Text S1: Derivation of Equations (8-10)

Without loss of generality, suppose that there are two populations. For a random marker, the allele frequencies for these two populations are p_{1} and p_{2}. Denote the variance-covariance matrix of p_{1} and p_{2} by

$$
V_{F}=\left(\begin{array}{cc}
\Sigma_{1}^{2} & \Sigma_{12} \\
\Sigma_{12} & \Sigma_{2}^{2}
\end{array}\right)
$$

Suppose that individuals $1,2, \cdots, N_{1}$ are from population 1 and individuals $N_{1}+1, N_{1}+2, \cdots, N$ are from population 2. For an individual from population 1, say individual 1, we can write the marginal probability of variant allele count C_{1} as

$$
\begin{aligned}
P\left(C_{1}\right) & =\sum_{C_{2}, \cdots, C_{N}} \int \mathrm{~d} p_{1} \mathrm{~d} p_{2} P\left(C_{1}, C_{2}, \cdots, C_{N} \mid p_{1}, p_{2}\right) P\left(p_{1}, p_{2}\right) \\
& =\sum_{C_{2}, \cdots, C_{N}} \int \mathrm{~d} p_{1} \mathrm{~d} p_{2} P\left(C_{1} \mid p_{1}\right) P\left(C_{2}, \cdots, C_{N} \mid p_{1}, p_{2}\right) P\left(p_{1}, p_{2}\right) \\
& =\int \mathrm{d} p_{1} P\left(C_{1} \mid p_{1}\right) \int \mathrm{d} p_{2} P\left(p_{1}, p_{2}\right)\left[\sum_{C_{2}} P\left(C_{2} \mid p_{1}\right)\right]^{N_{1}-1}\left[\sum_{C_{N}} P\left(C_{N} \mid p_{2}\right)\right]^{N-N_{1}} \\
& =\int \mathrm{d} p_{1} P\left(C_{1} \mid p_{1}\right) \int \mathrm{d} p_{2} P\left(p_{1}, p_{2}\right) .
\end{aligned}
$$

Similarly, we have, for an individual in population 2 , say, C_{N},

$$
P\left(C_{N}\right)=\int \mathrm{d} p_{2} P\left(C_{N} \mid p_{2}\right) \int \mathrm{d} p_{1} P\left(p_{1}, p_{2}\right)
$$

and their joint marginal probability is

$$
P\left(C_{1}, C_{N}\right)=\int \mathrm{d} p_{1} \mathrm{~d} p_{2} P\left(p_{1}, p_{2}\right) P\left(C_{1} \mid p_{1}\right) P\left(C_{N} \mid p_{2}\right)
$$

For two individuals in the same population, say C_{1} and C_{2},

$$
P\left(C_{1}, C_{2}\right)=\int \mathrm{d} p_{1} P\left(C_{1} \mid p_{1}\right) P\left(C_{2} \mid p_{2}\right) \int \mathrm{d} p_{2} P\left(p_{1}, p_{2}\right)
$$

Using these marginal probabilities and the Hardy-Weinberg proportion, we can prove that

$$
\begin{aligned}
\bar{C}_{1} & =\sum_{C_{1}} C_{1} P\left(C_{1}\right) C_{1}=\int \mathrm{d} p_{1} \int \mathrm{~d} p_{2} P\left(p_{1}, p_{2}\right) \sum_{C_{1}} C_{1} P\left(C_{1} \mid p_{1}\right) \\
& =\int \mathrm{d} p_{1} P\left(p_{1}\right)\left[2 p_{1}^{2}+2 p_{1}\left(1-p_{1}\right)\right]=2 \overline{p_{1}}
\end{aligned}
$$

and similarly

$$
\bar{C}_{1}^{2}=2 \overline{p_{1}}+2 \overline{p_{1}^{2}}
$$

and hence

$$
\operatorname{VAR}\left(C_{1}\right)=2 \Sigma_{1}^{2}+2 \overline{p_{1}}\left(1-\overline{p_{1}}\right)
$$

which is Equation (8) in the main text. Equations (9) and (10) in the main text can be similarly proven.

