Inference Details S2

This graphical model described in Graphical Model Details S1 and Fig. 1 defines a
distribution that assigns a likelihood to every possible set of observed data given a par-
ticular set of parameters s. Using Bayes rule (Equations 1), we can invert this likelihood
in order to determine the probability of different model parameters given the observed
data. However, because we cannot derive this distribution analytically, we must approx-
imate it with a Markov-Chain Monte Carlo sampling algorithm. Because the data are
distributed according to a Dirichlet distribution, but model parameters are distributed
according to the non-conjugate Normal distribution, we use a combination of Metropolis-
Hastings (MH) steps for sampling cluster parameters and Split/Merge steps for sampling
cluster assignments [1,2]. In all of the analyses in this paper, we alternated 5 MH steps
with 1 Split/Merge step. In Metropolis-Hastings steps, each proposal involved changing
one model parameter in each cluster by a value drawn from a Normal distribution with
mean zero and fixed variance. This variance was tuned for each simulation so that the
sampling acceptance rate would be approximately 23% [3]. In addition to proposing new
cluster parameters, each Metropolis-Hastings step also sampled a new cluster identity
for each participant. Each participant was in turn removed from his/her current cluster,
and probabilistically assigned to one of the current clusters or to one of two temporary
auxiliary clusters according to the Chinese restaurant process distribution [1]. Auxiliary
clusters, whose parameters are sampled from the prior distribution, help the sampler to
explore larger areas of parameter space.

However, because Metropolis-Hastings steps alone are slow to create new clusters or to
merge existing clusters, one Split/Merge step was attempted between every 5 MH steps.
Each such step was randomly, uniformly chosen to be either a Split or a Merge step. In
Split steps, the sampler considered a random partition of an existing cluster into two
new clusters, one with the old parameters and one with all parameters adjusted as in the
Metropolis-Hastings steps. The Merge steps considered collapsing two existing clusters
into a single cluster. Proposal distributions are described in detail in [2].

Each simulation and analysis began by initializing a single cluster for each participant
with parameters drawn from the prior distribution. After initialization, 2000 Metropolis-
Hastings steps were performed for each individual participant, and the maximum-likelihood
parameterization was used as the start for the group sampler. This helped to start the
sampler in a high-probability area of parameter space and to reduce time to burn-in.
Because learning was modeled with arbitrary degree polynomials, but denser sampling
is possible when the model has fewer parameters, we started each learning function as
a 4™ degree polynomial and progressively reduced the order if the credible interval for
coefficients overlapped zero in all cases. Finally, we used thinning to reduce correlation
among samples, keeping only every 5th sample [4].



References

1. Neal RM (2000) Markov chain sampling methods for Dirichlet process mixture mod-
els. Journal of Computational and Graphical Statistics 9: 249-265.

2. Jain S, Neal RM (2007) Splitting and merging components of a nonconjugate Dirich-
let process mixture model. Bayesian Analysis 2: 445-472.

3. Roberts GO, Gelman A, Gilks WR (1997) Weak convergence and optimal scaling of
random walk metropolis algorithms. The Annals of Applied Probability 7: 110-120.

4. Raftery AE, Lewis SM (1996) Implementing MCMC. In: Gilks WR, Spiegelhalter
DJ, Richardson S, editors, Markov Chain Monte Carlo in Practice, London: Chap-
man and Hall. pp. 115-130.



