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Abstract

Stereological methods for estimating the 3D particle size and density from 2D projections

are essential to many research fields. These methods are, however, prone to errors arising

from undetected particle profiles due to sectioning and limited resolution, known as ‘lost

caps’. A potential solution developed by Keiding, Jensen, and Ranek in 1972, which we

refer to as the Keiding model, accounts for lost caps by quantifying the smallest detectable

profile in terms of its limiting ‘cap angle’ (ϕ), a size-independent measure of a particle’s dis-

tance from the section surface. However, this simple solution has not been widely adopted

nor tested. Rather, model-independent design-based stereological methods, which do not

explicitly account for lost caps, have come to the fore. Here, we provide the first experimen-

tal validation of the Keiding model by comparing the size and density of particles estimated

from 2D projections with direct measurement from 3D EM reconstructions of the same tis-

sue. We applied the Keiding model to estimate the size and density of somata, nuclei and

vesicles in the cerebellum of mice and rats, where high packing density can be problematic

for design-based methods. Our analysis reveals a Gaussian distribution for ϕ rather than a

single value. Nevertheless, curve fits of the Keiding model to the 2D diameter distribution

accurately estimate the mean ϕ and 3D diameter distribution. While systematic testing using

simulations revealed an upper limit to determining ϕ, our analysis shows that estimated ϕ
can be used to determine the 3D particle density from the 2D density under a wide range of

conditions, and this method is potentially more accurate than minimum-size-based lost-cap

corrections and disector methods. Our results show the Keiding model provides an efficient

means of accurately estimating the size and density of particles from 2D projections even

under conditions of a high density.
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Introduction

Estimating the size and density of particles from their orthogonal projection, such as a 2D

image, is a common stereological endeavour in the fields of biosciences, petrography, materials

science and astronomy [1]. This approach is particularly valuable in the field of biosciences

where the size and density of biological structures, such as cells and organelles, are often com-

pared before and after drug perturbations, between normal and disease conditions, species,

ages or critical periods of development [2]. Moreover, measures of particle size and density, or

the equivalent measure of volume fraction (VF; see Abbreviations), form the basis of our

understanding of a wide range of biological phenomena. For example, the density of synaptic

vesicles near the active zone has been related to measures of synaptic plasticity [3–5], the den-

sity of cerebellar granule cells (GCs) and mossy fiber terminals (MFTs) has been used to esti-

mate the amount of information transferred across the input layer of the cerebellum [6] and

the amount of energy expenditure at the cellular and subcellular level [7]. Stereological mea-

sures are also commonly used to assay disease states, such as that of the kidney, brain, liver and

lung [8–11]. Hence, stereological methods for estimating particle size and density have wide

application and are of great practical utility.

Recent advances in high-resolution volumetric imaging have significantly improved the

morphological information available about cells and tissue structure [12–15] making them

ideal for 3D analysis. However, these technologies are expensive and full reconstructions are

both labour and computationally intensive. The use of stereological methods for analysing a

relatively small sample of 2D projections is therefore still the most time efficient and practical

solution for most laboratories.

Stereological methods for estimating size and density have developed along two distinct

approaches: a model-based approach that makes basic assumptions about the geometry of the

particle of interest, e.g. Wicksell’s transformation [16] and the Abercrombie correction [17]

that assume a spherical geometry, versus a design-based approach that makes no assumption

about particle geometry, e.g. the nucleator, rotator, physical and optical disector [10, 18, 19].

The ability to analyse particles with an arbitrary shape is one of the reasons design-based meth-

ods are often referred to as ‘assumption free’ or ‘unbiased’ and considered the superior

approach [2, 11, 19–23]. However, design-based methods are not free of assumptions and may

contain biases [24–28]. Moreover, design-based methods can be labour intensive and costly

[26, 28–30] and are not appropriate for particles with a high density [18]. A high particle den-

sity occurs in many types of preparations, including vesicles in synapses [31, 32], granules in

chromaffin and mast cells [33, 34], granule cells in the cerebellum and hippocampus [6, 35]

and corneal epithelial basal cells [36]. Model-based methods, on the other hand, not only have

the potential to be efficient, but can offer more information about particle size [37] and higher

levels of accuracy [30] and can be applied to particles with either a low or high density.

A classic problem addressed by model-based stereological approaches is the estimation of

particle size from a 2D projection, such as an image. This was first studied by Wicksell [16]

and is known as Wicksell’s corpuscle problem (Fig 1A). Wicksell’s problem was to infer the

true 3D diameter distribution (F(d)) of secondary follicles from their 2D diameter distribution

(G(d)) measured from images of planar sections of the human spleen, where the thickness of

the sections (T) was much thinner than the mean particle diameter (μD). Wicksell’s solution to

this inverse problem was to use a model-based approach to derive an analytical solution for G

(d) with respect to F(d) and then use a finite-difference unfolding algorithm to estimate F(d)

from G(d).

A more common scenario than measuring particle profiles from a planar section is that of

measuring particle profiles observed through a transparent section of thickness T (Fig 1B).
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Abbreviations: T, thickness of tissue section

(transmission microscopy) or focal plane (ρz); D,

3D diameter of a particle; μD ± σD, mean and

standard deviation of 3D particle diameters; CVD,

σD / μD; u.d., unit diameter, length normalised to μD

(e.g. T/μD); planar, T < 0.1 u.d.; thin, T� 0.3 u.d.;

thick, T� u.d; d, observed 2D diameter of a

particle’s projection; dmin, minimum 2D diameter of

a sample of particles [47]; hmin, minimum

penetration depth of a sample of particles [42];

δmin, minimum 2D diameter of a given particle (z-

stack analysis); darea, equivalent-area 2D diameter:

darea = 2(area/π)½; dshort, dlong, short and long-axis

2D diameter; dgeometric, (dshort�dlong)
½; davg, ½(dshort

+ dlong); μd ± σd, mean and standard deviation of

2D diameters; F(d), probability density of 3D

diameters; G(d), probability density of 2D

diameters; L(d), probability density of lost caps;

nonblind, particle cap detection using adjacent

images from a z-stack; blind, particle cap detection

without guidance from adjacent images; θ, particle

cap angle from section surface: sinθ = d/D where 0

� θ� 90; θmin, equivalent cap angle of dmin:

sinθmin = dmin/D; ϕ, lower limit of θ where 0� ϕ�
90; ϕcutoff, upper cutoff limit of when ϕ is

determinable; μϕ ± σϕ, mean and standard

deviation of ϕ; CVϕ, σϕ / μϕ; dϕ, equivalent 2D

diameter of ϕ: dϕ = μD�sinϕ; ζ, section z-depth over

which particle center points are sampled; Areaxy,

ROI xy-area over which particles are counted; VF,

Particle volume fraction within a volume of interest;

AF, Particle area fraction within a ROI; N3D, Particle

count within a volume of interest; N2D, Particle

count within a ROI; λ3D, 3D particle density, λ3D =

N3D / Volumexyz; λ2D, 2D particle density, λ2D = N2D

/ Areaxy; Ω, sum of projection overlaps for a given

particle where Ω� 0; ψ, upper limit of Ω, i.e. 0� Ω
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The analytical solution for G(d) with respect to F(d) for T� 0 was derived by Bach [38] and

can be described as the weighted sum of two components [39]: the diameter distribution of

those particles with their center points contained within the section, in which case their G(d) =

F(d), and the diameter distribution of those particles with their center points just above and

below the section, by less than one radius, in which case their G(d) is a distorted version of F

(d) as defined by Wicksell’s analytical solution [16]. These latter particles whose north and

south poles appear on the bottom and top of the section are known as ‘caps’. Besides distorting

the diameter distribution, caps also introduce a distortion of the apparent density, an effect

known as overprojection, the split-cell error or the Holmes effect [17, 40–43].

A fundamental limitation of the Wicksell [16] and Bach [38] models, however, is that they

assume all caps are resolvable. While this might be true for the largest caps with diameters on

the order of F(d), the smallest caps are usually unresolvable, falling below the limits of resolu-

tion and contrast or blending in with their surrounding environment [44, 45]. Other caps

might simply not exist if they fall off the surfaces of the sections or if the microtome fails to

transect the particles during sectioning [27, 46–48]. Wicksell noted that lost caps could be

accounted for by a post-hoc correction of his unfolding algorithm, whereby the missing proba-

bilities of the smallest bins of F(d) are estimated via extrapolation from the smallest non-zero

probability down to the origin. However, this approach is problematic since it relies on a small

number of outlier observations. Indeed, when the number of observations within the smallest

bins are insufficient, the unfolding algorithm can generate erroneous negative probabilities.

It was not until the 1970s that a key innovation for accounting for lost caps was developed

by Keiding et al. [49] whereby lost caps are defined with respect to a lower limit of the ‘cap

angle’ (cap-angle limit, ϕ), the half angle subtended by a particle’s cap from the particle’s center

(Fig 1). In this conceptual model, ϕ is independent of particle diameter, which is important

since a distribution of limiting cap sizes can arise when particle size varies while specimen con-

trast, rather than microscope resolution, limits cap detection. Incorporating ϕ into the Wick-

sell-Bach model, Keiding et al. derived the following relationship between F(d) and G(d) for

spherical particles:

G dð Þ ¼
T
z
F dð Þ þ

d
z

Z d
sinφ

d

FðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � d2

p dy Eq 1

where d is the 2D particle diameter, y is the variable of integration and ϕ can vary from 0˚,

where no caps are lost, to 90˚, where all caps are lost. Here, z is the mean axial length spanning

from below to above the section that contains the center points of those particles observed

within the projection (Fig 1), defined as follows:

z ¼ T þ mDcos� Eq 2

As expected, Eq 1 reduces to Bach’s analytical solution when ϕ = 0˚ and to Wicksell’s ana-

lytical solution when ϕ = 0˚ and T = 0.

Another innovation of Keiding et al. [49] was to estimate both F(d) and ϕ from G(d) using

a maximum likelihood estimation (MLE) algorithm, rather than using an unfolding algorithm,

thereby providing a better quantification of ϕ. Knowing ϕ is particularly useful since it can be

used via Eq 2 to estimate the 3D particle density (λ3D) from the measured 2D particle density

(λ2D) as follows [50] (S1 Appendix in S1 File):

l3D ¼ l2D=z Eq 3

This ‘correction’ method for estimating λ3D is potentially more accurate than using the clas-

sic Abercrombie correction [17], which assumes no caps are lost (i.e. ϕ = 0˚), or the Floderus
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� ψ; χ2, sum of squared differences between data

and fits (or simulations); Δ, Parameter estimation

error: % difference or difference from true value; μΔ

± σΔ, bias and (68%) confidence interval of a

parameter’s estimation error; ρxyz, Microscope

resolution; Sxyz, Image/z-stack sample resolution.
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Fig 1. Illustration of observed circular profiles when spherical particles are orthogonally viewed from above a planar or thick section. A.

Side view of a planar section (T = 0; gray line) transecting spherical particles (red solid lines). For simplicity, all particles have the same 3D

diameter (D). Particles with their center above/below the section within a distance D/2 are observed as circular ‘caps’ in a horizontal projection

(inset rectangle, top view, red circles) with apparent diameter d< D, where d = D�sinθ and θ is the cap angle (black dashed lines) that takes on

values between 0˚, where d = 0, and 90˚, where d = D. Hence, those particles appearing within the projection have their center confined within a

depth z = D (black double-headed arrow). However, due to experimental limitations, the smallest caps (with small θ) are not apparent, i.e. lost

(red dashed lines). To account for lost caps, the Keiding model sets a minimum limit on θ (ϕ) such that caps are observed in the projection only

if ϕ< θ< 90˚ [49]. In this case, z = D�cosϕ (red double-headed arrow; Eq 2). For planar sections, there are no projection overlaps (inset) and the

total area fraction (AF) of the projections approximately equals the 3D volume fraction (VF) of the particles so long as there are relatively few lost

caps. Because all particle centers fall above/below the planar section, all particles are considered caps. B. Same as A for a thick section (T = D). In

this case, particles with their center within the section have a circular projection with d = D (black circles) and z = T + D�cosϕ. For thick sections

and a high particle density, there are usually projection overlaps (inset) that make counting/outlining the projections more difficult; moreover,

AF> VF, a condition known as overprojection.

https://doi.org/10.1371/journal.pone.0277148.g001
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[42] and Konigsmark [47] corrections that use the minimum cap penetration depth (hmin) or

equivalent minimum cap diameter (dmin), both of which are likely to be outlier measures.

Unfortunately, despite potentially providing the most accurate description of the lost-cap dis-

tribution via ϕ, the Keiding model has not been widely adopted nor validated. Validation of

model-based approaches is important since they are based on simplifying assumptions of par-

ticle geometry [22, 24, 28, 51].

To investigate whether the Keiding model can provide a simple and accurate method for

estimating the size and density of spherical particles such as synaptic vesicles and GCs, we

used a distribution-based least-squares estimation (LSE) algorithm to systematically test the

model’s performance in estimating F(d) and ϕ from G(d) computed from 3D Monte Carlo

simulations and electron-tomography (ET) reconstructions. Synaptic vesicles in MFTs and the

nuclei and somata of GCs were chosen for the analysis since they contain a wide range of parti-

cle sizes and have high densities that are problematic for design-based stereological methods.

This analysis confirmed the accuracy of the Keiding model in estimating the ‘true’ F(d) and ϕ
over a range of conditions. However, the accuracy of estimated ϕ was limited by the sample

size, spread of F(d) and the number (i.e. distribution) of lost caps. Finally, we tested the accu-

racy of Eq 3 for estimating λ3D from the measured λ2D using the same 3D simulations and ET

reconstructions and found this method to be more accurate than the Abercrombie [17] and

dmin corrections [47] and the widely used disector method [18, 52]. To facilitate the adoption

of the Keiding model in stereological applications, we provide an analysis workflow for esti-

mating F(d), ϕ and λ3D from 2D projections and provide guidelines for optimising particle cap

detection. Moreover, we incorporated our numerical solution of the Keiding model, including

LSE curve-fit functions, into the open-source software toolkit package NeuroMatic [53] that

works within Igor Pro (Key Resources).

Results

Properties of 2D diameter distributions from images of somata, nuclei and

vesicles in the cerebellar cortex

To investigate the properties of G(d) over a range of experimental conditions, including parti-

cle size, section thickness, imaging technique and spatial resolution, we quantified the 2D

diameters of GC somata and nuclei and MFT vesicles using confocal and transmission electron

microscopy (TEM) images of cerebellar sections. These preparations encompassed both planar

sections (where T<< μD; Fig 1A) and thick sections (where T� μD; Fig 1B).

First, we computed G(d) for cerebellar GC somata from confocal images of rat brain sec-

tions from a previous study [6] (Fig 2A1). In these images, GC somata were visible due to

Kv4.2 immunolabeling. However, because the GC somata had an opaque staining and were

tightly packed together, there was a high probability of partial and complete overlaps of the 2D

profiles, especially since the sections were not planar (T� 1.8 μm; Table 1). To compute G(d),

we drew outlines around the GC somata and computed a normalised histogram from the

equivalent diameters of the areas of the outlines (darea). As predicted by Wicksell [16], G(d) of

the GC somata had an asymmetrical shape with a negative skew (Fig 2A2). However, the nega-

tive ‘tail’ of the distribution only extended to ~2 μm rather than 0 μm since we were unable to

detect GC somata profiles with d< 2 μm (i.e. lost caps). In total, we computed 9 G(d) of GC

somata that spanned 2–8 μm with a mean 2D diameter μd = 4.96–5.83 μm and standard devia-

tion σd = 0.61–0.90 μm (n = 3 rats, 2–3 cerebellar sections per rat, 494–638 diameters per G

(d)).

To examine whether a more complete G(d) could be obtained from images where the reso-

lution is higher, we computed G(d) for GCs in TEM images of mouse cerebellar sections (Fig
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2B1). Because the sections for this preparation were ~60 nm thick, the sections were essentially

planar (T<< μD; Table 1) with no overlap of 2D profiles. Here, we drew outlines around the

outer contour of the GC nuclei rather than the somatic membrane since the nuclei were easier

to identify due to their spotted appearance created by dark patches of heterochromatin. Similar

to G(d) of the GC somata, G(d) of the GC nuclei had an asymmetrical shape negatively skewed

(Fig 2B2), similar to that previously reported for rat hepatocyte nuclei in planar sections [55].

However, G(d) extended to 1 μm rather than 2 μm since smaller caps were easier to resolve in

the TEM images compared to the confocal images. In total, we computed 26 G(d) of GC nuclei

from 4 mice, 1–3 cerebellar sections per mouse, 6–7 TEM images per mouse. Comparison of

G(d) within mice showed no significant differences (Kolmogorov-Smirnov, KS, test); hence, G

(d) within mice were pooled. The resulting 4 nuclei G(d) spanned 1–6 μm with μd = 3.61–

4.32 μm and σd = 0.85–0.98 μm (416–519 diameters per G(d)). To allow a comparison of GC

somata and nuclei across species, described further below, we computed darea of both the soma

(dsoma) and nucleus (dnucleus) of individual GCs using high-magnification TEM images of the

same cerebellar sections of mice and found the dsoma-versus-dnucleus relation was well

described by the following linear relation: dsoma = 0.952�dnucleus + 1.016 μm (Pearson correla-

tion coefficient (r) = 0.96, goodness-of-fit R2 = 0.92; n = 175 GCs from 4 mice).

Finally, to investigate G(d) when the section thickness is comparable to the size of the parti-

cles, we measured 2D diameters of synaptic vesicles in MFTs in high-magnification TEM

images of the same cerebellar sections of mice, where T� μD (Fig 2C1; Table 1). Because the

vesicle membrane was not always apparent, we drew outlines around the outer contour of the

vesicles rather than attempt to outline the inner or outer membrane leaflet. Moreover, we did

not assume vesicle outlines were circular or oval, but rather followed the irregular contours of

the vesicles that included membrane proteins, which are known to add at least 2 nm to the

diameter of the vesicles [56]. Depending on the vesicle density and section thickness, vesicles

aligned in the axial axis may show different degrees of overlap in the projection [55] (Fig 1B).

Although our TEM images of vesicles in MFTs exhibited numerous overlaps, this did not nec-

essarily preclude outlining the vesicles since they were semi-transparent. Interestingly, G(d) of

MFT vesicles were quite different to that of GC somata and nuclei, having a Gaussian shape

with no negative skew and a large number of lost caps with d< 30 nm (Fig 2C2), similar to

that previously reported for synaptic vesicles in thick sections [55, 57]. In total, we computed 8

G(d) of MFT vesicles for 4 mice, 1 section per mouse, 2 MFTs per section, 152–428 vesicles

per MFT. Comparison of the 8 G(d) showed the majority were significantly different from

each other (KS test), even within mice comparisons, supporting previous findings of synapse-

to-synapse variation of synaptic vesicle size [55, 57]. Analysis of the 8 G(d) of MFT vesicles

showed all had Gaussian shapes spanning 23–82 nm with μd = 43.1–47.3 nm and σd = 4.2–6.2

nm. These results highlight how the shape of G(d), especially the cap tail, depends on the rela-

tive size of the particles compared to the section thickness and the imaging method used to

acquire the projections.

Exploration of the effects of section thickness and lost caps on G(d) of the

Keiding model

To better understand how section thickness and lost caps affect the shape of G(d), we com-

puted numerical solutions of the Keiding model (Eq 1) for different section thicknesses (T)

and cap-angle limits (ϕ). To do this, we assumed F(d) was a Gaussian distribution (Eq 5) with

normalised mean, i.e. a mean of one unit diameter (u.d.) and standard deviation of 0.09 u.d.,

to mimic the coefficient of variation of our experimental data (CVD = σD/μD� 0.07 for GC

somata, 0.08 for GC nuclei and 0.09 for MFT vesicles). For a planar section (T = 0 u.d.; Fig 1A)
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with no lost caps (ϕ = 0˚), the numerical solution of G(d) had a skewed distribution with pro-

nounced tail descending to 0 u.d. (where d< D; Fig 3A). In contrast, when the section thick-

ness equaled the mean particle diameter (T = 1 u.d.; Fig 1B), G(d) had a larger peak and less

pronounced tail, since most particles (57%) had their widest central region falling within the

section (where d = D). To examine how G(d) is affected by lost caps, we computed the same

numerical solutions for ϕ> 0˚. When ϕ = 20˚, the cap tails of G(d) now descended to 0.3 u.d.

(Fig 3B), resembling those of the GC somata and nuclei G(d) in Fig 2A2 and 2B2. When ϕ =

40˚, the cap tails of G(d) descended to 0.5 u.d. (Fig 3C). Interestingly, when ϕ = 70˚, the cap

tails of G(d) were no longer apparent and G(d)� F(d) (Fig 3D). In fact, G(d)� F(d) for ϕ�
55˚, in which case the two distributions were nearly indistinguishable (Fig 3E). The absence of

cap tails in these G(d) is reminiscent of the G(d) for the MFT vesicles in Fig 2C2.

To quantify the relationship between G(d), F(d) and lost caps, we computed the distribu-

tion of lost caps (L(d)) for ϕ = 5–90˚ and compared L(d) to F(d) (Fig 3F). Results showed L(d)

had a negatively skewed Gaussian shape with tail descending to 0 u.d. The upper limit of L(d)

showed a dispersion, rather than a hard cutoff, since a variation in particle size in combination

with a fixed ϕ resulted in limiting caps of different size. For ϕ< 55˚, there was a clear

Fig 2. Computing G(d) of GC somata and nuclei and MFT vesicles. A1. Confocal image of a cerebellar section of a wild type (WT) rat (P30; from [6]). GC

somatic plasma membranes were delineated via immunolabeling for Kv4.2. Outlines were drawn around those GC somata that were well delineated (yellow)

and an equivalent diameter was computed from the area of each outline (darea). T� 1.8 μm. Scale bar 10 μm. Image ID R5.SL2.1. A2. Probability density of 2D

diameters (G(d)) computed from the GC soma diameters (0.30 μm bins) measured from the image in A1 plus 1 other image from the same z-stack. B1. Low-

magnification TEM image of a cerebellar section of a WT mouse (P31). Outlines were drawn around the outer contour of visually identified GC nuclei

(yellow). T� 60 nm. Scale bar 10 μm. Image ID M18.N2.51. B2. G(d) computed from the GC nucleus diameters (0.25 μm bins) measured from the image in

B1 plus 6 other images from the same mouse. C1. High-magnification TEM image of a MFT in the GC layer of the same mouse in B1. Outlines were drawn

around the outer contour of the synaptic vesicles (yellow). T� 60 nm. Because vesicles are semi-transparent, 2D overlaps do not necessarily preclude drawing

their outline or counting. Scale bar 80 nm. Image ID M18.N2.03. C2. G(d) computed from the vesicle diameters (2 nm bins) measured from the TEM image in

C1. For A1, B1 and C1 only a subregion of the outline analysis is shown.

https://doi.org/10.1371/journal.pone.0277148.g002

Table 1. Experimental conditions for confocal, TEM and ET imaging.

Particle Image #A Prep Ttissue T ρxy/z Sxy/z

GC soma Confo 3R Fix 40,000 1832† 326† 200–400

(0.32) 1010 500–1000

GC nucleus TEM 4M HPF 60 60 0.45 29–47

(0.01) - -

GC nucleus TEM-z 1M Fix 17,000 40 0.45 40

(0.01) - 40‡

MFT vesicle TEM 4M HPF 60 60 0.45 0.5–0.7

(1.31) - -

MFT vesicle ET10-z 1M Fix 182 6.7 4.7 1.14

(0.15) 6.7§ 0.63‡

MFT vesicle ET11-z 1M Fix 138 5.1 3.6 1.14

(0.12) 5.1§ 0.53‡

Units Nm Nm nm nm/px

(u.d.) nm nm

Confo: confocal z-stack. TEM-z: TEM z-stack [60]. ET10-z and ET11-z: ET z-stacks. #A: number of rats (R) or mice (M). Prep: tissue preparation. Fix: chemical fixation.

HPF: High-pressure freezing. Ttissue: thickness of cerebellar section. T: thickness of tissue section or focal plane. ρ: microscope resolution (top: lateral; bottom: axial). S:

image or z-stack sample resolution (top: lateral; bottom: axial). px: pixels. †T = 1.8�ρz, where 1.8 is a compensation factor for z-shrinkage [6]. †ρxy and ρz computed via

Eqs 1 and 2 of [54] where the laser excitation wavelength is 543 nm, objective’s numerical aperture is 0.85 and refractive index in air is 1.0. §Assuming z-elongation ρz =

1.4�ρx (Eq 13). ‡Sz estimated from data (S6B and S9B Figs in S1 File).

https://doi.org/10.1371/journal.pone.0277148.t001
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Fig 3. Effect of section thickness and lost caps on G(d). A. Probability density of 2D diameters (G(d)) computed via Eq 1, where ϕ = 0˚ and the probability

density of 3D diameters (F(d)) is a Gaussian distribution with normalised mean (Eq 5; μD ± σD = 1.00 ± 0.09 u.d.; black line and circle ± error bars). For T = 0

u.d. (green line) conditions are that of Wicksell’s model [16] (Fig 1A) and for T = 1 u.d. (blue line) conditions are that of Bach’s model [38] (Fig 1B). Because no

caps are lost, both G(d) have tails extending to d = 0 u.d. Dotted lines denote G(d) of equivalent Monte Carlo simulations computed from ~500 diameters using

0.04 u.d. bins. B–D. Same as A for ϕ = 20, 40 and 70˚. Here, the tails of G(d) are limited to 0.3, 0.5 and 0.7 u.d. For ϕ = 70˚, G(d)� F(d) (green and blue circles

denote μd ± σd) since most caps are lost. Comparison of the distribution of the minimum observed 2D diameter (dmin, red dotted line, computed from

simulations for both T = 0 and 1 u.d., probability densities scaled by 0.07) to dϕ = μD�sinϕ (vertical red dashed line) shows dmin < dϕ, especially at larger ϕ. E.

For ϕ> 55˚, G(d)� F(d). F. Distribution of lost caps, L(d), for ϕ = 5–90˚ in steps of 5˚ (gray and colored solid lines; Materials and Methods) compared to F(d)

(black line). Vertical dashed lines denote dϕ. Note, L(d, ϕ = 90˚) = G(d, ϕ = 0˚).

https://doi.org/10.1371/journal.pone.0277148.g003
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separation between L(d) and F(d), i.e. nearly all lost caps had a diameter smaller than those

that define F(d). For ϕ> 55˚, on the other hand, L(d) overlapped F(d), in which case there was

a large number of lost caps with diameters equivalent to those that define F(d). At the most

extreme condition where all caps are lost (ϕ = 90˚) L(d) spanned from 0 to the largest diameter

of F(d). Hence, at these larger ϕ, L(d) and F(d) cannot be delineated by diameter size.

Estimating the 3D particle size and cap-angle limit using the Keiding

model

Next, we tested the Keiding model’s capacity to estimate F(d) and ϕ from G(d). To do this, we

used a 3D Monte Carlo simulation package to compute virtual projections of spherical parti-

cles for planar and thick sections, creating lost caps according to the Keiding model (i.e. a cap

was removed from the projection when its θ< ϕ; S1 Fig in S1 File; Materials and Methods).

To make a direct comparison to our numerical solutions of Eq 1, we matched F(d) of the simu-

lated particles to that used in the numerical solutions. Moreover, we set the number of mea-

sured 2D diameters per projection (~500) to match the average sample size of our

experimental G(d) of GC somata and nuclei, the two datasets with the largest number of mea-

sured diameters. From the 2D diameters of the simulated particles, we computed G(d) for

T = 0 and 1 u.d. and ϕ = 0, 20, 40 and 70˚, all of which matched their equivalent numerical

solution (Fig 3A–3D). Using an LSE routine, we then curve fitted Eq 1 to the simulated G(d)

and compared the resulting estimates of μD, σD and ϕ to their true values. The comparison

showed that, when true ϕ< 55˚, the Keiding model accurately estimated μD, σD and ϕ with

only a small positive bias for σD (Fig 4A and 4C). On the other hand, when ϕ> 55˚, estimates

of μD and σD were less accurate, with positive and negative biases, respectively, and estimates

of ϕ often had a large negative bias (Fig 4B and 4C). In this case, the LSE routine had difficulty

estimating true ϕ since G(d)� F(d) as ϕ approached 90˚. The similarity between G(d) and F

(d) at true ϕ> 55˚ was greatest for thick sections in which case fitting a simple Gaussian func-

tion (Eq 5) to G(d), which is equivalent to curve fitting the Keiding model with ϕ = 90˚, where

all caps are lost, resulted in similar estimates of μD and σD, as did simply using the 2D

measures μd and σd as estimates. Moreover, the estimates of μD and σD of the three approaches

all showed relatively small biases (< 2 and 5%, respectively, for T = 1 u.d.). An overall compari-

son revealed that thick sections were moderately better for estimating μD and σD, and planar

sections were moderately better for estimating ϕ. Repeating the error analysis for G(d) com-

puted from ~2000 diameters gave qualitatively similar results, except μD, σD and ϕ had smaller

biases and confidence intervals, where the confidence intervals followed a 1/
p

n relation (S4

Fig in S1 File).

While the above results show the Keiding model works well in estimating μD, σD and ϕ, esti-

mates were most accurate when ϕ< 55˚ (Fig 4C). However, this upper limit of ϕ (ϕcutoff) is

dependent on the spread of F(d) and the number of measured diameters, both of which were

set in our Monte Carlo simulations to match our experimental data (CVD = 0.09, ~500 diame-

ters). For a wider F(d) and/or smaller number of diameters, accurate parameter estimation will

be limited to a smaller range of true ϕ, and vice versa. To quantify this effect, we computed

ϕcutoff over a range of CVD (0.04–0.17) and number of diameters (n� 200–2000) for our

Monte Carlo simulations (T = 0 u.d.; Fig 4C and S4 Fig in S1 File, insets). Results showed sinϕ-

cutoff fit well to a bivariate polynomial with respect to CVD and 1/
p

n (Eq 8). Next, we investi-

gated whether this ϕcutoff equation could be used to test the accuracy of estimated ϕ using

estimated μD and σD, since the estimation errors of μD and σD are relatively small even when

true ϕ> ϕcutoff. Results showed that indeed this was possible with relatively small adjustments

to the sinϕcutoff relations (Eq 9). Hence, if one requires an accurate estimate of ϕ, for example
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Fig 4. The Keiding model accurately estimates F(d) and ϕ from G(d) for true ϕ< ϕcutoff (simulations). A. Curve fit of Eq 1 (red solid

line) to G(d) of the simulation in Fig 3B where T = 0 u.d. and ϕ = 20˚ (green circles; ~500 diameters). F(d) derived from the fit (red

dashed line and circle) matches the true simulation F(d) (black line and circle) and fit ϕ matches true ϕ (ΔμD = -0.1%, ΔσD = +0.1%, Δϕ =

+1˚). B. Same as A for G(d) of the simulation in Fig 3D where T = 1 u.d. and ϕ = 70˚ (blue circles). Although there is a good match

between estimated and true F(d), estimation errors ΔμD and ΔσD are larger than those in A and estimated ϕ< true ϕ (ΔμD = +0.9%, ΔσD
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when computing particle density as discussed further below, and one only has estimates of μD

and σD, then Eq 9 can be used as an accuracy test, i.e. by requiring estimated ϕ< estimated

ϕcutoff (S5 Fig in S1 File). Although the fit error of ϕ can also be used as a measure of accuracy,

~10% of our curve fits to simulated G(d) for T = 0 u.d. and true ϕ> 55˚ showed small fit errors

(< 1˚) but large estimation errors (|Δϕ| > 5˚). Hence, a combination of the fit error and Eq 9

can be used as an accuracy test for ϕ.

Overlapping particle projections in thick sections

A potential source of error of the Bach [38] and Keiding [49] models for thick sections is that

the models assume particles near the bottom of the section can be identified and outlined in a

projection as well as those toward the top of the section. While this may be true for thin sec-

tions, it is unlikely to be true for thick sections with overlapping particle projections [2, 58]. To

investigate what effects overlapping projections might have on the ability to accurately esti-

mate F(d) and ϕ from G(d), we used simulations to compute the sum of 2D projection over-

laps between a given particle and particles higher in a thick section, where particles had a

random distribution and a modest to high VF (0.15–0.45). Results of the analysis showed that,

as expected, particles toward the bottom of the section experienced more overlaps in a projec-

tion, and this effect was greater for thicker sections and higher particle density (Fig 5A). To

investigate what effect projection overlaps might have on the shape of G(d), we set an upper

limit to the amount of projection overlaps an observable particle can have, i.e. particles with

overlaps above the set limit (ψ) were considered hidden from view (lost) and excluded from

the projection. Results of these ‘semi-transparent’ particle simulations showed that, for thick

sections and high particle density, a large number of particles near the bottom of the section

were excluded from the projection, thereby reducing the effective section thickness (T) for a

given projection (Fig 5B; ψ = 0.25). Nevertheless, excluding bottom-dwelling particles from

the projection had minimal effect on the shape of G(d), and therefore had little effect on esti-

mates of F(d), as long as the top-dwelling particles were simulated as transparent, i.e. small

degrees of projection overlap did not interfere with counting the projections or computing

their size (Fig 5C). This is in contrast to when particles were simulated as opaque such that

overlapping projections reduced the number of observed projections and increased their size;

in this case, opaque particles created a positive skew in G(d) (Fig 5D). However, the distortions

in G(d) produced only modest changes in estimates of F(d). Hence, these results indicate over-

lapping projections of semi-transparent and opaque particles in thick sections create only

small biases in estimates of F(d). However, the overlapping projections do have the potential

to reduce the effective section thickness (Fig 5B) and therefore affect the estimates of the 3D

density (see below).

Validation of the Keiding model for estimating particle size using 3D

reconstructions

In the previous section, we used Monte Carlo simulations to test the Keiding model’s capacity

to estimate F(d) and ϕ from G(d). However, while the simulations included variation (i.e.

= -4.4%, Δϕ = -9˚). C. Average estimation errors ΔμD, ΔσD and Δϕ of Keiding-model fits to simulated G(d), as in A and B, for true ϕ =

10–80˚, T = 0 and 1 u.d., CVD = 0.09 (red open and closed circles; μΔ ± σΔ for 100 repetitions per ϕ). Red dashed lines denote ϕcutoff (~55˚;

Eq 8) above which G(d)� F(d) and true ϕ becomes indeterminable. For comparison, results are shown for Gaussian fits to the same G(d)

(Eq 5; gray circles) and 2D statistics μd ± σd (gray lines). Data shifted ±0.8˚ to avoid overlap. Asymmetrical error bars indicate skewed

distributions (Materials and Methods). Inset: ϕcutoff vs. CVD for simulations (black circles) and Eq 8 (black line; n = 500 diameters). See

S1–S5 Figs in S1 File.

https://doi.org/10.1371/journal.pone.0277148.g004
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stochasticity) in particle location and size, they lacked variation normally associated with

experimental data such as that due to finite spatial resolution, limited contrast, irregular parti-

cle shape and blending with surrounding material (e.g. intracellular/extracellular proteins).

Hence, to address this shortcoming, we tested the accuracy of the Keiding model using a

Fig 5. Effects of projection overlaps for thick sections. A. Sum of 2D projection overlaps (O) as a function of distance from the surface of a simulated section

for particle VF = 0.15, 0.30 and 0.45 (green, blue and red lines) whereO> 1 indicates a particle’s projection is likely to be completely overlapping with

projections of other particles closer to the section surface. Histograms were computed using particle z-center points and 0.1 u.d. bins. Gray background denotes

section thickness (T = 2 u.d.). The distributions extend 0.5 u.d. below the section because of caps (Fig 1B). Black dotted line denotes upper limit ψ = 0.25 for B

and C. For simplicity, ϕ = 0˚. B. VF of those particles appearing in a simulated projection as a function of distance from the surface of each section (T = 2 u.d.)

for transparent particles (solid lines; control, ψ =1), semi-transparent particles (dotted lines; a particle is removed from the projection if itsO> 0.25) and

opaque particles (dashed lines; bottom-dwelling particles are merged with top-dwelling particles if -1< α< 0; Materials and Methods). VF = 0.15, 0.30 and

0.45 as in A. The effect of semi-transparent and opaque particles is to reduce the effective T. Histograms were computed using particle z-center points and 0.1

u.d. bins; counts were converted to VF using the equivalent bin volume (geometry Areaxy multiplied by bin z-width) and particle diameter distribution. For

simplicity, ϕ = 0˚. C. Comparison of simulated probability density of 2D diameters (G(d); 0.02 u.d. bins) for transparent and semi-transparent particles (ψ =1

and 0.25; solid vs. dotted lines) shows little difference for two extreme conditions of lost caps (ϕ = 0˚ and 70˚; purple and blue). In these simulations, projection

overlaps did not affect estimates of their size (inset). Circles and error bars denote Keiding-model fit parameters μD ± σD. T = 1 and VF = 0.30. D. Comparison

of simulated G(d) for transparent and opaque particles (solid vs. dotted lines). For opaque particles, overlapping projections with -1< α< 0 were treated as a

single projection with larger area (inset), thereby creating a positive skew in G(d). For A–D, average histograms were computed from 20 sections, ~500

particles per section.

https://doi.org/10.1371/journal.pone.0277148.g005
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volumetric ET z-stack of clusters of MFT vesicles, since this allowed us to directly measure F(d)

and ϕ, as well as G(d). First, F(d) was measured by outlining individual vesicles across multiple

planes of the z-stack (Fig 6A; ET11). From the outlines of a given vesicle, equivalent radii were

computed as a function of z-depth (Fig 6B) and curve fitted to an ellipse (Eq 10), resulting in

estimates for the vesicle’s 3D diameter (D), z-axis center point (z0) and elliptical eccentricity (E)

(S6 Fig in S1 File). Aligning the vesicle profiles at their centers revealed the profiles overlaid

each other and fit well to a semi-circle (Fig 6B). From the measured 3D diameters, we

computed μD ± σD = 42.9 ± 3.4 nm and F(d) (Fig 6D; n = 233). To determine the shape of F(d),

we fit the distribution to Gaussian, chi and gamma functions (Eqs 5–7) and found closely over-

lapping fits (S7 Fig in S1 File). Moreover, we found parameter f> 70 for the chi and gamma fits

indicating Gaussian-like distributions. Repeating the same analysis for F(d) derived from

another ET z-stack (ET10) and another study of MFT vesicles [5] produced similar results.

Hence, F(d) of the MFT vesicles was well described by a Gaussian function, which is consistent

with the findings of a 3D analysis of vesicles in hippocampal CA1 excitatory synapses [59].

Next, we measured ϕ by computing the axial extent of each vesicle profile, which only par-

tially extended to the north and south poles (Fig 6B and S6A Fig in S1 File). The missing pro-

files at the pole regions, i.e. lost caps, are likely due to limited resolution and poor contrast of

orthogonally oriented membranes [45]. Plotting the minimum measured diameter (δmin) for

the vesicle poles interior to the z-stack versus their 3D diameter revealed a linear relation that

was well described by the Keiding model (δmin = D�sinϕ; Fig 6C1). In contrast, the minimum

of all measured diameters (dmin), which has been used as a correction for lost caps (S1 Appen-

dix in S1 File), was a poor fit to the δmin-D relation. Converting all δmin to ϕ values revealed a

distribution that spanned 26–67˚ (Fig 6C2) with μϕ ± σϕ = 42 ± 7˚ (CVϕ = 0.2; n = 403;

Table 2) and was well described by a Gaussian distribution (Fig 6C3). Hence, this analysis

revealed a source of variation not accounted for in the Keiding model, which assumes all parti-

cles have the same ϕ. The ramifications of a variation in ϕ are explored in the next section.

Next, we computed G(d) from all measured 2D diameters (Fig 6D). Comparison of G(d) to F(d)

revealed a negative skew in G(d) as expected for planar sections (estimated T� 0.1 u.d.; Table 1).

Finally, using the measured G(d), F(d) and ϕ, we tested the Keiding model by curve fitting Eq 1 to

G(d), assuming a Gaussian F(d) (Eq 5), which our results above confirmed is a good assumption,

and comparing the resulting estimated F(d) and ϕ to their measured ‘true’ values. Results showed

the estimated F(d) and ϕ closely matched their measured values (ΔμD = -0.2%, ΔσD = +0.6% and Δϕ
= -3˚). Moreover, both the measured and estimated ϕ were below ϕcutoff (~63˚). Similar results were

obtained by repeating the same 2D versus 3D analysis for another ET z-stack of MFT vesicles

(ET10; ΔμD = +0.5%, ΔσD = -0.3% and Δϕ = -0.1˚; Table 2; S8 Fig in S1 File).

To examine whether our validation analysis of the Keiding model holds for larger particles,

we repeated a similar 2D versus 3D analysis of a recently published TEM z-stack of cerebellar

GC nuclei (S9A–S9D Fig in S1 File; Table 3; [60]). Results of the 2D analysis of individual

nuclei revealed a small estimated ϕ = 10˚ (where ϕcutoff� 45˚) and an estimated F(d) that

closely matched that computed from a 3D analysis using images from the same z-stack (ΔμD =

-1.3%, ΔσD = +8.0%). Hence, our 2D versus 3D analyses show that, even with the added vari-

ability from experimental data, including variability in ϕ, the Keiding model accurately esti-

mated F(d) and ϕ from G(d) with only small error when true ϕ< ϕcutoff, confirming our

previous results from simulations (Fig 4C).

Exploration of the Keiding model’s fixed-ϕ assumption

Despite the impressive capacity of the Keiding model to estimate F(d) and ϕ of our experimen-

tal data, close inspection of the curve fits to G(d) measured from our ET z-stacks showed
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Fig 6. The Keiding model accurately estimates F(d) and ϕ from G(d) for true ϕ< ϕcutoff (vesicles ET11). A. One of 261 serial images of a 3D ET

reconstruction (ET11) of a cerebellar MFT section 138 nm thick. 271 vesicles, including 101 caps, were tracked and outlined through multiple z-planes and

their darea computed as a function of z-plane number (z#). This image shows outlines for 8 representative vesicles, overlaid with outlines from images above and

below. Scale bar 50 nm. B. Vesicle xy-radius (½darea) vs. z-depth (colored lines) with vesicle centers (z0) aligned at z = 0; caps are not displayed. Black semi-

circle and shading denote μD ± σD = 42.9 ± 3.4 nm for all measured 3D diameters (D; n = 233). Black dotted lines and shading denote measured ϕ: μϕ ± σϕ =

41.5 ± 7.2˚ (n = 403, measures of north and south poles, including caps). Parameters z0 and D were estimated via a curve fit to Eq 10 and ϕ = sin-1(δmin/D),

where δmin is the minimum darea at a given pole (S6A Fig in S1 File). Average fit E = 1.00 ± 0.16 (n = 233) where estimated Sz = 0.53 nm (S6B Fig in S1 File). Fits

to the smallest caps were not included (n = 38). C1. Minimum 2D diameter of a given vesicle (δmin) vs. D (circles; n = 403) with line fit (black line; χ2 = 5957,

r = 0.4, R2 = 0.1) and Keiding-model fit (red solid line; δmin = D�sinϕ; fit ϕ = 41.0 ± 0.3˚; χ2 = 6105, r = 0.4, R2 = 0.3). The smallest δmin (dmin = 19 nm; red

dashed line) is a poor match to the data. C2. Same as C1 but for ϕ = sin-1(δmin/D) with line fit (black line; r = -0.1, R2 = 0.02) and μϕ = 41.5˚ (red solid line). C3.

Probability density (per ˚) of measured ϕ in C2 (black circles; probability per degree) with Gaussian fit (gray line; Eq 5) and fit ϕ (red line) and ϕcutoff from D

(black dashed line; ~63˚; Eq 8). Note, the difference between the fit and measured ϕ (Δϕ = -3˚) can partially be accounted for by an estimated +1˚ discretization

error of measured ϕ (S6D Fig in S1 File) and a -0.3˚ error of fit ϕ from assuming a fixed ϕ (S10C Fig in S1 File). D. Measured F(d) (black line and circle; 1 nm

bins; see B) vs. G(d) (green circles; n = 13,914 outlines; 1 nm bins). A curve fit of Eq 1 to G(d) (red solid line; μD = 42.9 ± 0.1 nm, σD = 3.4 ± 0.1 nm, ϕ =

38.4 ± 0.3˚; T fixed to 0 nm) resulted in estimated F(d) (red dotted line and circle) nearly the same as measured F(d) and estimated ϕ nearly the same as μϕ
(C3). See S6–S10 Figs in S1 File.

https://doi.org/10.1371/journal.pone.0277148.g006
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systematic deviation at the smaller diameters (d = 20–40 nm; Fig 6D; S8D and S10A Figs in S1

File. To test whether the discrepancies arose from the variation of ϕ within the sample of vesi-

cles (Fig 6C3 and S8C3 Fig in S1 File), we used Monte Carlo simulations to replicate our ET10

z-stack analysis (S8 Fig in S1 File) and compared the resulting G(d) to the experimental G(d)

for a fixed-ϕ model where all vesicles have the same ϕ, as in the Keiding model, and a Gauss-

ian-ϕ model where ϕ of each vesicle is randomly drawn from a Gaussian distribution (μϕ ± σϕ)

whose shape and variation matched the measured ϕ (CVϕ = 0.2). Comparison of the two mod-

els confirmed that the small discrepancy between the Keiding-model fit and experimental G

(d) at the smaller diameters can indeed be explained by the variation in ϕ (S10B1 and S10B2

Table 2. Summary of size and density analysis of cerebellar MFT vesicles.

Image Assay #M nsize/den μD σD ϕ ϕcutoff λ3D VF VFAF

TEM 2D-B 4 269 ± 48

332 ± 68

45.7±0.7 4.0±0.2 > 44˚ 38˚±1˚

ET10-z 3D-NB 1 132

115

46.0 4.0 41† ±9˚ 8.6 0.45

2D-NB 7083

5023

46.2 4.0 41˚ 60˚ 8.7 0.45 0.46

2D-B 751 46.4 4.1 63˚

ET11-z 3D-NB 1 233

271

42.9 3.4 42† ±7˚ 11.0 0.47

2D-NB 13,914

13,914

42.9 3.4 38˚ 63˚ 11.0 0.46 0.46

2D-B 889 43.0 3.5 56˚

Units nm nm ˚ ˚ ×103 μm-3

Image: TEM (Fig 2C) or ET z-stack (Figs 6 and 11; S8 Fig in S1 File). Assay: 2D or 3D, blind (B) or nonblind (NB) particle detection. #M: number of mice. n: number of

2D or 3D diameters for size (nsize; top) and density (nden; bottom) analysis. For 2D analysis, μD ± σD and ϕ were computed via Keiding-model fits to G(d). ϕcutoff

computed via Eq 9 for TEM analysis and Eq 8 for ET analysis. VF computed via Eq 4. VFAF: VF = Kv�AF (Eq 14; Kv = 1.09 and 1.07 for ET10 and ET11, respectively).

For TEM analysis, values reported as mean ± SEM with respect to #M; it was not possible to estimate λ3D. †Estimated discretization error of measured ϕ is +1˚ (S6D Fig

in S1 File).

https://doi.org/10.1371/journal.pone.0277148.t002

Table 3. Summary of size and density analysis of cerebellar GC somata and nuclei.

Image #A GC Assay nsize/den μD σD ϕ ϕcutoff λ3D VF VFAF

Confo 3R S 2D-B 537 ± 12

301 ± 39

5.78±0.16 0.41±0.03 37˚ ±2˚ 47˚±1˚ 3.2±0.2 0.32±0.01 0.32±0.02

TEM 4M N 2D-B 471 ± 22

488 ± 22

4.80±0.17 0.39±0.01 20˚ ±1˚ 44˚±0˚ 5.9†±0.4 0.34±0.01 0.33±0.01

N!S 5.60±0.16 0.35±0.01 29˚ ±1˚ 49˚±0˚ † 0.54±0.01

TEM-z 1M N 3D-NB 107

206

6.73 0.51 - 2.0 0.31

2D-NB 974

-

6.63 0.52 6˚ 48˚ - - -

2D-B 688

820

6.64 0.55 10˚ 45˚ 1.9 0.29 0.29

Units μm μm ˚ ˚ ×106 mm-3

Image: confocal (Confo; Fig 2A), TEM (Fig 2B) or TEM z-stack (S9 Fig in S1 File; [60]). GC soma (S), nucleus (N) and nucleus scaled to soma (N!S). #A: number of

rats (R) or mice (M). n: average number of 2D diameters for size (nsize; top) and density (nden; bottom) analysis. μD ± σD and ϕ computed via Keiding-model fits to G(d).

Estimated ϕcutoff computed via Eq 9. VF computed via Eq 4. VFAF: VF = Kv�AF (Eq 14; Kv = 0.71 and 0.99 for somata and nuclei). Values reported as mean ± SEM with

respect to #A; somata data was weighted per slice. All particle detection was performed by blind analysis. †Somata λ3D = nuclei λ3D.

https://doi.org/10.1371/journal.pone.0277148.t003
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Figs in S1 File). Moreover, the simulations allowed us to quantify the errors from assuming a

fixed ϕ in our Keiding-model curve-fit routine, giving biases ΔμD = +0.2 ± 0.5%, ΔσD =

-0.8 ± 5.8% and Δϕ = -0.4 ± 0.8˚ (average of ET10 and ET11 simulations; S10C Fig in S1 File).

Hence, the Keiding-model fixed-ϕ assumption only introduced small biases into the estimates

of μD, σD and ϕ. To further explore the effects of assuming a fixed ϕ in the Keiding model, we

computed errors ΔμD, ΔσD and Δϕ from Keiding-model fits to simulated G(d), as just

described, over a range of ϕ distributions (μϕ = 10–50˚; CVϕ = 0.2) for planar and thick sec-

tions (T = 0 and 1 u.d.; S11 Fig in S1 File). Results gave negligible estimation errors, except for

conditions of a planar section and μϕ = 40–50˚, in which case errors showed modest biases.

Hence, these results show that the Keiding-model fixed-ϕ assumption introduces only small

errors when estimating F(d) and ϕ from G(d).

Impact of blind versus nonblind particle detection in 2D images

For the size analysis of MFT vesicles in our 3D reconstructions, G(d) was computed from mea-

surements of vesicles that were tracked through multiple images of the ET z-stack. This ‘non-

blind’ approach provided information that made it easier to identify small caps, resulting in a

tail of G(d) that descended to ~20 nm and ϕ� 40˚ (Fig 6D and S8D Fig in S1 File). In contrast,

G(d) of MFT vesicles in the first Results section were computed ‘blind’ without knowledge of a

vesicle’s 3D position in a z-stack. In this case, G(d) had a symmetrical Gaussian-like appear-

ance with no tail (Fig 2C2). Hence, we wondered if the difference between the two G(d) could

simply be explained by one analysis being blind and the other nonblind. To test this, we

recomputed G(d) from our ET z-stacks using a blind analysis: images of the z-stack were ana-

lysed in random order, and vesicles were not tracked between adjacent images. Results showed

G(d) computed blind had a symmetrical Gaussian appearance with no tail, and a similar

appearance to F(d) (Fig 7A and 7B), thus confirming the difference in G(d) can be explained

by a greater number of lost caps in the blind analysis. To quantify ϕ for the blind analysis, we

simultaneously fit the Keiding model to G(d) computed blind and nonblind, sharing parame-

ters for F(d), i.e. μD and σD. For ET11, results gave ϕ = 38.3 ± 0.5˚ for the nonblind analysis

(similar to the analysis in Fig 6D) and ϕ = 55.5 ± 0.7˚ for the blind analysis. Hence, there was a

17˚ difference (bias) in ϕ. For ET10, results gave a 22˚ difference in ϕ. Note that, despite a

large estimated ϕ for both blind analysis (where ϕ> ϕcutoff), which usually correlates with a

large fit error (Fig 4C), the fit errors for this analysis were only ±1˚. The small fit errors are due

to the sharing of parameters μD and σD during the simultaneous fit, in which case good esti-

mates of μD and σD were achieved via G(d) computed nonblind, and ϕ was determinable for

both blind and nonblind analysis. Besides the difference in ϕ, the simultaneous fit also revealed

G(d)� F(d) for the blind analysis, with only a subtle difference between the two curves. These

results highlight the difference between blind and nonblind particle detection, and that cap

detection can be significantly improved by additional 3D information provided by a z-stack.

Estimation of the 3D size of granule cell somata and nuclei

Having shown the Keiding model accurately estimates F(d) and ϕ from G(d), with the excep-

tion that ϕ is indeterminable when true ϕ> ϕcutoff (Fig 4C), we curve fitted Eq 1 to the 9 G(d)

computed from GC somata of rats (Fig 2A2), resulting in estimated μD = 5.48–6.32 μm, σD =

0.35–0.49 μm and ϕ = 27–52˚ with small fit errors of 1–2˚ (Fig 8A and 8C and S12 Fig in S1

File). The ϕ-accuracy test (Eq 9) showed estimated ϕ< estimated ϕcutoff (~44–50˚) for all but

two fits where estimated ϕ was ~3–4˚ above its estimated ϕcutoff. For the two fits that failed the

ϕ-accuracy test, we recomputed the fits while fixing their ϕ to that estimated from the other

fits of the same preparation (this made little difference in estimates of μD and σD). Averaging

PLOS ONE Validation of a stereological method for estimating particle size and density

PLOS ONE | https://doi.org/10.1371/journal.pone.0277148 March 17, 2023 17 / 50

https://doi.org/10.1371/journal.pone.0277148


results across the 3 rats gave μD = 5.78 ± 0.16 μm, σD = 0.41 ± 0.03 μm and ϕ = 37 ± 2˚ (±SEM;

Table 3). Simulations indicate these estimates have negligible biases and small confidence

intervals (ΔμD = 0.0 ± 0.7%, ΔσD = +1.5 ± 8.4%, Δϕ = +0.1 ± 1.3˚ for T = 0.3 u.d., true ϕ = 37˚,

~500 diameters).

Fig 7. Comparison of G(d) computed blind versus nonblind reveals a large bias in particle cap detection for MFT

vesicles (ϕbias� 20˚). A. Probability density of 2D diameters (G(d)) computed via a nonblind vesicle detection (green

circles; ET11; Fig 6D) versus a blind vesicle detection (blue circles). Both G(d) were simultaneously curve fitted to Eq 1,

where parameters μD and σD were shared, revealing a 17˚ bias in ϕ (red solid lines; μD = 43.0 ± 0.1 nm, σD = 3.5 ± 0.1

nm, nonblind ϕ = 38.3 ± 0.5˚, blind ϕ = 55.5 ± 0.7˚). As in Fig 6D, estimated F(d) (red dotted line and circle) is similar

to measured F(d) (black solid line and circle). For the blind analysis, there were 889 diameters measured from 18 z-

planes (z# = 1–260) spaced 5–15 nm apart, analysed in random order. B. Same as A for ET10 (S8D Fig in S1 File). The

simultaneous curve fit revealed a 22˚ bias in ϕ (red solid lines; μD = 46.4 ± 0.1 nm, σD = 4.1 ± 0.1 nm, nonblind ϕ =

40.9 ± 0.7˚, blind ϕ = 63.3 ± 1.3˚). For the blind analysis, there were 751 diameters measured from 30 z-planes (z# =

51–236) spaced 2–7 nm apart, analysed in random order. Inset cartoon depicts the bias in ϕ along the axial axis of a

vesicle.

https://doi.org/10.1371/journal.pone.0277148.g007
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Next, we curve fitted the Keiding model to the 4 G(d) computed from GC nuclei of mice

(Fig 2B2), resulting in μD = 4.39–5.19 μm, σD = 0.36–0.42 μm and ϕ = 17–23˚ with small fit

errors of 1–2˚ (Fig 8B and 8C and S13 Fig in S1 File) and all ϕ passing the ϕ-accuracy test (i.e.

estimated ϕ< estimated ϕcutoff, where estimated ϕcutoff� 43–44˚; Eq 9). The smaller less-vari-

able ϕ for the GC nuclei compared to the GC somata reflects a more complete G(d) with fewer

lost caps, achieved via the higher resolution and contrast of the TEM compared to confocal

images. Moreover, since the nuclei were much larger than the section thickness, there were no

overlaps of the nuclei in the TEM images and therefore less ambiguity of where the borders lay

between nuclei. Across the 4 mice, μD = 4.80 ± 0.17 μm, σD = 0.39 ± 0.01 μm and ϕ = 20 ± 1˚

(±SEM), which are similar to estimates computed from an analysis where all G(d) are aligned

and pooled into a single G(d) (S14C Fig in S1 File). Simulations indicate these estimates have

negligible biases and small confidence intervals (Fig 4C; ΔμD = -0.1 ± 0.9%, ΔσD = +1.9 ± 11.9%,

Δϕ = 0.0 ± 1.6˚ for T = 0 u.d., true ϕ = 20˚, ~500 diameters).

To compare the above estimates for GC size between rats and mice, we scaled G(d) of the

GC nuclei of mice via the dsoma-versus-dnucleus linear relation described above and curve fitted

the Keiding model to the new G(d). Results gave μD = 5.60 ± 0.16 μm and σD = 0.35 ± 0.01 μm

(±SEM), which are similar to that estimated for rats (p = 0.49 and 0.07, respectively; t-test).

These results are consistent with our simulations that showed overlapping projections of

opaque particles (a likely scenario for the rat confocal dataset) create negligible bias in esti-

mates of μD (Fig 5D). Hence, these results are consistent with F(d) being the same for GCs in

rats and mice. The results also indicate the two different tissue preparations of the rat and

mouse datasets (chemical versus cryo fixation) had little effect on the size of GCs.

Estimation of the 3D size of vesicles in mossy fiber terminals

To estimate the 3D diameter of MFT vesicles, we curve fitted Eq 1 to the 8 G(d) computed

from MFT vesicles of mice (Fig 2C2), resulting in estimated μD = 42.4–47.2 nm, σD = 3.5–5.0

nm and ϕ = 45–70˚ with large fit errors most of which exceeded 80˚ (Fig 9 and S15 Fig in S1

File). Here, the large estimated ϕ with large fit errors indicate ϕ was indeterminable (Fig 4C).

This conclusion was further supported by the finding that all estimated ϕ failed the ϕ-accuracy

test (i.e. estimated ϕ> estimated ϕcutoff, where ϕcutoff� 34–42˚). While these estimates of ϕ
are larger than that computed from our ET z-stack analysis (Fig 6D and S8D Fig in S1 File; ϕ
� 40˚), this is expected for the G(d) analysed here given the greater difficulty in identifying

vesicle caps using a blind analysis (Fig 7) and thick sections (T� μD). While the large estimates

of ϕ with large errors means there may be small biases in these final estimates of μD and σD

(absolute values < 1 and 5%, respectively; Fig 4C), the estimates are not significantly different

to the 3D measures computed from our two ET z-stacks (p = 0.3 and 0.6, respectively; Stu-

dent’s t-test). Again, the similarity in estimates of F(d) between our datasets indicates differ-

ences in tissue preparation (cryo versus chemical fixation) had little effect on the size of

synaptic vesicles, which is consistent with other studies [31, 61].

Fig 8. Estimates of F(d) and ϕ from G(d) of cerebellar GC somata and nuclei. A. Curve fit of Eq 1 (red solid line) to

the G(d) of rat GC somata in Fig 2A2 (green circles) resulting in estimates for F(d) (red dotted line and circle), ϕ and

ϕcutoff (Eq 9). B. Same as A for the G(d) of mouse GC nuclei in Fig 2B2. C. Parameters μD ± σD (bottom) and ϕ (top)

from Keiding-model fits to G(d) of GC somata for 3 rats (red closed circles; S12 Fig in S1 File; weighted averages with

respect to number of tissue sections), G(d) of GC nuclei for 4 mice (red open circles; S13 Fig in S1 File; pooled

diameters from 6–7 TEM images per mouse) and the same G(d) of GC nuclei scaled to somata dimensions (N!S).

Red dashed and dotted lines denote averages across the 3 rats and 4 mice, respectively. Black dashed and dotted lines

denote average estimated ϕcutoff for somata and nuclei (~47 and 44˚).

https://doi.org/10.1371/journal.pone.0277148.g008
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Fig 9. Estimates of F(d) and ϕ from G(d) of MFT vesicles. A. Curve fit of Eq 1 (red solid line) to the G(d) of mouse

MFT vesicles in Fig 2C2 (blue circles) resulting in estimates for F(d) (red dotted line and circle), ϕ and ϕcutoff (Eq 9). A

Gaussian fit to the same G(d) (black dashed line) overlaps the Keiding-model fit and μD ± σD of both fits overlap (red

and black circles) indicating G(d)� F(d). B. Parameters μD ± σD (bottom) and ϕ (top) from Keiding-model curve fits

to G(d) of MFT vesicles for 4 mice, 2 MFTs per mouse (red circles; S15 Fig in S1 File), compared to μD ± σD from

Gaussian fits (black circles) and μd ± σd computed from 2D diameters. Overlapping distributions again indicate G(d)

� F(d). Dotted lines (bottom) denote averages. Black dashed line (top) denotes average estimated ϕcutoff (~38˚); all

estimated ϕ are considered inaccurate. Error bars of ϕ denote fit errors, 6 of which are not shown since they are off

scale. See S16 Fig in S1 File.

https://doi.org/10.1371/journal.pone.0277148.g009
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Estimating the 3D density of particles from their 2D projection

Having an accurate estimate of the number of particles per unit volume is essential to many

fields of science. Historically, estimates of 3D particle density (λ3D) were obtained by comput-

ing the number of particles per unit area (λ2D; S17 Fig in S1 File) observed in a projection

divided by the section thickness (T). However, particle caps on the top and bottom of the sec-

tion inflate the particle count with respect to T, i.e. they create an overprojection [17, 40–43].

To correct for overprojection, one can use ϕ to estimate λ3D via Eq 3 (S1 Appendix in S1 File).

As a first test of the validity of Eq 3, we used the Monte Carlo simulations in Fig 4C to inves-

tigate the relation between the measured λ2D and true λ3D by computing z = λ2D/λ3D. Compar-

ison of this measured ‘true’ z to the expected z computed via Eq 2, using true T, μD and ϕ,

showed a close agreement (Fig 10A). Hence, our simulations of the Keiding model were well

described by Eq 3. Next, we tested the ability of the Keiding model to accurately estimate λ3D

via Eq 3 by computing Δλ3D for the same simulations using parameters μD and ϕ estimated via

Keiding-model curve fits to G(d). Results showed accurate estimates of λ3D, except when true

ϕ> 45˚, in which case the estimation errors of μD and ϕ translated into estimation errors of

λ3D (Fig 10B). Here, the finding that ϕcutoff for estimated λ3D is less than that for estimated μD,

σD and ϕ (~55˚) is consistent with an increase in variability from using estimated μD and ϕ to

compute z, and therefore consistent with our ϕ-accuracy test, where estimated ϕcutoff� 43˚

(Eq 9). Hence, these results demonstrate the ability of Eq 3 to accurately estimate λ3D using

Keiding-model estimates of μD and ϕ as long as estimated ϕ< estimated ϕcutoff. Comparing

results for planar and thick sections showed qualitatively similar results, except errors were

smaller for thick sections due to smaller errors in μD (but see next paragraph for caveats of

using thick sections). Repeating the error analysis for G(d) computed from ~2000 diameters

gave qualitatively similar results compared to those for ~500 diameters, but z and λ3D had

smaller biases and confidence intervals, where the confidence intervals followed a 1/
p

n rela-

tion for ϕ< 45˚ (S18 Fig in S1 File) similar to that of estimated μD and ϕ (S4 Fig in S1 File).

For thick sections, a major caveat of estimating λ3D from λ2D via Eq 3 is that the calculation

assumes one has a good estimate of z. As shown in Fig 5B, however, overlapping projections of

semi-transparent and opaque particles may preclude counting particles at the bottom of the sec-

tion, thereby reducing z. To demonstrate this, we computed Δz for simulations similar to those in

Fig 5 and found large positive biases for both semi-transparent and opaque particles, i.e. estimated

zwas larger than true z (Fig 10A). As expected, the overestimation of z translated into large nega-

tive biases in estimates of λ3D (Fig 10B). Given this caveat, therefore, the best approach to estimate

λ3D from λ2D for particles with a high density is to use planar sections, in which case there will be

little to no interference in counting particles from overlapping particle projections.

As a second independent method for computing the 3D density, we used the particle area

fraction (AF) to VF relation of Weibel and Paumgartner [62] (VF = Kv�AF) to compute the VF

of our simulations, where AF is the sum of all projection areas divided by the total projection

area (Areaxy) and Kv is a proportional scale factor that is a function of T and μD, but modified

to be a function of ϕ rather than hmin (S2 Appendix in S1 File). Results showed excellent agree-

ment between the estimated and true VF of our simulations (Fig 10C). However, for the simu-

lations of overlapping projections of semi-transparent and opaque particles in thick sections,

there was a significant underestimation of the VF, as expected.

Validation of the Keiding model for estimating particle density using 3D

reconstructions

To test the accuracy of applying Eq 3 to real data, we used our ET z-stacks of MFT vesicles to

measure λ2D and λ3D within a subregion of the z-stacks where the vesicles were clustered
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Fig 10. The Keiding model accurately estimates λ3D from λ2D for true ϕ< estimated ϕcutoff (simulations). A.

Average error in section z-depth over which particle center points are sampled (Δz) vs. true ϕ (top) for simulations in

Fig 4C for T = 0 and 1 u.d. (red open and closed circles) where estimated z was computed via Eq 2 using true μD, ϕ and

T and ‘true’ z = λ2D/λ3D using measured λ2D and true λ3D. B. Average error in 3D particle density (Δλ3D) vs. true ϕ
(middle) for the same simulations, computed via estimated and true λ3D, where estimated λ3D was computed via Eq 3

(λ3D = λ2D/z) using measured λ2D and estimated μD and ϕ from Keiding-model fits to the simulated G(d). Red dashed

line denotes estimated ϕcutoff (~43˚; Eq 9). One error bar at true ϕ = 55˚ is off scale (+56%). C. Average error in volume

fraction (ΔVF) vs. true ϕ (bottom) for the same simulations, computed via estimated and true VF, where estimated
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(Fig 11). For ET11, this analysis gave λ2D = 369 μm-2 and λ3D = 11,022 μm-3 (VF = 0.47; Eq 4)

where λ3D was computed as a 3D measurement, i.e. count per volume. Using Eq 3, we then

computed λ3D = λ2D/z = 11,482 μm-3 (VF = 0.48; Eq 4) where z = 32 nm, computed via Eq 2

using the measured μD and μϕ (Table 2; 3D-NB). Hence, λ3D computed via Eq 3 was nearly the

same as that computed via a direct 3D measurement (Δλ3D = +4%). Repeating the same com-

putation using z = 34 nm computed via Keiding-model curve-fit parameters μD and ϕ (Fig

6D), where estimated ϕ< estimated ϕcutoff (~51˚), gave λ3D = 10,991 μm-3 (VF = 0.46; Eq 4),

which was also nearly the same to λ3D computed via the 3D measurement (Δλ3D = -0.3%). In

contrast, when we used dmin of the z-stack analysis (19 nm) to estimate z (using measured μD)

rather than ϕ (where dϕ = 28 nm), we computed λ3D = 9560 μm-3. Hence, in this example,

using dmin to estimate λ3D caused significant error (Δλ3D = -13%). Next, using the VF = Kv�AF

relation (Eq 14) we computed VF = 0.46 that matched that computed via the 3D analysis

(0.47). Repeating the same 2D versus 3D density analysis for our other ET z-stack (ET10) pro-

duced similar results (Δλ3D = +2%; Fig 11B; Table 2); however, unlike ET11, the density analy-

sis of ET10 had to be confined within a subregion of the z-stack due to a nonhomogeneous

distribution of vesicles in the axial axis.

To examine whether these results hold for larger particles, we repeated a similar 2D versus 3D

density analysis for a recently published TEM z-stack of GC nuclei [60]. Results showed λ3D esti-

mated from 2D images via Eq 3 closely matched that computed from a 3D analysis using images

from the same z-stack (Δλ3D = -4%; S9E Fig in S1 File; Table 3) and a full 3D reconstruction [60].

Hence, our 2D versus 3D analyses show that Eq 3 accurately estimates λ3D from λ2D with only

small error when true ϕ< ϕcutoff, confirming our previous results from simulations (Fig 10).

Finally, we investigated the range of expected error for the ET z-stack density analysis, as

well as that from assuming a fixed ϕ (S10 Fig in S1 File), by computing λ2D and λ3D for Monte

Carlo simulations that mimicked the 3D analysis. Results gave ranges of Δλ3D that were consis-

tent with the above measured Δλ3D (average -2 ± 3% for ET10 and ET11 simulations; S19A Fig

in S1 File) and showed the assumption of a fixed ϕ introduces only small errors for estimating

λ3D from λ2D via Eq 3 for ϕ< 50˚ (S19B Fig in S1 File). Again, using dmin to estimate λ3D

caused significant error (Δλ3D = -19 ± 2%; n = 100 simulation repetitions).

Estimating the 3D particle density via the disector method

The disector method [18, 52] is a popular method for estimating λ3D of particles with arbitrary

geometry using two adjacent sections from a z-stack, referred to as the ‘reference’ and ‘lookup’

section. This method counts the number of particles that appear within the reference section

but do not appear in the lookup section, i.e. the method counts a particle only if its leading

edge appears within the reference section. To compute λ3D, one determines λ2D from the lead-

ing-edge count and divides λ2D by the distance between the reference and lookup sections (i.e.

the section thickness for adjacent pairs). Although theoretically, lost caps should not introduce

error into this counting method [52], underestimation errors due to lost caps have been

reported [63]. Given the popularity of the disector method, as well as the potential source of

error due to lost caps, we decided to use the disector method to estimate λ3D of our simulated

projections where ϕ = 10–80˚ and compare these results to our analysis in Fig 10B, where λ3D

VF = Kv�AF (Eq 14). For A, B and C, results are also shown for transparent particles (black solid line; ψ = 0.25) and

opaque particles (black dashed line) in thick sections (T = 1 u.d.; Fig 5), showing estimated z was larger than true z

when projection overlaps hindered particle counting, creating a large underestimation of λ3D and VF. However, for

opaque particles, the bias was larger for λ3D than VF since an overlap in two projections reduced the particle count by

one, but only partially reduced the AF (overlapping projections coalesce into one). Data x-scales were shifted ±0.8˚ to

avoid overlap. See S18 Fig in S1 File.

https://doi.org/10.1371/journal.pone.0277148.g010
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was estimated via Eq 3, i.e. the ϕ-correction method. Using T = 0.3 u.d. as recommended [18],

we found no bias due to lost caps for all ϕ tested (Fig 12, black squares; ~500 particles per pro-

jection). This result is consistent with historical thinking that lost caps do not create a bias in

counting: while the effect of lost caps on any given reference section is to reduce the particle

count, the effect of lost caps on the lookup section is to increase the particle count for that ref-

erence section, the two effects thereby cancelling [52]. In essence, lost caps simply shift the ref-

erence section to which particles are counted and therefore have no effect on the final particle

count. However, these simulations did not take into account a potentially significant bias

pointed out by Hedreen [27]: fewer caps are likely to be identified in the reference section

compared to the lookup section since the former is done blind and the latter is not (the

researcher searches for caps in the lookup section only after identifying a particle in the refer-

ence section). In fact, our analysis of ET z-stacks of MFT vesicles revealed a ~20˚ bias in ϕ
between a blind and nonblind vesicle detection (Fig 7). To investigate the effects of such a bias,

we added a bias to our disector simulations by increasing ϕ of the reference section with

respect to the lookup section (ϕbias = 5–20˚) thereby reducing cap identification in the refer-

ence section (i.e. increasing the number of lost caps) with respect to the lookup section. Inter-

estingly, results of these simulations showed large underestimation errors even for small ϕbias

(Fig 12; -5%< Δλ3D < -20% for ϕbias = 10˚). Hence, the blind-versus-nonblind bias in particle

detection has the potential to create a significant underestimation of λ3D. Repeating the disec-

tor bias analysis using our experimental ET z-stack data gave similar results, showing a large

error (Δλ3D = -41 ± 5%) for ϕbias = 20˚.

Besides the potential error due to a blind-versus-nonblind bias in particle detection, our

simulations show that the disector method is ~2 to 3-fold less accurate at estimating λ3D (i.e.

Δλ3D has a larger ±σ) compared to the ϕ-correction method (S18 Fig in S1 File; ±σ panel) due

to a lower particle count per section. Similar results were found using the disector method to

compute λ3D of our ET z-stack of MFT vesicles, where Δλ3D = ±6% for the disector method

(±σ; ϕbias = 0˚) compared to Δλ3D = ±2% for λ3D computed via Eq 3 (S19A Fig in S1 File).

Hence, the inherent smaller count per region of interest (ROI) of the disector method leads to

a larger uncertainty in estimates of λ3D.

Estimation of the 3D density of granule cell somata and nuclei (confocal vs.

TEM)

Having verified Eq 3 using simulations and experimental data, we applied the equation to the

estimation of λ3D from λ2D for our sample of GC somata. Using the same confocal images used

to compute the 9 G(d) of the GC somata of 3 rats, we computed λ2D = 18–23 × 103 mm-2 (S17A

Fig 11. The Keiding model accurately estimates λ3D from λ2D for true ϕ< estimated ϕcutoff (vesicles). A1. One of 261

serial ET images (ET11) of a cerebellar tissue section. A ROI (0.45 × 0.32 μm; Areaxy = 0.144 μm2) was placed within a

large cluster of MFT vesicles and those vesicles that obeyed the inclusive/exclusive borders (blue/red; n = 271) were

tracked and outlined through multiple z-planes. Because the analysis includes vesicle caps on the top/bottom of the

reconstruction, the vesicle sampling space of the volume of interest (VOI) extends above/below the section such that z =

170 nm (Fig 1B; Eq 2; 3D measures: T = 138 nm, μD = 42.9 nm, μϕ = 42˚) giving VOI = 0.025 μm3. Here, outlines for 12

representative vesicles are overlaid with outlines from images above and below. Scale bar 100 nm. A2. Vesicle λ3D (left

axis) and VF (right axis) computed within the ROI in A1. For the 3D analysis, λ3D = N3D/VOI = 11,022 μm-3 (black solid

line). For the first 2D analysis, λ3D = λ2D/z (Eq 3) computed for each z-plane (red dotted line) and the sum of all z-planes

(red solid line), where λ2D is the number of outlines per ROI area and z = 34 nm computed via Keiding-model

estimates μD and ϕ (Fig 6D). For the second 2D analysis, VF = Kv�AF (Eq 14) computed for each z-plane (blue dotted

line) and the sum of all z-planes (blue solid line; 0.46), where Kv = 1.07 and AF is the sum of all vesicle outline areas per

ROI area. Both the measured ϕ (42˚) and estimated ϕ (38˚) are less than estimated ϕcutoff (51˚; Eq 9). Left and right axes

are equivalent scales for μD ± σD = 42.9 ± 3.4 nm, the measured F(d). B. Same as A2 for ET10. Gray shading denotes the

axial subregion where the 3D analysis and averages were computed (Materials and Methods). Left and right axes are

equivalent scales for μD ± σD = 46.0 ± 4.0 nm. See S19 Fig in S1 File.

https://doi.org/10.1371/journal.pone.0277148.g011
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Fig in S1 File; 8792–29,845 μm2 ROI area per image, 196–528 somata per ROI, 3 images per rat).

Using estimated μD and ϕ for each G(d), we then computed z = 5.5–7.6 μm via Eq 2 (estimated T

� 1.4–2.7 μm, scaled for z-shrinkage; Table 1). Finally, we computed λ3D = λ2D/z = 2.7–4.1 × 106

mm-3 with mean λ3D = 3.2 ± 0.2 × 106 mm-3 and VF = 0.32 ± 0.01 (±SEM; Table 3; Eq 4). To ver-

ify these results using the relation VF = Kv�AF, we computed Kv = 0.58–0.77, AF = 0.39–0.50 and

VF = Kv�AF = 0.27–0.37, with mean VF = 0.32 ± 0.02 and λ3D = 3.1 ± 0.1 × 106 mm-3 (±SEM)

which is not significantly different to λ3D computed via Eq 3 (p = 0.4, paired t-test).

Next, we estimated λ2D of GC nuclei from the TEM images used to compute G(d) (λ2D =

17–34 × 103 mm-2; S17B Fig in S1 File; 2046–5747 μm2 ROI area per image, 35–158 nuclei per

ROI, 6–7 images per mouse). Using estimated μD and ϕ for each G(d), we then computed z =

4.2–4.8 μm via Eq 2 (T = 0.06 μm) and λ3D = λ2D/z = 3.5–8.1 × 106 mm-3, with mean λ3D =

5.9 ± 0.4 × 106 mm-3 and VF = 0.34 ± 0.01 (±SEM; Table 3; Eq 4). Simulations indicate λ3D for

Fig 12. Estimation errors of the 3D density computed via the disector method for different degrees of bias due to

blind-versus-nonblind cap detection. Average Δλ3D computed from Monte Carlo simulations of the disector method,

where a particle-detection bias was simulated by increasing ϕ of the reference section (a blind cap detection) with

respect to the lookup section (a nonblind cap detection) for ϕbias = 0–20˚ (colored squares; ϕref = ϕlookup + ϕbias; ~500

particles per reference section). Thickness of the reference and lookup sections was 0.3 u.d. An equivalent disector

analysis using the ET11 z-stack data gave similar results (triangles; lookup ϕ = 42˚). Average Δλ3D for the simulations

in Fig 10B are shown for comparison (red open circles; T = 0 u.d.; λ3D = λ2D/z; x-scale is true ϕ and is shifted 2.5˚ to

avoid overlap) highlighting the higher levels of accuracy compared to the disector method, i.e. smaller confidence

intervals (σΔ).

https://doi.org/10.1371/journal.pone.0277148.g012
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this dataset should have negligible bias with a small confidence interval (Fig 10B; Δλ3D =

+0.3 ± 2.8% for T = 0 u.d. and true ϕ = 20˚). To verify these results using the relation

VF = Kv�AF, we computed Kv = 0.98–0.99, AF = 0.27–0.39 and VF = Kv�AF = 0.27–0.39, with

mean VF = 0.33 ± 0.01 and λ3D = 5.7 ± 0.5 × 106 mm-3 (±SEM; n = 4) which is not significantly

different to λ3D computed via Eq 3 (p = 0.1, paired t-test). Finally, to scale the VF estimates

from nuclei to somata, we estimated the VF for GC somata of mice via Eq 4 using estimated F

(d) for GC somata of mice (Fig 8C; N!S) and assuming λ3D was the same for the nuclei and

somata. Results gave VF = 0.51–0.57 with mean 0.54 ± 0.01 (±SEM), suggesting GC somata

occupied half of the GC layers we analysed.

Unlike our estimates for F(d) of GCs in rats and mice, which show no difference, compari-

son of the above estimates for λ3D in rats and mice show a 2-fold difference: estimated λ3D of

the rat dataset (3.2 × 106 mm-3) is significantly smaller than estimated λ3D of the mouse dataset

(5.9 × 106 mm-3; p = 0.004). While this difference could reflect a true difference between spe-

cies, a previous comparative study of the cerebellum, which used the same methodology across

species, reported similar densities within the GC layer of rats and mice [64]. Hence, it is more

likely that the 2-fold difference in estimated λ3D is due to one or more differences in methodol-

ogy. Although there are perhaps too many differences in methodology to make a decisive con-

clusion, notwithstanding the confounding problem of the ‘reference trap’ [65], it is still

instructive to consider them here. The first difference in methodology is section thickness:

thick versus planar. Because the rat dataset was derived from thick sections, overlapping

opaque projections could have created an underestimate of λ3D compared to the mouse dataset

(Fig 10B). The second difference in methodology is imaging technology: confocal versus TEM.

Because of the lower contrast and resolution of the confocal images, it was considerably harder

to identify and delineate GC somata profiles compared to the GC nuclei profiles. The poor

delineation of GCs would create an undercount. The third difference in methodology is tissue

preparation: chemical versus cryo fixation. A change in the extracellular volume due to chemi-

cal fixation of the rat tissue preparation could have created a lower λ3D. However, this explana-

tion is unlikely since chemical fixation tends to reduce the extracellular volume [61] which

would result in a higher rather than lower λ3D. The final difference in methodology is the sam-

pling space: ROIs were larger in the rat dataset compared to the mouse dataset. Because GCs

are not distributed uniformly, but rather form high-density clumps interspersed by MFTs and

blood vessels, there could be a bias towards a larger λ3D in the mouse dataset due to smaller

ROIs. However, our analysis of the two datasets using different sized ROIs (not shown) indi-

cates the difference in ROI size cannot account for the 2-fold difference in estimated λ3D.

Hence, we suspect our estimate of λ3D in the rat dataset is underestimated, and this is most

likely due to overlapping projections in thick sections and poor delineation of GC profiles in

the confocal images. Because of the tight packing of GC somata, estimates of λ3D via Eq 3 are

best achieved by using planar sections, a higher contrast preparation and superior microscope

resolution. We therefore believe our most accurate estimate of the GC λ3D is that of our mouse

dataset. Although our estimated λ3D of GC somata in rats is likely to be underestimated, it is

still 1.7-fold larger than our previous estimate from the same confocal images [6]. Because the

latter estimate of λ3D was computed via the disector method, we suspect it is underestimated

due to the blind-versus-nonblind bias in particle detection discussed in the previous section.

Estimation of the 3D density of clustered vesicles in mossy fiber terminals

(TEM vs. ET)

Although ϕ was indeterminable for our analysis of MFT vesicles in TEM images, it was still

possible to estimate λ3D over a range of ϕ, i.e. ϕ> ϕcutoff or ϕ = ϕcutoff–90˚. First, we computed
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λ2D of MFT vesicles (S17C Fig in S1 File) using the same TEM images used to compute their G

(d) (S15 Fig in S1 File; n = 8), giving λ2D = 305–429 μm-2. Next, we computed z = 97–60 nm

via Eq 2 (T = 60 nm) for ϕ = 38–90˚. Finally, we computed λ3D = 3200–7200 μm-3 via Eq 3.

Not surprisingly, this range of λ3D is considerably smaller than that for our 3D ET analysis of

MFT vesicles (λ3D = 9,000–11,000 μm-3). Again, similar to our analysis of GCs in confocal

images, we suspect λ3D is underestimated due to overlapping projections in thick sections (Fig

10B). To estimate the effective section depth of those vesicles counted, we assumed λ3D of the

TEM dataset was the same as that of our ET dataset and computed z = λ2D/λ3D = 31–44 nm.

This range of z is ~2-fold smaller than that estimated via Eq 2, indicating vesicles at the bottom

of the tissue sections were not counted (Fig 5B), creating an underestimation of λ3D. Hence,

this analysis lends support to our conclusion that the optimal method for estimating λ3D from

λ2D for particles with a high density is to use planar sections, in which case there will be no

interference of counting from overlapping projections. Since the thinnest possible tissue sec-

tion created via an ultramicrotome is currently on the order of a vesicle, the best option for

computing vesicle density is via ET reconstructions (Fig 11).

Discussion

Stereological methods for estimating the 3D size distribution (F(d)) and density (λ3D) of a col-

lection of particles from their 2D projection are essential tools in many fields of science. These

methods, however, inevitably contain sources of error, one being the unresolved or nonexis-

tent profiles known as lost caps. Surprisingly, the simple solution for lost caps developed by

Keiding et al. [49], which defines lost caps of spherical particles with respect to a single (i.e.

fixed) cap-angle limit (ϕ), has not been widely adopted and has never been validated. Here, we

provide the first experimental validation of the Keiding model by quantifying ϕ of unresolved

vesicle caps within 3D reconstructions. While this analysis reveals a Gaussian distribution for

ϕ rather than a single value, curve fits of the Keiding model to the 2D diameter distribution (G

(d)) nevertheless accurately estimate the mean ϕ, as well as F(d). Parameter space evaluation

with Monte Carlo simulations revealed that the estimates are most accurate when ϕ falls below

a specific value (ϕcutoff). Hence, our experimental and theoretical analyses reveal that, if one

only wishes to estimate F(d) from a 2D projection, then the Keiding model can be called to

task, whether one is using planar or thick sections. On the other hand, if one wishes to estimate

both F(d) and λ3D from a 2D projection, then one will need an accurate estimate of ϕ (Fig 13).

As we discuss below, obtaining an accurate estimate of ϕ for some preparations may require

optimising experimental conditions.

Basic assumptions of the Keiding model

There are five basic assumptions of the Keiding model [49] that one must keep in mind when

applying it to the estimation of particle size and density via Eqs 1–3.

The first assumption is that the particles of interest are approximately spherical, i.e. they are

convex with the average shape of a sphere in rotation, which includes elliptical [16]. The

assumption of a spherical shape is usually valid for vesicles, vacuoles, nuclei and cell bodies [1,

17, 44, 49, 66], but also for large structures such as follicles [16] and glomeruli [67].

The second assumption is that F(d) is well described by a probability density function

(PDF), e.g. a Gaussian, chi or gamma distribution. The assumption that F(d) was a simple

Gaussian distribution worked well for our analysis of MFT vesicles and GC nuclei (S7 Fig in

S1 File) and for the liver cell nuclei of Keiding et al. [49] (S2 Fig in S1 File). Similarly, the

assumption that F(d) was a chi distribution worked well for Wicksell’s corpuscles (S3 Fig in
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S1 File). If uncertain of the shape of F(d), one can compare fits to distributions obtained from

thick sections (T > D) where it is likely that G(d)� F(d) (Fig 2C2 and S2 Fig in S1 File).

The third assumption is that the particles have a random distribution; or if the particles are

clustered, then the clusters have a random distribution. It is not necessary that the spatial dis-

tribution is perfectly random (i.e. Poisson) but rather there is no order to the distribution. For

example, a lattice structure (e.g. hexagonal packing) would be problematic since the particles

in a 2D projection would have a discrete size distribution.

The fourth assumption is that ϕ is the same (fixed) for all particles. Because our 3D analysis

of MFT vesicles revealed not a single value for ϕ, but a range of ϕ well described by a Gaussian

distribution (CVϕ = 0.2), this assumption could be problematic. However, we found curve fits

of the Keiding model to G(d) accurately estimated the mean of this distribution (Fig 6C3 and

S8C3 Fig in S1 File). Moreover, by incorporating a Gaussian-ϕ model into our Monte Carlo

simulations, we were able to measure the bias introduced by the fixed-ϕ assumption over a

range of ϕ distributions (i.e. μϕ) and found the bias was relatively small for μϕ< ϕcutoff (S11

and S19B Fig in S1 File). Because vesicles are at the lower limit of resolution, we suspect the

spread of our measured ϕ distribution, i.e. CVϕ = 0.2, may be close to a worst-case scenario.

The fifth assumption pertains to thick sections: that they are perfectly transparent so that

one observes 2D projections of particles at the bottom of the section as well as those of particles

at the top of the section. For opaque particles with high density this assumption is clearly prob-

lematic [2, 58]. For semi-transparent particles with high density this assumption is less

Fig 13. Methods workflow for estimating the 3D size and density of spherical particles from their 2D projection. Workflow

diagram describing the sequence of steps for estimating F(d) (μD ± σD) and ϕ from G(d), and λ3D from λ2D, where G(d) and λ2D

are computed from a 2D projection of randomly distributed particles in a section of thickness T. Two check marks indicate a

negligible bias and small confidence interval compared to one check mark. Final estimates of λ3D can be converted to VF using

estimated μD ± σD (Eq 4) and compared to that computed via the relation VF = Kv�AF (Eq 14). Estimated ϕ is compared to

estimated ϕcutoff, computed via fit parameters μD and σD (Eq 9). Green and red arrows denote ‘yes’ and ‘no’ of conditional

statements.

https://doi.org/10.1371/journal.pone.0277148.g013
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problematic since overlapping projections do not necessarily preclude drawing their outline

(Fig 2C1) or counting them (S17C Fig in S1 File). Yet, one can imagine a section of enough

thickness that overlapping projections preclude outlining or counting the particles at the bot-

tom of the section. Using Monte Carlo simulations, we tested the effect of such a scenario by

removing particles from simulated projections if they experienced a total sum of overlaps

greater than a set limit. Interestingly, results of these simulations showed only a small effect on

the shape of G(d) and therefore only small biases for estimated F(d) (Fig 5C). In contrast, our

simulations of opaque particles showed a larger effect on the shape of G(d), i.e. a positive skew,

since overlapping projections coalesced into larger ones; yet, the end result was only small

biases for estimated F(d), mostly a positive bias in σD (Fig 5D). Estimates of λ3D for the same

simulations of semi-transparent and opaque particles, on the other hand, showed large under-

estimations due to a reduction in the effective z (Fig 10). Hence, violation of this fifth assump-

tion is likely to create only small biases in estimated F(d), but large biases in estimated λ3D.

Our analysis of GC somata in confocal images and MFT vesicles in TEM images, for example,

are likely examples of this scenario.

As with other model-based stereological methods, the Keiding model has a number of core

assumptions. Nevertheless, our analyses show that for approximately spherical particles these

assumptions are either reasonable or can be circumvented with the correct experimental

paradigm.

Experimental considerations for optimising the detection of small caps and

minimising the cap-angle limit ϕ
Our analysis shows that estimates of F(d) and λ3D are most accurate when true ϕ< ϕcutoff

(Figs 4C and 10B). To minimise ϕ, one needs to visually detect a wide spectrum of cap sizes

within a 2D projection (i.e. sample as much of G(d) as possible). Here, we suggest experimen-

tal conditions/recommendations that could help optimise particle cap detection. First, sections

should be thin (T� 0.3 u.d.) to planar (T� 0 u.d.) to avoid overlaps in the particle projections;

the use of planar sections is particularly important for particles with a high density. Thin or

planar sections can be achieved via ultrathin tissue sections (e.g. an ultramicrotome for TEM)

or a high axial resolution of the microscope (ρz; e.g. confocal imaging or ET). Second, the lat-

eral resolution of the microscope (ρxy) and image (Sxy) should be high with respect to the size

of the particle. Third, the efficiency of particle staining and contrast between the particles and

their surrounding environment should be high. Fourth, surfaces of the tissue sections should

be avoided when creating images, e.g. using guard zones in the axial axis, to avoid lost caps of

the nonexistent type; this scenario occurs when caps fall off the surfaces of the tissue sections

or the microtome fails to transect particles during sectioning [27, 46–48]. Fifth, if the images

to analyse exist within a z-stack, cap identification should be performed in a nonblind manner,

i.e. by tracking particles through adjacent planes of the z-stack.

Given these considerations, our most suitable preparation for computing G(d) was that of

the GC nuclei in high-resolution TEM images, where there were few lost caps and a small ϕ
(10–20˚). For these datasets, the tissue sections were planar (T� 0.01 u.d.) and the lateral reso-

lution of the microscope was high with respect to the nuclei (ρxy = 1 × 10-4 u.d.; Table 1).

Moreover, the GC nuclei were easy to identify and delineate due to their dark spotted appear-

ance. In contrast, our analysis of GC somata in confocal images gave a larger number of lost

caps and larger ϕ (37˚). For this dataset, the optical sections were not planar (T� 0.3 u.d), the

lateral resolution of the microscope was comparatively low (ρxy = 0.06 u.d.) and, due to the

opaque immunolabeling and dense packing of the somata, the task of delineating between

adjacent somata was more difficult compared to that of the nuclei in TEM images.
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Our least successful analysis for computing a complete G(d) was that of MFT vesicles. For

example, our blind analysis of MFT vesicles in ET images resulted in a large number of lost

caps and a large ϕ = 56–63˚ (Fig 7). This result is surprising given the virtual ET sections were

thin in comparison to the vesicles (estimated ρz = 0.13 u.d.) and the relative lateral resolution

(ρx = 0.09 u.d.) was comparable to that of the confocal images of GC somata. Even when the

analysis was repeated in a nonblind manner, i.e. by tracking the vesicles through multiple

planes of the ET z-stack, and dramatically reducing the number of lost caps, the resulting ϕ
(~40˚) was only on par with that of the GC somata dataset. These results suggest the small size

of synaptic vesicles places them at the lower limits of cap detection with respect to microscope

resolution and image contrast. Similar to our blind analysis of MFT vesicles in ET images, our

analysis of MFT vesicles in high-resolution TEM images resulted in a large number of lost caps

and an estimated ϕ> ϕcutoff. For this dataset, the tissue sections were thick in comparison to

the vesicles (T� 1.3 u.d.) but the lateral resolution was comparatively high (ρxy� 0.01 u.d.).

The large estimated ϕ for this dataset is consistent with a blind cap detection and may also

reflect the difficulty of identifying caps in thick sections with a high vesicle density. The

absence of vesicle caps observed in thick sections has previously been noted [55, 57]. In gen-

eral, the results from our ET and TEM image analysis highlight the difficulty in computing a

complete G(d) of MFT vesicles due to their small size. However, the inability to estimate ϕ for

the MFT vesicles does not necessarily preclude obtaining an accurate estimate of their 3D size

distribution (Fig 4).

Section thickness, axial distortions and the advantages of using planar

sections

To convert measures of λ2D to estimates of λ3D, both 2D model-based and 3D design-based

stereological methods divide λ2D by an estimate of the particle sampling space along the axial

axis. For 2D methods, the axial sampling space is z in Eq 3, which is a function of μD and sec-

tion thickness (T). For 3D disector methods, the axial sampling space is the distance between

the reference and lookup sections (H). For both methods, sections are either physical tissue

sections, in which case T and H are measures of the thickness of the tissue, or optical sections,

in which case T is a measure of the axial resolution of the microscope (ρz) and H is the distance

between optical sections. Hence, to obtain an accurate estimate of λ3D, one must consider

obtaining an accurate measure of T or H [2, 25, 26, 45, 68]. However, distortions of particle

density along the axial axis of tissue sections must also be considered [2, 28, 30, 48, 69, 70];

these include uniform shrinkage and differential deformations along the axial axis, and lost

caps at the surfaces of the sections (i.e. nonexistent caps).

The challenges of estimating T and avoiding axial distortions of particle density also pertain

to serial 3D reconstructions. Hence, the reason 3D reconstructions should not automatically

be assumed to be the ‘gold standard’. For the 3D reconstructions used in this study, we avoided

lost caps of the nonexistent type by avoiding the section surfaces. Moreover, the isotropic ori-

entation of the vesicles allowed us to estimate the axial tissue shrinkage (S6B Fig in S1 File)

which for EM can be considerable depending on the amount of electron beam exposure [71].

Finally, plots of vesicle density as a function of z-depth allowed us to verify that λ3D was com-

puted within a homogeneous vesicle distribution (Fig 11A2 and 11B). Hence, estimation of

λ3D from 3D reconstructions in this study was quite involved.

With these axial-axes difficulties in mind, it becomes clear that the 2D methods have a dis-

tinct advantage over the 3D methods in that they can effectively remove T from the estimation

of λ3D by using planar sections. Under this condition, any bias due to an inaccurate estimate of

T or uniform tissue shrinkage along the axial axis would be small. Hence, the 2D ϕ-correction
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method for estimating λ3D, when applied to data derived from planar sections, is potentially

the most accurate method of estimating λ3D. However, planar sections come with their own

challenges. First, planar sections can be technically challenging and costly to achieve, perhaps

requiring TEM or ET. Second, due to the use of high-resolution microscopy, planar sections

are likely to have a significantly smaller field of view, potentially creating bias if particles have a

nonhomogeneous distribution. A smaller field of view, however, is not strictly prohibitive

since it can be counteracted by analysing more images that have been acquired using a design-

based random sampling strategy [72, 73].

Our recommendation for the use of planar sections with 2D methods is counter to previous

recommendations of using thick sections [25, 26, 47]. The reasoning put forth for using thick

sections is that any bias introduced by lost caps (which affects the magnitude of μD in Eq 3)

will be relatively small in comparison to T. However, this approach will only be valid if parti-

cles have a low density, one can reliably count particles at the bottom of the sections, one has a

good measure of T and one can correct for any distortions of particle density along the axial

axis, as discussed above. Moreover, our analysis indicates that when sections are thick, most

caps are likely to be lost, in which case ϕ will be close to 90˚ and indeterminable (Fig 9). In the

case of an indeterminable ϕ, one can use a range of ϕ (e.g. ϕcutoff–90˚) to estimate λ3D. This

would be an improvement over using the Abercrombie correction [17] that assumes no caps

are lost (ϕ = 0˚) or dmin correction [47] (or equivalent hmin correction [42]) since dmin is not a

good measure of the lost-cap distribution when ϕ> 20˚ (S1 Appendix in S1 File).

The cap-angle limit ϕ in previous studies

Although ϕ was never reported for Wicksell’s spleen corpuscles [16], our curve-fit analysis of

Wicksell’s G(d), which produced an estimated F(d) that matched that of Wicksell, resulted in

ϕ = 25˚ with a small fit error of 3˚ (S3 Fig in S1 File). In the Wicksell study, the corpuscles

were large (μD = 323 μm) in comparison to the tissue section (18 μm), in which case T� 0.06

u.d. Hence, the small estimated ϕ for Wicksell’s dataset is consistent with that of our GC nuclei

in planar sections where ϕ = 20˚.

Another study of GC nuclei [66] computed a lost-caps correction factor f = 0.978. If one

expresses f as a cap-angle limit, then ϕ = cos-1(f) = 12˚. This ϕ is smaller than that computed for

the GC nuclei in this study (20˚), which is unexpected given Harvey and Napper used thin sec-

tions (T� 0.3) and light microscopy compared to planar sections and TEM. It seems likely that

the smaller ϕ of Harvey and Napper is due to their use of dmin to estimate f, in which case f is likely

to be underestimated since dmin< dϕ with high probability (S1 Appendix in S1 File; Fig 3B–3D).

A previous study of vesicles within mineralized cartilage matrix estimated ϕ = 60˚ using an

unfolding method that included the Keiding model [44]. In this study, matrix vesicles had an

average diameter of 70 nm and the average section thickness was 28.5 nm [74], in which case T

� 0.4 u.d. These results are consistent with those of our blind analysis of MFT vesicles in TEM

images where estimated ϕ> 50˚. Since ϕ was indeterminable for this blind analysis (Fig 9), the

estimate of ϕ for the matrix vesicles is likely to suffer the same problem. To improve our esti-

mate for MFT vesicles, we performed a nonblind cap detection in planar sections of ET z-

stacks to obtain ϕ< ϕcuttoff (Fig 6 and S8 Fig in S1 File).

The analysis of liver cell nuclei in thick sections (T� 1 u.d.) by Keiding et al. [49] resulted

in estimated ϕ = 70–85˚ (Table 4) with a large estimation error (their Table 3). Using their

estimated μD, σD and N, we computed ϕcutoff� 43–54˚ via Eq 9, indicating their estimated ϕ>
ϕcutoff, i.e. ϕ was indeterminable. Hence, the results of Keiding et al. also parallels that of our

blind analysis of vesicles in thick sections where estimated ϕ> ϕcutoff with a large estimation

error (Fig 9).
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In summary, the results from this and previous studies reveal a wide range of ϕ, highlight-

ing the fact that ϕ is highly dependent on the experimental conditions. However, thin or planar

sections are best for obtaining ϕ< ϕcutoff. Hence, if one wishes to accurately estimate ϕ, which

is necessary for estimating λ3D via Eq 3, then one should use thin or planar sections and, if pos-

sible, adopt the other recommendations for optimising cap detection discussed above.

Distribution-based versus distribution-free methods and the assumption F

(d) is Gaussian

Both the LSE method used in this study and the MLE method of Keiding et al. [49] are distri-

bution-based (i.e. parametric) methods for estimating F(d) and ϕ from G(d) since both models

assume a statistical model for F(d), e.g. a Gaussian, chi or gamma distribution. By contrast, dis-

tribution-free methods, also known as non-parametric methods or unfolding algorithms, have

been extensively used in various scientific fields [2]. There are advantages and disadvantages to

both methods and we refer the reader elsewhere for discussions [49, 50, 75, 76]. However, the

advantages of using a distribution-based rather than distribution-free method are that it is

more exact and stable and does not create implausible negative probabilities for F(d). More-

over, as we have demonstrated here, a distribution-based method allows one to accurately esti-

mate ϕ, which can subsequently be used to estimate λ3D from λ2D via Eq 3.

There are multiple pieces of evidence that suggest a Gaussian F(d) is valid for our samples

of GC somata and nuclei and MFT vesicles. First, curve fits of the Keiding model to G(d),

where F(d) is assumed to be a Gaussian distribution, showed excellent agreement for the GC

somata and nuclei and MFT vesicles (S12–S16 Figs in S1 File). Moreover, repeating the same

curve fits, but assuming a chi or gamma distribution for F(d), resulted in the same Gaussian

solutions for F(d) (i.e. large f; S14C and S16C Figs in S1 File). Finally, our curve fits of Gauss-

ian, chi and gamma distributions to F(d) computed from ET z-stacks of MFT vesicles and a

TEM z-stack of GC nuclei converged to the same Gaussian solution (S7 Fig in S1 File). Inter-

estingly, the MLE fits of Keiding et al. [49] to G(d) of liver cell nuclei, which assume a chi dis-

tribution for F(d), also converge to a Gaussian F(d) (i.e. large f). Our replication of the MLE

fits shows that assuming either a chi or Gaussian distribution for F(d) makes little difference in

the shape of the curve fits or final estimates of μD, σD and ϕ (Table 4; S2 Fig in S1 File).

While our study focused on F(d) described by a Gaussian model, our findings should be

applicable to F(d) described by other statistical models. Moreover, our numerical solutions of

the Keiding model, which have been incorporated into the latest version of the analysis pack-

age NeuroMatic [53], can be readily used as templates for creating new models that assume

Table 4. Replication of the original Keiding-model fits to G(d) of human liver cell nuclei.

Patient 601 Patient 2003 Patient 1037

Fit MLE LSE MLE LSE MLE LSE Units

μD 6.21 6.19 6.41 6.39 7.08 7.07 μm

σD 0.43 0.46 0.31 0.32 0.60 0.58 μm

ϕ 72.5˚ 90.3˚ 85.0˚ 86.2˚ 70.0˚ 70.6˚ ˚

p1 0.889 0.888 0.864 0.866 0.887 0.874

p2 0.109 0.113 0.122 0.120 0.100 0.109

χ2 0.040 0.034 0.042 0.039 0.016 0.014

ϕcutoff 48˚ 46˚ 54˚ 54˚ 43˚ 44˚ ˚

MLE values of Table 2 of Keiding et al. [49] where μD and σD were computed from f and β (Eq 6), and equivalent LSE values from this study (S2 Fig in S1 File). Note,

estimated ϕ > ϕcutoff, where ϕcutoff was computed via Eq 9 using estimated μD and σD (n = 500). Hence, ϕ is considered indeterminable.

https://doi.org/10.1371/journal.pone.0277148.t004
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other distributions for F(d). They can also be adapted to fit G(d) with multiple peaks (S2 Fig in

S1 File) as previously described [49].

Comparison of the Keiding model to the disector method

While our simulations of the disector method for estimating λ3D show no biases due to lost

caps, as previously hypothesised [52], this was only true if the identification of caps on the ref-

erence and lookup sections were equally probable, since any bias due to lost caps on the refer-

ence section cancelled that on the lookup section. However, nearly all disector analyses are

performed sequentially, with a blind particle detection on the reference section followed by a

nonblind particle detection on the lookup section, in which case there is an increased probabil-

ity of identifying caps on the lookup section (a scenario proposed by Hedreen [27]). When

such an asymmetrical bias was added to our simulations, there was an underestimation error

of λ3D that was large even for small degrees of bias. Using the blind-versus-nonblind bias in

particle detection measured from our analysis of MFT vesicles (ϕbias = 20˚), for example, we

found a large underestimation error (Δλ3D = -40%; Fig 12). Interestingly, an underestimation

counting error of -15% for adjacent reference and lookup sections has been previously

reported and attributed to lost caps [63]. To remove the blind-versus-nonblind bias in the dis-

ector method, Hedreen [27] suggests using a third section immediately below the reference

section to guide the identification of caps in the reference section, i.e. a nonblind-nonblind

particle detection.

Besides the potential underestimation error due to the blind-versus-nonblind bias in identi-

fying caps, the low particle count of the disector method makes it inherently less accurate in

estimating λ3D compared to the ϕ-correction method. Our simulations indicate that, given the

same number of particles per projection, the disector method is ~2 to 3-fold less accurate than

the ϕ-correction method due to the smaller counts per section. To get the same level of accu-

racy one would need to increase the cross-sectional area of the section (or ROI) by ~4-fold.

Hence, the ϕ-correction method for estimating λ3D is potentially more efficient and accurate

than the disector method.

Finally, for particles with a high density, especially those that are touching one another (e.g.

cerebellar GCs and MFT vesicles), the disector method is not recommended [18]. In this case,

the ϕ-correction method can be used in conjunction with planar sections. That said, it is

important to keep in mind that the ϕ-correction method requires an accurate estimate of ϕ,

which is not always possible for a given particle and imaging technique, and is designed for

particles with a spherical geometry.

Comparison of the Keiding model to alternative model-based and design-

based stereological methods

Since the onset of design-based stereological methods in the 1980s, there has been considerable

debate about the merits of these methods in comparison to the older model-based stereological

methods [20, 22–30, 51, 77]. Much of the debate has stemmed from the large variability in esti-

mates of 3D particle counts (i.e. λ3D) within studies using model-based methods, i.e. the Aber-

crombie [17] or Floderus [42] correction, or between studies using either model-based or

design-based methods. Our analysis of the two methods hopefully sheds light on the source of

those variabilities: there are potential biases in both model-based and design-based counting

methods. The Abercrombie correction [17], for example, is likely to underestimate λ3D since it

assumes no caps are lost (ϕ = 0˚), and the Floderus hmin correction [42], or equivalent Konigs-

mark dmin correction [47], is likely to underestimate λ3D since it assumes all particles are the

same size (S1 Appendix in S1 File). The use of dmin (or hmin) to correct for lost caps is also
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problematic since this measure is susceptible to being an outlier (e.g. a single false-positive

measurement). Moreover, those using the Abercrombie and Floderus corrections typically use

approximate measures of μD, potentially adding an additional bias. As discussed above, the

design-based disector method has been deemed unbiased at its conception [52]; however, our

analysis of this method has confirmed that a blind-versus-nonblind bias in particle detection,

as proposed by Hedreen [27], leads to an underestimation of λ3D. Moreover, biases due to

inaccurate measures of section thickness (T) and z-axis tissue distortions can lead to significant

biases in estimated λ3D for both design-based and model-based methods, as discussed above.

Hence, it is not surprising that comparisons of estimated λ3D between model-based and

design-based methods show large discrepancies. Our analysis supports the conclusion that nei-

ther model-based or design-based methods should automatically be assumed unbiased [25, 26]

and both methods need to be verified/calibrated, preferably via 3D reconstructions [24, 28, 29,

51]. Yet, 3D reconstructions should not automatically be assumed to be the ‘gold standard’

due to potential z-axis distortions of tissue sections, as discussed above.

Here, we validated a model-based ϕ-correction method for estimating λ3D [49, 50] that has

been long overlooked since the 1970s, most likely since design-based methods have become

the defacto tools in modern stereology. Results of the validation show the ϕ-correction method

can estimate λ3D with high accuracy. A high accuracy is achieved via a superior model of the

lost-cap distribution, i.e. the Keiding model, that represents the mean cap-angle limit of a pop-

ulation of spherical particles. Moreover, use of an LSE routine (or MLE routine) allows one to

use all measured 2D diameters (i.e. G(d)) to estimate ϕ, which is a significant improvement to

using dmin, a single measure that is likely to be an outlier, and also gives an accurate estimate

of μD. Comparison of estimated λ3D computed via the ϕ-correction method to that computed

via the Abercrombie and Floderus correction methods show biases (underestimations) in the

latter corrections by as much as 20% for our MFT vesicle dataset (Table 5).

To estimate particle size, we used outlines to compute the cross-sectional area of a particle’s

projection in 2D images, which is equivalent to a high-resolution design-based point-grid

method, since pixels define a grid [72]. Because particles are never perfect spheres, cross-sec-

tional area is a better measure of 2D size than the commonly used diameter line-segment mea-

sures dlong and dshort (Table 6) and is consistent with methods for creating 3D reconstructions.

Moreover, the cross-sectional areas can be used to estimate particle density via the VF = Kv�AF

relation (Eq 14). To estimate F(d), we computed G(d) from the equivalent diameters of the

cross-sectional areas (darea) and curve fitted Eq 1 to G(d) using an LSE algorithm. This method

provides accurate measures of both μD and σD, even when true ϕ> ϕcutoff. Hence, the Keiding

model offers a simple and efficient means of accurately estimating F(d). The design-based

nucleator and rotator methods, on the other hand, which are used in conjunction with the

Table 5. Comparison of λ3D estimated via the Keiding model, Abercrombie correction or Konigsmark (dmin) correction.

z = T + μD�cosθmin z = T + μD

Particle Image ϕ θmin Δz Δλ3D Δz Δλ3D

GC soma Confo 37˚ 27˚ +9% -8% +19% -12%

GC nucleus TEM 20˚ 17˚ +2% -2% +6% -6%

MFT vesicle ET10-z 41˚ 18˚ +26% -20% +32% -24%

MFT vesicle ET11-z 42˚ 26˚ +20% -13% +34% -22%

Confo: confocal. Mean ϕ from Tables 2 and 3. θmin = sin-1(dmin/μD), used in Eqs 2 and 3 as a substitute for ϕ. Right column: Abercrombie correction [17], which

assumes no lost caps (θmin = 0˚). Δ = 100[X(θmin)–X(ϕ)]/X(ϕ) where X = z and λ3D. For vesicles, comparisons are with respect to ‘true’ measured z and λ3D computed

via 3D reconstructions. See S1 Appendix in S1 File.

https://doi.org/10.1371/journal.pone.0277148.t005
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disector method [18, 21], only provide estimates of mean particle volume, are more time con-

suming since they require multiple line-segment measurements per particle and are potentially

less accurate due to the low particle count of the disector method.

Hence, our analysis of the Keiding model demonstrates that a model-based approach to

estimating the size and density of spherical particles can offer high levels of accuracy. This

approach can be used in conjunction with the design-based random sampling strategies to

avoid sampling biases [20, 69, 72, 73].

Conclusions

Here, we provide the first experimental and theoretical validation of the lost-cap model for

spherical particles by Keiding et al. [49], demonstrating the model estimates F(d) and ϕ from

G(d) with high accuracy, so long as estimated ϕ< ϕcutoff (Eq 9). The model also estimates λ3D

from λ2D with high accuracy (Eq 3) and is potentially more accurate than the disector method.

Our distribution-based LSE algorithm has been incorporated into the open-source software

package NeuroMatic [53], making it accessible and easy to use. Our finding that density mea-

sures from thick sections were consistently smaller than those from planar sections highlights

the difficulty of measuring λ3D for particles with a high density in thick sections. However, the

necessity for using thin or planar sections is becoming less problematic with advances in trans-

mission and scanning EM [13, 15] and super-resolution optical methods such as 3D stimulated

emission depletion (STED) [78], which achieve higher axial resolutions than traditional EM

and confocal microscopes. Moreover, our results should be applicable for preparations with a

low particle density, where accurate estimates of size and density are likely to be achieved even

with thick sections. In the future it would be interesting to combine our density and size analy-

sis with machine learning algorithms for identifying projections of spherical particles [79, 80]

as this would further speed up the analysis. Such an approach may detect lost caps more effec-

tively than a trained researcher, leading to better estimates of F(d) and λ3D. We hope that our

validation of the lost-cap model of Keiding et al. will pave the way for the model to become

more widely adopted across a wide range of research fields.

Materials and methods

Transmission electron microscopy of cerebellar sections

Acute sagittal sections of the cerebellar vermis (~200 μm thick) were prepared from 2 male

and 2 female C57B6/J WT mice (P26–31; Charles River Germany, from the Jackson Labora-

tory; line #000664; RRID:IMSR_JAX:000664) in ice-cold high-sucrose artificial cerebrospinal

fluid (ACSF; 87 mM NaCl, 25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 10 mM glu-

cose, 75 mM sucrose, 0.5 mM CaCl2, and 7 mM MgCl2, equilibrated with 95% O2 and 5%

Table 6. 2D diameter measures compared to darea.

Particle Image dlong dshort dgeometric davg

GC soma Confo +15% ��� -13% ��� -0% +1% �

GC nucleus TEM +17% ��� -21% ��� -5% ��� -2% ���

MFT vesicle TEM +2% �� -12% ��� -5% ��� -5% ���

MFT vesicle ET11-z +0% -20% ��� -11% ��� -10% ���

Confo: confocal. Percent difference (Δ) measured with respect to darea. Significance measured via paired t-tests in comparison to darea (�p < 0.05

��p < 0.01

���p < 0.001). There were 50 particles per sample.

https://doi.org/10.1371/journal.pone.0277148.t006
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CO2, 325 mOsm) using a Leica microsystems vibratome (VT1200S) as previously described

[3]. Sections were allowed to recover in high-sucrose ACSF at 35˚C for 30–45 min, then in

normal ACSF (125 mM NaCl, 25 mM NaHCO3, 25 mM D-glucose, 2.5 mM KCl, 1.25 mM

NaH2PO4, 2 mM CaCl2, and 1 mM MgCl2, equilibrated with 5% CO2 and 95% O2) at room

temperature (~23˚C).

To prepare the cerebellar sections for high-pressure freezing, sections were heated to 37˚C

for 5–10 minutes in ACSF, then mounted into a sample ‘sandwich’ on a table maintained at

37˚C. The sample sandwich was assembled by placing a 6 mm sapphire disk on the middle

plate of a transparent cartridge system, followed by a spacer ring, the section, a drop of ACSF

containing 15% of polyvinylpyrrolidone for cryoprotection and adhesion, another sapphire

disk and finally a spacer ring. The sample sandwich was frozen via a Leica EM ICE high-pres-

sure freezing machine.

Freeze substitution of the frozen samples was performed using an AFS1 or AFS4 Leica sys-

tem equipped with an agitation module [81]. While in liquid nitrogen, frozen samples were

transferred from storage vials to freeze-substitution vials containing 0.1% tannic acid and ace-

tone, previously frozen in liquid nitrogen. Vials were transferred to the AFS1/AFS4 system

and shaken for 22–24 hours at -90˚C. Inside the AFS1/AFS4 system, samples were washed for

10 minutes in pre-chilled acetone at -90˚C for 3–4 repetitions. Next, a contrasting cocktail

with 2% osmium and 0.2% uranyl acetate in acetone was chilled to -90˚C and added to each

vial. The temperature of the vials was kept at -90˚C for 7–10 hours, raised to -60˚C within 2

hours (15˚C/hour), kept at -60˚C for 3.5 hours, raised to -30˚C within 4 hours (7.5˚C/hour),

kept at -30˚C for 3.5 hours, raised to 0˚C within 3 hours (10˚C/hour), kept at 0˚C for ~10 min,

then transferred to ice where samples were washed with acetone (3 × 10 min). Samples were

transferred from the vials to glass dishes containing acetone at room temperature and

inspected for intactness and proper infiltration. Samples were washed with propylene oxide

(2 × 10 min) and infiltrated with Durcupan resin at 2:1, 1:1 and 1:2 propylene oxide/Durcupan

resin mixtures (1 hour at room temperature). Samples were left in pure resin overnight at

room temperature, embedded in BEEM capsules (Electron Microscopy Sciences, Hatfield, PA,

USA) and allowed to polymerize over a second night at 100˚C. Samples were trimmed with

glass knives and cut into ultrathin (~60 nm) sections via a Leica EM UC7 Ultramicrotome

with Diatome Histo diamond knife (6 mm, 45˚). Sections were placed in formvar-coated slot

grids and post-stained in 2% uranyl acetate for 10 minutes, then lead citrate for 2 minutes. Sec-

tions were imaged via a transmission electron microscope (FEI Tecnai 10, 80 kV accelerating

voltage) with an OSIS Megaview III camera and Radius acquisition software.

Mice were bred in a colony maintained in the preclinical animal facility at IST Austria. All

procedures strictly complied with IST Austria, Austrian, and European ethical regulations for

animal experiments, and were approved by the Bundesministerium für Wissenschaft, For-

schung und Wirtschaft of Austria (BMWFW-66.018/0010-WF/V/3b/2015 and BMWFW-

66.018/0008-V/3b/2018).

Electron tomography of cerebellar sections

One male C57Bl6 WT mouse (P30) was anaesthetized with ketamine and transcardially per-

fused with 2% paraformaldehyde and 1% glutaraldehyde in 0.1 M Na-acetate buffer for 2 min,

then 2% paraformaldehyde and 1% glutaraldehyde in 0.1 M Na-borate buffer for one hour.

After perfusion, the mouse’s brain was dissected and 60 μm sections were cut from the cerebel-

lar vermis. Sections were treated with 1% OsO4, stained in 1% uranyl acetate, dehydrated in a

graded series of ethanol and embedded in epoxy resin (Durcupan). From the embedded sec-

tions, serial sections ~200 nm thick were cut with a Leica Ultramicrotome EM UCT and
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collected onto copper slot grids, where fiducial markers were introduced at both sides of the

grids. Single-axis tilt series were acquired via an FEI Tecnai G2 Spirit BioTWIN transmission

EM (0.34 nm line resolution) operating at 120 kV and equipped with an Eagle 4K HS digital

camera (FEI, Eindhoven, The Netherlands). Tilt series were recorded between ±65˚ (with 2˚

increments between ±45˚, then 1˚ increments) at 30,000× magnification (Sxy = Sz = 0.38 nm/

voxel) using FEI Xplore3D. Tomographic subvolumes were reconstructed using IMOD

(RRID:SCR_003297) and exported as z-stack images (Sxy = 1.14 nm/pixel). Two different z-

stacks of MFT vesicles were analysed in this study, denoted ET10 and ET11.

The mouse was housed in the vivarium of the Institute of Experimental Medicine in a nor-

mal 12 hour/12 hour light/dark cycle and had access to water and food ad libitum. The experi-

ment was carried out in accordance with the Hungarian Act of Animal Care and

Experimentation 40/2013 (II.14) and with the ethical guidelines of the Institute of Experimen-

tal Medicine Protection of Research Subjects Committee.

Analysis of 2D projections

From 2D images, outlines of particles (i.e. somata, nuclei and vesicles) were drawn using Fiji’s

freehand tool [82] (RRID:SCR_002285; https://imagej.net/Fiji) and an equivalent diameter

was computed from the area of each outline (darea = 2(area/π)½) [57, 59]. To avoid introducing

bias by pooling data from multiple researchers [55], outlines were drawn by a single author

(JSR). To avoid selection bias, e.g. outlining only the largest particles, an attempt was made to

outline all visually identifiable particles within each selected ROI. Histograms of darea, i.e. G

(d), were computed as counts per bin, then normalised to give a probability density by dividing

the count within each bin by the product of the total number of diameters and the bin size.

Images and associated analyses are denoted with identification (ID) tags for the rat confocal

images (R1, R5, R6) and mouse TEM images (M15, M18, M19, M21).

A numerical approximation for G(d) as defined in Eq 1 was computed via Igor Pro (RRID:

SCR_000325; WaveMetrics, Portland, Oregon) where the integral in this equation was solved

via an adaptive Gaussian quadrature integration routine (Integrate1D), avoiding the singular-

ity in the denominator by setting the denominator to 1 × 10-7 when d = y. The same numerical

approximation was used to curve fit Eq 1 to our simulated and experimental G(d) via Igor

Pro’s CurveFit operation, using the Levenberg-Marquardt LSE algorithm. F(d) in Eq 1 was

assumed to be a Gaussian function (Eq 5) unless specified. The estimated error of each fit

parameter is reported as ±1 standard deviation (±σ). During the fit routine, parameter T was

fixed at its estimated value, except where noted. The initial guess for ϕ was set to θmin, where

θmin = sin-1(dmin/μD) and dmin is the smallest non-zero diameter bin of G(d). Initial guesses

for μD and σD were set to μ and σ of G(d), where μ was computed as the sum of d�G(d)�h over

all bins and σ2 was computed as the sum of (d–μ)2�G(d)�h (h is the histogram bin size). For a

small number of fits to the simulated G(d), usually for conditions of true ϕ> ϕcutoff, initial

guesses had to be adjusted to get a successful fit. No parameters were constrained during the

fits (e.g. 0� ϕ� 90˚) since testing of the LSE routine using a variety of datasets showed such

constraints were never active or violated during the test fits. To validate the LSE routine, the

MLE fits of Keiding et al. [49] were replicated, showing nearly identical results (Table 4; S2 Fig

in S1 File). Likewise, an LSE fit to Wicksell’s G(d) of spleen corpuscles [16] resulted in an esti-

mated F(d) that was nearly the same to that of Wicksell’s unfolding solution (S3 Fig in S1 File).

The distribution of lost caps, L(d), was computed from G(d) via Eq 1 for T = 0 u.d. as fol-

lows: L(d, ϕ) = G(d, ϕ = 0˚)–G(d, ϕ), where G(d, ϕ = 0˚) and G(d, ϕ) were computed over the

range d = 0–3 u.d. and G(d, ϕ) was normalised so that its last data point at d = 3 u.d. equaled

that of G(d, ϕ = 0˚).
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To compute λ2D from a 2D image using Fiji, a rectangular ROI was defined within a distri-

bution of the particles of interest and two adjacent borders were designated as inclusive and

the other two as exclusive (S17 Fig in S1 File). Particles were counted if they touched the inclu-

sive borders or were completely contained within the ROI, and not counted if they touched

the exclusive border [83]. λ2D was computed as the particle count (N2D) divided by the ROI

area. Using λ2D, μD and ϕ, λ3D was estimated via Eq 3, in which case it was important that λ2D

was computed from the same image (or z-stack) from which μD and ϕ were estimated, since

there was variation in μD and ϕ between sections. The following expression was used to com-

pute the particle VF for a given λ3D and F(d):

VF ¼ l3D �max
Z

F yð Þ
4p

3
ð1=2yÞ3dy

� �

Eq 4

where F(d) is a PDF (Eq 5), max is the maximum value and y is the variable of integration. The

particle area fraction (AF) was computed by summing the area of the particle outlines located

within a given ROI and dividing the summed area by the ROI area. For the confocal and TEM

datasets, outlines of those particles transected by the 4 ROI borders were clipped at the bor-

ders. For the ET datasets, complete (unclipped) outlines of those particles transected by the 2

inclusive borders were included in the analysis, while none of the area of those particles tran-

sected by the 2 exclusive borders were included.

Measurements of diameters and density were analysed using NeuroMatic [53] (RRID:

SCR_004186; Key Resources), an acquisition, analysis and simulation tool that runs within the

Igor Pro environment. Functions for Eq 1 have been incorporated into the latest version of

NeuroMatic which can be accessed via NeuroMatic’s analysis Fit tab, or Igor Pro’s analysis

Curve Fitting graphical user interface or Global Fit package. These functions (NMKeiding-

Gauss, NMKeidingChi and NMKeidingGamma) assume either a Gaussian, chi or gamma

PDF for F(d) (Eqs 5–7) and can be readily used as templates for creating new Keiding models

that assume other PDFs.

Probability density functions (PDFs)

PDFs (e.g. F(d)) were described by either a Gaussian, chi or gamma distribution. The Gaussian

distribution was as follows:

Gauss dð Þ ¼
1

sð2pÞ
1=2
exp �

1

2

d � m
s

� �2
" #

Eq 5

where d is the independent variable (e.g. diameter), and μ and σ are the mean and standard

deviation of the distribution. The chi distribution was the same as that used by Keding et al.

[49]:

Chi dð Þ ¼
1

2o� 1b
o
GðoÞ

df � 1exp �
d2

2b

� �

Eq 6

where f denotes the number of degrees of freedom, ω = ½f, β the scale parameter and Γ the

gamma function. Given f and β, one can compute the distribution μ = γ(2β)½ and σ2 = β(f–
2γ2) where γ = Γ(ω + ½)/Γ(ω) (Eq 3.2 of Keiding et al.). The gamma distribution was as fol-

lows:

Gamma dð Þ ¼
1

b
f
Gðf Þ

ðd � d0Þ
f � 1exp �

d � d0

b

� �

Eq 7
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where d0 is an x-axis offset parameter added for flexibility. Given f and β, one can compute the

distribution μ = d0 + f�β and σ2 = f�β2. Note, both the chi and gamma distribution converge to

a Gaussian distribution as f!1. Hence, a large f indicates a Gaussian-like distribution.

Monte Carlo simulations

2D projections of spherical particles were simulated using D3D, a reaction-diffusion simula-

tion package that includes a Monte Carlo algorithm for distributing non-overlapping hard

spheres in arbitrary 3D geometries [5] (Key Resources). Spherical particles were randomly dis-

tributed in a rectangular cuboid using periodic boundary conditions (S1 Fig in S1 File). The

xy-square dimensions of the cuboid were adjusted to accommodate the required number of

particles per projection, and the z-dimension was adjusted to accommodate the required num-

ber of projections. The particle VF = 0.40 unless specified. 3D particle diameters (D) were ran-

domly drawn from a Gaussian distribution for a given F(d). Projections in the xy-plane were

computed by identifying those particles with their center point located within a given section

(interior particles), and those with their center point located above or below the section (caps)

at a distance dz, where dz < D/2. The 2D projected diameter (d) was computed as d = D for an

interior particle and d = (D2 – 4dz2)½ for a cap, derived from the trigonometric relation:

(½D)2 = (½d)2 + dz2. A particle’s cap angle was computed as θ = sin-1(d/D). Other measures

computed for each particle were the particle’s distance from the section surface and the sum of

overlaps within the xy-projection (O; circle-circle overlaps expressed as a fraction) between the

given particle and particles higher in the section. To simulate lost caps, particles were excluded

from the projection if their θ was less than a fixed lower limit (ϕ), as in the Keiding model [49].

For a few simulations, however, ϕ was not fixed but variable, in which case particles were

assigned a ϕ randomly drawn from a Gaussian distribution (μϕ ± σϕ) for a given CVϕ. To sim-

ulate the inability to observe particles deep in the section due to overlapping projections, parti-

cles were excluded from the projection if their O was greater than a fixed upper limit (ψ). To

simulate the merging of circular projections for opaque particles, the xy-distance between two

projections was computed according to the α-parameter of Hilliard [58]: α = (½d1�d2)(4d12
2 –

d1
2 –d2

2), where d1 and d2 are the projection diameters and d12 is the distance between the pro-

jection center points; if -1 < α< 0, then the projections were merged into one, resulting in a

decrease in projection count and increase in projection size. The procedure for merging pro-

jections began with the particle closest to the section surface, which was then merged with

other particles if -1< α< 0. The merging procedure continued with the next particle closest

to the section surface, and so on. To compute λ2D, the number of particles in a projection was

divided by the geometry Areaxy. Because periodic boundary conditions were used in the simu-

lations (S1 Fig in S1 File), this λ2D is equivalent to one computed using inclusive/exclusive rect-

angular borders for counting (S17 Fig in S1 File).

To simulate the disector method of computing density [18, 52], particles with a Gaussian F

(d) were randomly distributed within a cuboid geometry whose xy-square dimensions were

adjusted to accommodate ~500 particles per projection, and the z-dimension was adjusted to

accommodate 100 sections with T = 0.3 u.d. To compute the density of a given section, a pro-

jection was computed for that section (the reference projection) as well as an adjacent section

of equal thickness (the lookup projection). Particles were counted if they appeared within the

reference projection but not the lookup projection. λ2D was computed as particle count per

Areaxy and λ3D = λ2D/T. Simulations included parameter ϕ, i.e. particles were excluded from a

given projection if their θ< ϕ. To simulate a blind-versus-nonblind bias in vesicle detection, ϕ
was defined separately for the reference section (ϕref) and lookup section (ϕlookup) such that

ϕref� ϕlookup, with their difference (bias) defined as ϕbias = ϕlookup−ϕref.
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To quantify ϕcutoff, the estimation error Δϕ (estimated ϕ–true ϕ) was computed from curve

fits of Eq 1 to simulated G(d) for planar sections (T = 0 u.d.) and true ϕ = 10–80˚ (5˚ steps)

over a range of CVD (0.04–0.17) and number of diameters (n = 200–2000; Fig 4C and S4 Fig in

S1 File). ϕcutoff for a given CVD and n was defined as the upper limit of true ϕ for when |Δϕ|�

5˚ occurs with at least 0.68 probability (i.e. at least 68 out of 100 simulation repetitions). To

derive an expression relating ϕcutoff to CVD and n, a 2D matrix was constructed for the equiva-

lent unit diameters of ϕcutoff (dcutoff = μD�sinϕcutoff, where μD = 1 u.d.), with the row and col-

umn dimensions defining CVD and 1/
p

n, and bivariate polynomial with 4 dependent

variables was curve fitted to the dcutoff matrix in Igor Pro. The inverse sine of the curve-fit solu-

tion was as follows:

�cutoff � ð1:043 � 1:534CVD � 0:517=
ffiffiffi
n
p
� 17:106CVD=

ffiffiffi
n
p
Þ Eq 8

where CVD is computed using true μD and σD. To investigate whether this expression can be

used to test the accuracy of estimated ϕ, ϕcutoff was computed using estimated μD and σD of

each simulation (rather than true μD and σD) and this ‘estimated’ ϕcutoff was compared to the

corresponding estimated ϕ. Results showed that the use of estimated μD and σD to compute

CVD translated into negative offsets in ϕcutoff, ranging from -17˚ to -10˚ for n = 200 to 2000

diameters, respectively. To account for these offsets, diameters in the dcutoff matrix were

adjusted to remove the offsets and the matrix was refit to the bivariate polynomial, resulting

in:

estimated �cutoff � ð0:987 � 2:071CVD þ 0:124=
ffiffiffi
n
p
� 35:059CVD=

ffiffiffi
n
p
Þ Eq 9

where CVD is computed using estimated μD and σD. In conjunction with the fit error of ϕ, this

expression was used as an accuracy test of estimated ϕ, i.e. estimated ϕ was considered accurate

if it was less than estimated ϕcutoff (S5 Fig in S1 File). For the analysis of ET z-stacks (ET10 and

ET11; Fig 6 and S8 Fig in S1 File) and simulated z-stacks (S10 and S19A Figs in S1 File), n in

Eqs 8 and 9 was reduced 3-fold to account for the reduction in sampling of F(d), a factor deter-

mined via simulations.

3D analysis of electron microscopy z-stacks

For the size and density analysis of MFT vesicles using ET z-stacks (ET10 and ET11) and GC

nuclei using a TEM z-stack (S9 Fig in S1 File), particles were tracked and outlined through

multiple planes of the z-stacks, and the equivalent xy-radii of each outline (r = ½darea) was

computed as a function of the z-stack image number (z#). The xy-diameter (D) and z-axis cen-

ter point (z0) of each particle was then estimated by curve fitting the particle’s r-z# relation to

the following expression for an ellipse (S6A Fig in S1 File):

r ¼ ½ðD=2Þ
2
� ðz=EÞ2�1=2 where z ¼ z#Sz � z0 Eq 10

Sz is the axial sample resolution, i.e. the distance between z-stack images, which was fixed

during the fit. E is an elliptical eccentricity factor where E = 1 indicates spherical dimensions

and E> 1 indicates a longer diameter in the z-axis. Because tissue shrinkage in the axial axis

can be significant, Sz was considered unknown and estimated by adjusting its value until the

mean fit E = 1.00 (S6B and S9B Figs in S1 File; Sz = 0.63 and 0.53 nm for ET10 and ET11,

respectively; Sz = 40 nm for the TEM z-stack of nuclei). This method is based on the assump-

tion that the vesicles and nuclei have an isotropic orientation, in which case their average

diameter measured in the xy-axis should be approximately equal to that measured in the z-axis

[84]. The assumption that the vesicles and nuclei have an isotropic orientation is supported by
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the finding that their long axes showed no systematic orientation in the xy-plane of the ET and

TEM z-stacks, consistent with a random orientation (S6C and S9C Figs in S1 File). Using fit

parameters D and E, an equivalent-volume diameter (Dvolume) of an ellipsoid was computed as

Dvolume = DE1/3; however, this value was not significantly different to D (p = 0.6 and 0.5 for

vesicles and 0.6 for nuclei; paired t-test) and is therefore not reported. To quantify lost caps, ϕ
= sin-1(δmin/D) was computed for the positive and negative pole of each particle (if the pole

was interior to the z-stack) where δmin was the smallest darea measurement near a given pole.

This method of measuring ϕ has a discretization error that depends on the size of Sz and true ϕ
(S6D Fig in S1 File). For the vesicle ET z-stack analysis, we estimated the discretization intro-

duced a small positive bias between the measured and true ϕ (estimated Δϕ = +1 ± 1˚ for Sz =

0.012 u.d. and true ϕ = 40˚). For the GC nuclei TEM z-stack analysis, we estimated the discreti-

zation introduced a large positive bias due to a large Sz and small true ϕ (estimated Δϕ =

+15 ± 1˚ for Sz = 0.030 u.d. and true ϕ = 5˚); hence, we do not report measured ϕ for the TEM

z-stack. For ET10, one giant vesicle ~69 nm in diameter was excluded from the analysis.

To estimate the resolution of the ET z-stacks, the resolution formula of Crowther et al. [85]

was used to estimate ρx as follows:

rx ¼ Ttissue � p=Ntilt Eq 11

where Ttissue is the tissue thickness and Ntilt is the number of scan tilts. For ET10, Ttissue = 182

nm and Ntilt = 87. Results gave ρx = 6.6 nm. However, the Crowther formula assumes a total

scan angle of 180˚, and the total scan angle was 130˚ (±65˚) for the ET scans used in this study.

Hence, the Crowther formula was expressed with respect to the tilt increment (Δtilt) as follows:

rx ¼ Ttissue � Dtilt Eq 12

where Δtilt is the total scan angle divided by Ntilt (IMOD Tomography Guide; Key Resources).

This modified formula gave ρx = 4.7 nm. Due to the ‘missing wedge effect’, the resolution in

the axial axis (ρz) is expected to be longer than ρx by the following scale factor:

exz ¼
ðaþ sina � cosaÞ
ða � sina � cosaÞ

� �1=2

Eq 13

where α is the maximum scan angle [86]. For this study, α = 65˚ in which case exz = 1.4.

Hence, ρz = ρx�exz = 6.7 nm. For ET11, where Ttissue = 138 nm, ρx = 3.6 nm and ρz = 5.1 nm.

Next, ρz was estimated from experimental data by curve fitting Eq 1 to G(d) computed from

the MFT vesicle analysis (Fig 6D and S8D Fig in S1 File) while fixing μD, σD and ϕ to their

‘true’ values measured from the 3D analysis (Table 2; 3D-NB) and leaving T (i.e. ρz) as the one

free parameter. Results gave estimated T = 2.3 ± 0.7 nm for ET10 and -0.9 ± 0.4 nm for ET11.

Hence, these analyses indicate estimated T < 7 nm of the ET z-stacks. Given the small range of

estimated T, and comparatively large dimensions of the MFT vesicles, the ET analysis was sim-

plified by assuming T = 0 nm. To test what effect this assumption might have estimates of μD,

σD and ϕ, the curve fits to G(d) were recomputed assuming T = 7 nm for ET10 (S8D Fig in S1

File) and T = 5 nm for ET11 (Fig 6D) and found ΔμD, ΔσD and Δϕ were similar to those for

assuming T = 0 nm: ET10 (T = 0 vs. 7 nm): ΔμD = +0.5 vs. -1.4%, ΔσD = -0.3 vs. +3.9% and Δϕ
= -0.1 vs -0.9˚; ET11 (T = 0 vs. 5 nm): ΔμD = -0.2 vs. -1.8%, ΔσD = +0.6 vs. +7.9% and Δϕ =

-3.1 vs. -3.2˚.

To estimate vesicle density within a cluster for ET10, it was necessary to confine the density

analysis to a subregion of the original z-stack along the axial axis since the vesicle density as a

function of z-depth was nonhomogeneous, being smaller at the top and bottom of the stack

(Fig 11B). Within this subregion, we estimated λ2D by counting the number of outlines that
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fell within a ROI (Areaxy = 0.039 μm2) using inclusive/exclusive borders (as in Fig 11A1) at the

center of the vesicle cluster for 10 z-stack images spaced 11–16 nm apart along the axial axis,

giving λ2D = 304 ± 15 μm-2 (±SEM). There was an average of 12 vesicles per ROI, which is

7-fold larger than the theoretical optimal number of particles for computing density via the

disector method [30]. Using the same ROI and vesicle outlines, we computed AF = 0.45 ± 0.02

and VF = 0.49 ± 0.03 (±SEM; VF = Kv�AF, where Kv = 1.09; Eq 14). To estimate λ3D, we

divided the number of vesicles counted within the z-stack subregion (n = 115) by the sampling

volume of interest: VOI = Areaxy�z = 0.013 μm3, where Areaxy = 0.091 μm2 and z = 148.0 nm

(Fig 1B; Eq 2; 3D measures: T = 113 nm, μD = 46.0 nm, ϕ = 41˚). Here, Areaxy was the ROI

area scaled to the equivalent xy-dimensions of the vesicle cluster, i.e. scale factor = (average

count per image) / (average count per ROI) = 28/12 = 2.32). Results gave λ3D = 8558 μm-3 with

equivalent VF = 0.45 (Eq 4). Hence, the VF estimated via the 2D analysis is similar to that esti-

mated via the 3D analysis.

To estimate vesicle λ3D for ET11 via the ‘physical’ disector method, a reference section with

T = 12.8 nm (0.3 u.d.) was randomly located within the center of the z-stack and a correspond-

ing adjacent lookup section with the same T was defined. Vesicles that appeared in the refer-

ence section (i.e. vesicles that had one or more of their 2D outlines from the nonblind analysis

in Fig 6 appear in the reference section) but not the adjacent lookup section were counted and

used to compute λ3D = count/(Areaxy�T), where Areaxy = 0.144 μm2. This analysis resulted in

~20 vesicles per section, or λ3D� 11,000 μm-3. To simulate a bias between a blind reference

vesicle detection and nonblind lookup vesicle detection (ϕbias), vesicle outlines from the non-

blind analysis were used for the lookup vesicle detection (mean ϕlookup = 42˚) and a copy of

the same outlines for the reference vesicle detection, but modified to have a larger ϕ (ϕref =

ϕlookup + ϕbias) by deleting the necessary number of extreme outlines from the negative and

positive pole regions to achieve the desired ϕref. Setting ϕbias = 17˚ (Fig 7A) resulted in ~14

counts per section, or λ3D� 7000 μm-3, with estimation error Δλ3D = -32%. To compare these

results to those of the Monte Carlo disector simulations, results of 7–9 reference sections as

just described were combined to give a total of ~500 vesicles per reference section for a given

ϕbias, and an average Δλ3D was computed from 100 such reference sections.

Estimation of the volume fraction of spherical particles from the area

fraction of their 2D projections

The relation between the volume fraction (VF) of spherical particles and their observed area

fraction (AF) in a 2D projection was derived by Weibel and Paumgartner [62] (their Eqs 13

and 37) and is as follows:

VF ¼ Kv � AF Eq 14

where

Kv ¼
2m3

ð2m3 þ 3g �m2 � 3X2 þ X3Þ

m2 ¼
ðm2

D þ s
2
DÞ

m2
D

m3 ¼
mD � ðm

2
D þ 3s2

DÞ

m3
D
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g ¼
T
mD

X ¼ 1 � cos�

wherem2 andm3 are dimensionless moments for a Gaussian distribution and X is redefined to

be a function of ϕ rather than hmin (S2 Appendix in S1 File).

Statistics

Comparisons between diameter distributions were computed via a Kolmogorov-Smirnov (KS)

test (significant p< 0.05). Other comparisons were computed via a Student’s t-test where

noted (unpaired two-tailed equal-variance, unless specified differently; significant p< 0.05; F-

test used to verify equal variance). Errors reported in the text and graphs (bars/shading) indi-

cate the standard deviation (±σ), except in a few instances they indicate the standard error of

the mean (±SEM) which is noted. Linear correlations were quantified via the Pearson correla-

tion coefficient (r) and goodness-of-fit measure (R2).

The estimation error (Δ) of parameters μD, σD, λ2D or λ3D was computed as the percent dif-

ference between a parameter’s estimated (ε) and true (t) value [Δ = 100(ε–t)/t], except for ϕ,

which was computed as a difference (Δ = ε–t) since division by ϕ caused distortion at small ϕ.

For Monte Carlo simulations with multiple repetitions, the mean and standard deviation of a

parameter’s estimation error (μΔ ± σΔ) is referred to as the bias and (68%) confidence interval,

respectively. For simulations with true ϕ< ϕcutoff, the Δ-distributions were typically normal.

However, for simulations with true ϕ� ϕcutoff, the Δ-distributions were often skewed (i.e.

absolute skew > 0.5); in this case, μΔ was computed as the median of the Δ-distribution and

+σΔ and -σΔ were computed separately above and below μΔ.

Key resources

D3D [5] https://github.com/SilverLabUCL/D3D

Igor Pro https://www.wavemetrics.com/

NeuroMatic [53] http://NeuroMatic.ThinkRandom.com

https://github.com/SilverLabUCL/NeuroMatic

Fiji [82] https://imagej.net/Fiji

IMOD Tomography Guide https://bio3d.colorado.edu/imod/doc/tomoguide.html

Figshare Repository [87] https://doi.org/10.5522/04/22117916
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(PDF)

S1 Dataset. Supporting data analysis for estimating the size and density of GC nuclei and

somata and MFT vesicles.

(XLSX)
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11. Mühlfeld C, Hegermann J, Wrede C, Ochs M. A review of recent developments and applications of mor-

phometry/stereology in lung research. Am J Physiol-Lung Cell Mol Physiol. 2015 Sep 15; 309(6): L526–

L536. https://doi.org/10.1152/ajplung.00047.2015 PMID: 26186944

12. Motta A, Berning M, Boergens KM, Staffler B, Beining M, Loomba S, et al. Dense connectomic recon-

struction in layer 4 of the somatosensory cortex. Science. 2019 Nov 29;366(6469):: eaay3134. https://

doi.org/10.1126/science.aay3134 PMID: 31649140

PLOS ONE Validation of a stereological method for estimating particle size and density

PLOS ONE | https://doi.org/10.1371/journal.pone.0277148 March 17, 2023 46 / 50

https://doi.org/10.1152/physrev.1971.51.1.158
https://doi.org/10.1016/0301-0082%2891%2990009-p
https://doi.org/10.1016/0301-0082%2891%2990009-p
https://doi.org/10.1016/j.neuron.2020.11.015
https://doi.org/10.1016/j.neuron.2020.11.015
https://doi.org/10.1016/S0896-6273%2800%2980301-3
https://doi.org/10.1016/S0896-6273%2800%2980301-3
https://doi.org/10.7554/eLife.15133
https://doi.org/10.1016/j.neuron.2014.07.020
https://doi.org/10.1016/j.neuron.2014.07.020
http://www.ncbi.nlm.nih.gov/pubmed/25123311
https://doi.org/10.1038/jcbfm.2009.231
https://doi.org/10.1038/jcbfm.2009.231
https://doi.org/10.1016/S0074-7696%2808%2962497-3
https://doi.org/10.1016/j.biopsych.2010.04.030
https://doi.org/10.1111/j.1469-7580.2012.01475.x
https://doi.org/10.1111/j.1469-7580.2012.01475.x
http://www.ncbi.nlm.nih.gov/pubmed/22296163
https://doi.org/10.1152/ajplung.00047.2015
http://www.ncbi.nlm.nih.gov/pubmed/26186944
https://doi.org/10.1126/science.aay3134
https://doi.org/10.1126/science.aay3134
http://www.ncbi.nlm.nih.gov/pubmed/31649140
https://doi.org/10.1371/journal.pone.0277148


13. Titze B, Genoud C. Volume scanning electron microscopy for imaging biological ultrastructure. Biol

Cell. 2016 Nov; 108(11): 307–323. https://doi.org/10.1111/boc.201600024 PMID: 27432264

14. Wagner J, Schaffer M, Fernández-Busnadiego R. Cryo-electron tomography–the cell biology that came

in from the cold. FEBS Lett. 2017 Sep; 591(17): 2520–2533. https://doi.org/10.1002/1873-3468.12757

PMID: 28726246

15. Xu CS, Pang S, Shtengel G, Müller A, Ritter AT, Hoffman HK, et al. An open-access volume electron

microscopy atlas of whole cells and tissues. Nature. 2021 Nov; 599(7883): 147–151. https://doi.org/10.

1038/s41586-021-03992-4 PMID: 34616045

16. Wicksell SD. The corpuscle problem: a mathematical study of a biometric problem. Biometrika. 1925

Jun;17(1/2): 84–99. https://doi.org/10.2307/2332027

17. Abercrombie M. Estimation of nuclear population from microtome sections. Anat Rec. 1946 Feb; 94:

239–47. https://doi.org/10.1002/ar.1090940210 PMID: 21015608

18. Gundersen HJG, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, et al. The new stereologi-

cal tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological

research and diagnosis. Apmis. 1988 Oct; 96(10): 857–81. https://doi.org/10.1111/j.1699-0463.1988.

tb00954.x PMID: 3056461

19. Tandrup T. Unbiased estimates of number and size of rat dorsal root ganglion cells in studies of struc-

ture and cell survival. J Neurocytol. 2004 Mar; 33(2): 173–192. https://doi.org/10.1023/b:neur.

0000030693.91881.53 PMID: 15322376

20. Boyce RW, Dorph-Petersen K-A, Lyck L, Gundersen HJG. Design-based stereology: introduction to

basic concepts and practical approaches for estimation of cell number. Toxicol Pathol. 2010 Dec; 38(7):

1011–1025. https://doi.org/10.1177/0192623310385140 PMID: 21030683

21. Gundersen HJG. The nucleator. J Microsc. 1988 Jul;151(Pt 1): 3–21. https://doi.org/10.1111/j.1365-

2818.1988.tb04609.x PMID: 3193456

22. Saper CB. Any way you cut it: a new journal policy for the use of unbiased counting methods. J Comp

Neurol. 1996 Jan 1; 364(1): 5–5. https://doi.org/10.1002/(SICI)1096-9861(19960101)364:15::AID-

CNE13.0.CO;2-9 PMID: 8789271

23. West MJ. Stereological methods for estimating the total number of neurons and synapses: issues of

precision and bias. Trends Neurosci. 1999 Feb; 22(2): 51–61. https://doi.org/10.1016/s0166-2236(98)

01362-9 PMID: 10092043

24. Geuna S. Appreciating the difference between design-based and model-based sampling strategies in

quantitative morphology of the nervous system. J Comp Neurol. 2000 Nov 20; 427(3): 333–339. https://

doi.org/10.1002/1096-9861(20001120)427:3<333::AID-CNE1>3.0.CO;2-T PMID: 11054696

25. Guillery RW. On counting and counting errors. J Comp Neurol. 2002 May; 447(1): 1–7. https://doi.org/

10.1002/cne.10221 PMID: 11967890

26. Guillery RW, Herrup K. Quantification without pontification: choosing a method for counting objects in

sectioned tissues. J Comp Neurol. 1997 Sep 15; 386(1): 2–7. https://doi.org/10.1002/(sici)1096-9861

(19970915)386:1<2::aid-cne2>3.0.co;2-6 PMID: 9303520

27. Hedreen JC. Lost caps in histological counting methods. Anat Rec. 1998 Mar; 250(3): 366–372. https://

doi.org/10.1002/(SICI)1097-0185(199803)250:3<366::AID-AR11>3.0.CO;2-M PMID: 9517853

28. von Bartheld CS. Comparison of 2-D and 3-D counting: the need for calibration and common sense.

Trends Neurosci. 2001 Sep; 24(9): 504–506. https://doi.org/10.1016/s0166-2236(00)01960-3 PMID:

11550662

29. Baquet ZC, Williams D, Brody J, Smeyne RJ. A comparison of model-based (2D) and design-based

(3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of

the C57BL/6J mouse. Neuroscience. 2009 Jul 21; 161(4): 1082–1090. https://doi.org/10.1016/j.

neuroscience.2009.04.031 PMID: 19376196

30. Benes FM, Lange N. Two-dimensional versus three-dimensional cell counting: a practical perspective.

Trends Neurosci. 2001 Jan; 24(1): 11–17. https://doi.org/10.1016/s0166-2236(00)01660-x PMID:

11163882

31. Maus L, Lee C, Altas B, Sertel SM, Weyand K, Rizzoli SO, et al. Ultrastructural correlates of presynaptic

functional heterogeneity in hippocampal synapses. Cell Rep. 2020 Mar 17; 30(11): 3632–3643.e8.

https://doi.org/10.1016/j.celrep.2020.02.083 PMID: 32187536

32. Milovanovic D, De Camilli P. Synaptic vesicle clusters at synapses: a distinct liquid phase? Neuron.

2017 Mar 8; 93(5): 995–1002. https://doi.org/10.1016/j.neuron.2017.02.013 PMID: 28279363

33. Gheorghisan-Galateanu AA. The fascinating world of electron microscopy: ultrastructural morphology

of adrenal chromaffin cells. Acta Endocrinol Buchar. 2018 Apr-Jun; 14(2): 272–273. https://doi.org/10.

4183/aeb.2018.272 PMID: 31149270

PLOS ONE Validation of a stereological method for estimating particle size and density

PLOS ONE | https://doi.org/10.1371/journal.pone.0277148 March 17, 2023 47 / 50

https://doi.org/10.1111/boc.201600024
http://www.ncbi.nlm.nih.gov/pubmed/27432264
https://doi.org/10.1002/1873-3468.12757
http://www.ncbi.nlm.nih.gov/pubmed/28726246
https://doi.org/10.1038/s41586-021-03992-4
https://doi.org/10.1038/s41586-021-03992-4
http://www.ncbi.nlm.nih.gov/pubmed/34616045
https://doi.org/10.2307/2332027
https://doi.org/10.1002/ar.1090940210
http://www.ncbi.nlm.nih.gov/pubmed/21015608
https://doi.org/10.1111/j.1699-0463.1988.tb00954.x
https://doi.org/10.1111/j.1699-0463.1988.tb00954.x
http://www.ncbi.nlm.nih.gov/pubmed/3056461
https://doi.org/10.1023/b%3Aneur.0000030693.91881.53
https://doi.org/10.1023/b%3Aneur.0000030693.91881.53
http://www.ncbi.nlm.nih.gov/pubmed/15322376
https://doi.org/10.1177/0192623310385140
http://www.ncbi.nlm.nih.gov/pubmed/21030683
https://doi.org/10.1111/j.1365-2818.1988.tb04609.x
https://doi.org/10.1111/j.1365-2818.1988.tb04609.x
http://www.ncbi.nlm.nih.gov/pubmed/3193456
https://doi.org/10.1002/%28SICI%291096-9861%2819960101%29364%3A1%26lt%3B5%3A%3AAID-CNE1%26gt%3B3.0.CO%3B2-9
https://doi.org/10.1002/%28SICI%291096-9861%2819960101%29364%3A1%26lt%3B5%3A%3AAID-CNE1%26gt%3B3.0.CO%3B2-9
http://www.ncbi.nlm.nih.gov/pubmed/8789271
https://doi.org/10.1016/s0166-2236%2898%2901362-9
https://doi.org/10.1016/s0166-2236%2898%2901362-9
http://www.ncbi.nlm.nih.gov/pubmed/10092043
https://doi.org/10.1002/1096-9861%2820001120%29427:3333::AID-CNE13.0.CO;2-T
https://doi.org/10.1002/1096-9861%2820001120%29427:3333::AID-CNE13.0.CO;2-T
http://www.ncbi.nlm.nih.gov/pubmed/11054696
https://doi.org/10.1002/cne.10221
https://doi.org/10.1002/cne.10221
http://www.ncbi.nlm.nih.gov/pubmed/11967890
https://doi.org/10.1002/%28sici%291096-9861%2819970915%29386%3A1%26lt%3B2%3A%3Aaid-cne2%26gt%3B3.0.co%3B2-6
https://doi.org/10.1002/%28sici%291096-9861%2819970915%29386%3A1%26lt%3B2%3A%3Aaid-cne2%26gt%3B3.0.co%3B2-6
http://www.ncbi.nlm.nih.gov/pubmed/9303520
https://doi.org/10.1002/%28SICI%291097-0185%28199803%29250%3A3%26lt%3B366%3A%3AAID-AR11%26gt%3B3.0.CO%3B2-M
https://doi.org/10.1002/%28SICI%291097-0185%28199803%29250%3A3%26lt%3B366%3A%3AAID-AR11%26gt%3B3.0.CO%3B2-M
http://www.ncbi.nlm.nih.gov/pubmed/9517853
https://doi.org/10.1016/s0166-2236%2800%2901960-3
http://www.ncbi.nlm.nih.gov/pubmed/11550662
https://doi.org/10.1016/j.neuroscience.2009.04.031
https://doi.org/10.1016/j.neuroscience.2009.04.031
http://www.ncbi.nlm.nih.gov/pubmed/19376196
https://doi.org/10.1016/s0166-2236%2800%2901660-x
http://www.ncbi.nlm.nih.gov/pubmed/11163882
https://doi.org/10.1016/j.celrep.2020.02.083
http://www.ncbi.nlm.nih.gov/pubmed/32187536
https://doi.org/10.1016/j.neuron.2017.02.013
http://www.ncbi.nlm.nih.gov/pubmed/28279363
https://doi.org/10.4183/aeb.2018.272
https://doi.org/10.4183/aeb.2018.272
http://www.ncbi.nlm.nih.gov/pubmed/31149270
https://doi.org/10.1371/journal.pone.0277148


34. Ward JM, Hurvitz AI. Ultrastructure of normal and neoplastic mast cells of the cat. Vet Pathol. 1972; 9

(3): 202–211. https://doi.org/10.1177/030098587200900303 PMID: 4367412

35. Overstreet-Wadiche LS, Bensen AL, Westbrook GL. Delayed development of adult-generated granule

cells in dentate gyrus. J Neurosci. 2006 Feb 22; 26(8): 2326–2334. https://doi.org/10.1523/

JNEUROSCI.4111-05.2006 PMID: 16495460

36. Patel DV, Sherwin T, McGhee CNJ. Laser scanning in vivo confocal microscopy of the normal human

corneoscleral limbus. Investig Opthalmology Vis Sci. 2006 Jul; 47(7): 2823. https://doi.org/10.1167/

iovs.05-1492 PMID: 16799020

37. de Gunst MCM, Luebeck EG. A method for parametric estimation of the number and size distribution of

cell clusters from observations in a section plane. Biometrics. 1998 Mar; 54(1): 100–112. https://doi.org/

10.2307/2533999
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42. Floderus S. Untersuchung üeber den Bau der menschlichen Hypophyse mit besonderer Berüecksichiti-
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