCGATCCA 216
$\begin{array}{lllllllllllllllllllll}\mathrm{D} & \mathrm{T} & \mathrm{A} & \mathrm{A} & \mathrm{G} & \mathrm{E} & \mathrm{S} & \mathrm{A} & \mathrm{L} & \mathrm{L} & \mathrm{P} & \mathrm{C} & \mathrm{P} & \mathrm{D} & \mathrm{F} & \mathrm{M} & \mathrm{D} & \mathrm{G} & \mathrm{F} & \mathrm{D} & \mathrm{P}\end{array}$ 72
ACAAGATTCGCACACAAAGACTGCGATGAGGACGGAGAATGGTTTAGGCATCCACTGACCAAC 279
 93
AGAACTTGGTCCAATTACACAACCTGCGTTAATTTGGATAAGCTCGAGTGGATGGAACAAGTG 342
$\begin{array}{llllllllllllllllllll}\mathrm{R} & \mathrm{T} & \mathrm{W} & \mathrm{S} & \underline{\mathrm{N}} & \mathrm{Y} & \mathrm{T} & \mathrm{T} & \mathrm{C} & \mathrm{V} & \mathrm{N} & \mathrm{L} & \mathrm{D} & \mathrm{K} & \mathrm{L} & \mathrm{E} & \mathrm{W} & \mathrm{M} & \mathrm{E} & \mathrm{Q} \\ \mathrm{V}\end{array}$ 114
AGAACGATATACGAAACGGGATACTCGATTTCGCTGATAGCCCTCATCTTATCGCTTGGTATT 405

R	T	I	Y	E	T	G	Y	S	I	S	L	I	A	L	I	L	S	L	G
I																			

TTAAGTTACTTTAGGTCACTGAAATGCGCTCGCATTACGCTACATATGAACCTGTTTGCGTCG 468

| L | S | Y | F | R | S | L | K | C | A | R | I | T | L | H | M | N | L | F | A | S |
| :--- | 156

TTTGCCTCAAACAACACACTCTGGCTGCTGTGGTACCGGATGGTGCTGGCAGATCCGGAAGTT 531
AACTACGCGTGGATGCTCTGCGAAGGATTCTATCTGCACACGGTCCTGGTGTCGGCATTCGTT 657

N	Y	A	W	M	L	C	E	G	F	Y	L	H	T	V	L	V	S	A	F	V	219

TCGGAGAAAAAACTCGTCAACTGGCTTGTGGTCCTCGGATGGACCACACCGGGGATCGTGATC 720
$\begin{array}{llllllllllllllllllllll}\text { S } & \mathrm{E} & \mathrm{K} & \mathrm{K} & \mathrm{L} & \mathrm{V} & \mathrm{N} & \mathrm{W} & \mathrm{L} & \mathrm{V} & \mathrm{V} & \mathrm{L} & \mathrm{G} & \mathrm{W} & \mathrm{T} & \mathrm{T} & \mathrm{P} & \mathrm{G} & \mathrm{I} & \mathrm{V} & \mathrm{I} & 240\end{array}$
ATGGCGTATGGATTTCTGCGAGGATACGCCGGTACCCCGGAGGATACGATAGAGTGCTGGATG

Figure S1. AaegGPRcal1 full length cDNA cloned from MTs, and deduced amino acid sequence. The cDNA sequence is 1995 bp, encoding a 412 amino acid residue protein. Seven transmembrane regions are predicted by TMHMM and underlined (\bullet). The highly conserved six cysteine (C21, C40, C49, C63, C80, C102), two tryptophan (W50, W86), two proline (P51, P64), and aspartic acid (D45) residues in Family B GPCRs are indicated with white letters in black circles (residues at the N terminus) [1,2]. Three predicted N-linked glycosylation sites are double-underlined. Black squares indicate prediction of potential phosphorylation sites by protein-kinase A, D, and G.

References

1. Harmar AJ (2001) Family-B G-protein-coupled receptors. Genome Biol 2: 3013.
2. Hoare SR (2005) Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein coupled receptors. Drug Discov Today 10: 417-427.
