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Abstract
Rift Valley fever virus (RVFV) is a formidable pathogen that causes severe disease and

abortion in a variety of livestock species and a range of disease in humans that includes

hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission

cycle involves mosquito vectors, but exposure can also occur through contact with infected

fluids and tissues. The lack of approved antiviral therapies and vaccines for human use un-

derlies the importance of small animal models for proof-of-concept efficacy studies. Several

mouse and rat models of RVFV infection have been well characterized and provide useful

systems for the study of certain aspects of pathogenesis, as well as antiviral drug and vac-

cine development. However, certain host-directed therapeutics may not act on mouse or rat

pathways. Here, we describe the natural history of disease in golden Syrian hamsters chal-

lenged subcutaneously with the pathogenic ZH501 strain of RVFV. Peracute disease re-

sulted in rapid lethality within 2 to 3 days of RVFV challenge. High titer viremia and

substantial viral loads were observed in most tissues examined; however, histopathology

and immunostaining for RVFV antigen were largely restricted to the liver. Acute hepatocellu-

lar necrosis associated with a strong presence of viral antigen in the hepatocytes indicates

that fulminant hepatitis is the likely cause of mortality. Further studies to assess the suscep-

tibility and disease progression following respiratory route exposure are warranted. The use

of the hamsters to model RVFV infection is suitable for early stage antiviral drug and vac-

cine development studies.

Introduction
Rift Valley fever (RVF) is a zoonotic, arthropod-borne illness that typically manifests as an
acute febrile and hepatic disease in ungulates and humans. RVF is of notable public health im-
portance due to its severity, recurrent outbreaks and progressive geographic distribution [1–3].
The etiological agent, Rift Valley fever virus (RVFV), is a member of the Bunyaviridae family
and the genus Phlebovirus. The virus has a tripartite single-stranded RNA genome which
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encodes 5 proteins using an ambisense coding strategy [2, 4]. It can be transmitted by a variety
of mosquito species, but is also spread via contact with infected fluids and tissues [5].

Susceptibility of livestock to RVFV infection varies greatly depending on the viral strain,
and the species and age of the infected animal [6]. Hepatic necrosis with consequent increase
in liver enzyme, and high viremia are characteristic of severe acute lethal infection in rumi-
nants. In humans, the virus has an incubation period of 2–6 days, after which flu-like clinical
signs appear and typically last 2–7 days after onset of illness [4, 5, 7]. Symptoms are generally
described as an abrupt onset of fever, chills, and lethargy with 1–3% of cases progressing to
more serious forms of disease including hemorrhagic syndrome, acute-onset hepatitis, de-
layed-onset encephalitis with long-term neurologic deficits, and retinal vasculitis and macular
lesions which can result in varying degrees of blindness [8]. In severe cases of RVF, the fatality
rate is 10–20%, but in recent outbreaks it has climbed as high as 40% [9]. Currently, no FDA
approved vaccines or antiviral therapies for the prevention or treatment of RVF exist. Conse-
quently, the development of animal models to better understand the disease is of increasing im-
portance when considering the threat RVFV presents to public and animal health and the
potential for importation into the US or other naïve regions of the world that harbor competent
mosquito vector populations [10–12].

The key pathological features of RVFV infection vary widely among animal species and hu-
mans. Typically, RVFV infection that results in severe disease is characterized by hepatocellular
necrosis [5, 13]. Because of the greater biohazard risk and “Select Agent” status of RVFV, a
more accessible hamster model for RVF is based on challenge with the related Punta Toro
virus (PTV), a BSL-2 agent, has been used for pathogenesis and antiviral studies [14]. Although
the hamster PTV infection model has proved useful for reproducing certain features of severe
human and animal RVFV infections where hepatic disease is a prominent pathological feature,
the animals fail to develop encephalitis [15, 16]. Recently, a detailed characterization describing
the pathogenesis of RVFV infection in BALB/c mice reported hepatitis and encephalitis consis-
tent with severe human RVFV infection [17]. Additionally, a study using three different inbred
strains of rats infected with RVFV by both aerosol and sub-cutaneous (s.c.) routes demonstrat-
ed remarkable differences in disease progression and lethality [18]. Wistar-Furth rats were the
only strain to develop and succumb to acute hepatic disease following aerosol exposure. ACI
and Lewis rat strains both developed fatal encephalitis after aerosol challenge, but with varying
degrees of susceptibility to RVFV; remarkably, Lewis rats are refractory to s.c. challenge [18].
These differences are consistent with the varying clinical disease presentations observed in hu-
mans. Although these murine and rat RVFV models are useful systems to evaluate most vac-
cine and antiviral drug candidates, certain therapeutic platforms, particularly those directed at
host targets, may have little to no activity in mice or rats. For example, consensus IFN, an
FDA-licensed recombinant protein therapeutic, was evaluated in the hamster PTV model be-
cause it does not cross-react with the mouse system [19, 20].

Hamsters models are becoming more widely used in infectious disease research, with
the biggest increase observed in studies of viral infections [21]. Several NewWorld arenavi-
ruses that are cleared readily by mice shortly after challenge cause acute hemorrhagic fever-like
disease in hamsters [22, 23]. Other examples of hamster models where comparable disease is
absent in mice are based on challenge with Andes hantavirus and yellow fever virus [23–25],
and these and other hamster models have been useful tools for antiviral efficacy and pathogen-
esis studies [26]. In the case of West Nile virus infection, disease in hamsters was more repre-
sentative of the human condition in terms of neurologic disease compared to mice [27].
Thus, the upticks in studies employing hamster viral infection models is likely due to a combi-
nation of the aforementioned examples, and the relatively low cost and ease of handling
the animals.
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We recently evaluated a promising broad-spectrum antiviral drug candidate and adenovirus
vectored human consensus IFN in a model of RVFV infection in hamsters [13, 28]. Limited
details describing RVFV infection and disease in hamsters have previously been reported
[29–34]. Here, we present linked virologic, liver enzyme, and pathologic findings during the
course of RVFV infection in golden Syrian hamsters challenged s.c. with the pathogenic
ZH501 strain of RVFV to gain insights into the natural history of disease in this small animal
model of RVF.

Materials and Methods

Virus and cells
The molecular clone of RVFV, strain ZH501, was obtained from Dr. Stuart Nichol (CDC, At-
lanta, GA). The virus stock (1.1 × 108 plaque-forming units (PFU)/ml); 1 passage in BSRT7
cells, 3 passages in Vero E6 cells) used was from a clarified cell culture lysate preparation and
was inoculated by subcutaneous (s.c.) injection (ventral, right side of abdomen). The African
green monkey kidney cell line, Vero 76, was purchased from the American Type Culture Col-
lection (ATCC) (Manassas, VA) and maintained in minimal essential medium (MEM) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS) (Thermo Fisher Scientific
HyClone, Logan, UT).

Plaque assay
To determine the PFU/ml of our virus stock, Vero 76 cells were seeded in 6-well plates and
grown to ~90% confluency. The virus was serially diluted in ten-fold dilutions and samples
were added in duplicate to the plates. The plates were then incubated for 1 h at 37°C with 5%
CO2, with rocking every 10 minutes to ensure full exposure to the monolayer. After incubation,
the viral inoculum was removed from the wells, washed with 2 ml DPBS, and subsequently
covered with 2 ml of a primary overlay medium consisting of 2% sea plaque agarose (SeaKem,
ME), 2X MEM containing 4% FBS and 0.5% gentamicin. The plates were then incubated at
37°C with 5% CO2 for 4 days. Plaques were resolved by the addition of 1 ml of sterile Neutral
Red (NR) to the primary overlay. Following incubated at 37°C for 2 h, the NR was removed
and plaques counted after 2–3 h when they became readily visible. A second count was per-
formed the next day to confirm plaques that were difficult to discern on day 4.

Animals and ethics regulation
Female 90–115 g golden Syrian hamsters (The Charles River Laboratory, Willimantic, CT)
were quarantined for 7 days prior to challenge and fed standard Harlan lab block and tap water
ad libitum. All animal procedures complied with USDA guidelines and were conducted at the
AAALAC-accredited Laboratory Animal Research Center at Utah State University under pro-
tocol # 2011, approved by the Utah State University Institutional Animal Care and Use
Committee.

Titration of RVFV in hamsters
To determine the most appropriate RVFV challenge dose for the natural history study, ham-
sters (n = 5–6/group) were challenged by s.c. injection with varying log10 dilutions of RVFV
spanning 6 orders of magnitude. The s.c. challenge was intended to simulate natural mosquito-
borne transmission. The animals were observed twice/day over a period of 15 days for morbidi-
ty and mortality, and weighed every 3 days starting on the day of challenge. Pain and distress
was to be minimized as much as possible by using an alternative endpoint for euthanasia
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defined as unresponsiveness. Although animals may lose or fail to gain weight, appear lethar-
gic, present with ruffled fur and hunched posture during the infection, these signs and symp-
toms are not hard-fast indicators of disease outcome as some animals can recover from illness.
Due to the peracute nature of the disease, the criterion by CO2 asphyxiation was not met by
any of the animals in this study. As pain alleviation would interfere with end point measure-
ments, pain-relieving compounds were not used.

Natural history of RVFV infection in hamsters
Based on the titration study, challenge doses of 10 PFU or 1 PFU were selected to evaluate the
progression and tissue tropism of RVFV infection. Hamsters (n = 4–6/group) were selected for
sacrifice on days 1 through 4 post s.c. challenge with RVFV. Tissue samples were collected
(pancreas, spleen, liver, lung, brain, large intestine, kidney, adrenal gland, and eye) for virus
titer determination, histopathology and immunohistochemistry (IHC) analysis, as described
below. Whole blood was collected for clinical chemistry analysis, and serum was assayed for
viral load and kinetic alanine aminotransferase (ALT) levels.

Cell culture infectious dose assay
For the natural history of disease study, viral titers in serum and tissues were measured
using an infectious 50% cell culture infectious dose (CCID50) assay. Tissue samples were ho-
mogenized in a fixed volume of MEM and the homogenates and serum was serially diluted
and added to quadruplicate wells of Vero cell monolayers in 96-well microplates. The viral cy-
topathic effect (CPE) was determined 3–4 days post-plating, and the 50% endpoints were cal-
culated as described [35]. The lower limit of detection for serum samples was 1.75 log10
CCID50/ml and the lower limit of detection for tissues was generally in the range of 2–3 log10
CCID50/g.

Kinetic serum alanine aminotransferase (ALT) determinations
Detection of ALT in serum is an indirect method for evaluating hepatocellular injury. Serum
ALT concentrations were measured using the ALT (SGPT) Reagent Set purchased from Pointe
Scientific, Inc. (Lincoln Park, MI) per the manufacturer’s recommendations. The reagent vol-
umes were adjusted for analysis on 96-well microplates.

Histopathology
Tissue samples of the pancreas, spleen, liver, lung, kidney, adrenal gland, large intestine, brain
and eye were obtained at prescribed necropsy times and preserved for 3 weeks in 10% neutral
buffered formalin. The samples were subsequently sent to the Utah Veterinary Diagnostic Lab-
oratory (Logan, UT) for blinded histopathology examination and analysis by a board certified
veterinary pathologist.

Immunohistochemical staining
Based on viral burden in the tissues and histopathology review, replicate tissue sections from a
representative animal per sacrifice group were selected for immunohistochemical (IHC) stain-
ing. The sections were deparaffinized and rehydrated by standard histological procedures with
xylene-ethanol, descending grades of alcohol, and distilled water. Briefly, sections were im-
mersed in DakoCytomation Target Retrieval Solution (Dako Corp., Carpinteria, CA), boiled at
125°C for 4 minutes in a decloaking chamber (Biocare Medical, Concord, CA), permeabilized
with 0.5% X-100 in PBS, and exposed to a peroxide block using 3% hydrogen peroxide. Slides
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were then incubated in 10% normal goat serum (NGS) and 0.2% Triton X-100 in PBS for 1
hour, and subsequently incubated with a mouse anti-RVFV Ab (1:1000; RVF MP-12 mouse
hyperimmune ascites fluid provided by Dr. Robert Tesh, World Reference Center for Emerging
Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX) for 24 hours at
room temperature. Secondary antibody using goat anti-mouse HRP (1:200; Sigma-Aldrich,
St. Louis, MO) was applied to the slides for 1 hour, then incubated for 15 minutes using
Immpact NovaRed substrate (Vector Laboratories, Burlingame, CA), and counterstained with
hematoxylin QS nuclear counterstain (Vector Laboratories). Lastly, sections were dehydrated
in ascending grades of alcohol, passed in xylene and permanently mounted with non-aqueous
mounting medium VectaMount (Vector Laboratories). The stained slides were sent to the
Utah Veterinary Diagnostic Laboratory for IHC/histopathology examination and analysis by a
board certified veterinary pathologist.

Results

Susceptibility of hamsters to RVFV
The initial titration of the ZH501 strain of RVFV in golden Syrian hamsters revealed a rapid
disease progression which was predominately lethal. Clinical signs of illness including lethargy,
ruffled fur, and hunched posture were observed in many of the animals by day 2 post-infection
(p.i.). The virus was uniformly lethal within 2–3 days following s.c. route inoculation at doses
of 10 PFU or greater (Fig. 1A). Only the animals that received the lowest infectious dose of ap-
proximately 1 PFU (based on plaque titration in Vero 76 cells) survived the challenge. Al-
though none of these animals succumbed to infection, the marked increase in weight
beginning day 6 p.i. suggests that the animals were likely exhibiting some degree of illness early
during the course of infection (Fig. 1B).

Characterization of RVFV disease progression
Based on the titration experiment demonstrating high susceptibility of hamsters to s.c. RVFV
infection, we next challenged animals with either 10 or 1 PFU of RVFV to assess the natural
history of disease. Subsets of animals were sacrificed on day’s 1—4 p.i., to examine the develop-
ment of viremia, tissue titers, ALT, and histopathology in a temporal fashion. Because all ani-
mals receiving 10 PFU in the titration study succumbed by day 3 p.i., this portion of the study
was designed to have only a day 1 and 2 sacrifice. For the animals challenged with 1 PFU, sever-
al animals scheduled for sacrifice on day 3 (3 of 6 hamsters) and 4 (2 of 6 hamsters) succumbed
prior to the time of sacrifice. The threshold for lethality appears to be very close to 1 PFU, and
thus the lack of mortality with the 1 PFU challenge in the titration study is likely due to experi-
mental variability in the preparation of the challenge stock.

In the 10 PFU challenge group, serum ALT was not elevated until day 2 p.i. in one hamster
and slightly elevated in two others (Fig. 2A). In one animal, low level viremia and elevated viral
loads in the liver were detected as early as day 1 p.i. (Fig. 2B, C). In the day 2 p.i. cohort of ani-
mals two hamsters had virus in all tissues examined, with low-level or undetectable virus bur-
den in the other two animals (Fig. 2B–K).

When the RVFV challenge dose was reduced to 1 PFU, ALT concentration was dramatically
elevated on day 3 (>2300 IU/L) in the only surviving hamster which also had significant liver
virus titers (Fig. 3A, C). Despite substantial viral loads in the livers of 3 of the 4 animals in the
day 4 group, ALT levels were not significantly elevated. Little to no virus was detected in the
serum 24 h after challenge and only one of four hamsters had viremia in the 48 h cohort
(Fig. 3B). By day 3 p.i., 2 of 3 surviving animals had measurable virus, and on day 4 p.i., 3 of 4
hamsters had remarkable viremia. In general, the day 3 and day 4 animals with high viremias
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had substantial viral loads in all tissues examined; the highest levels of virus were found in the
liver, spleen, lung, kidney and adrenal gland (between 8.5–9.4 log10 CCID50/g), and significant
amounts were detected in the brain, pancreas, large intestine and the eye (between 5.9–7.9
log10 CCID50/g) (Fig. 3C–K). Due to the expiration of several hamsters prior to their designat-
ed time of sacrifice, it is important to note that data from the animals with the most severe dis-
ease are not represented in the day 3 and 4 data.

Figure 1. RVFV challenge of golden Syrian hamsters is rapidly lethal.Groups of 5–6 hamsters were
infected s.c. with 0.2 ml of viral inoculum containing the indicated PFU of RVFV. Mortality was monitored over
a 15-day period. A) Percent survival and B) mean% change in weight of surviving animals relative to
respective day 0 weights measured every 3rd day are shown.

doi:10.1371/journal.pone.0116722.g001
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Figure 2. Temporal analysis of ALT levels and virus titers in hamsters challenged s.c. with 10 PFU of RVFV.Groups of 4 animals were sacrificed on
the specified days post-infection for analysis of A) serum ALT concentration, and B) serum, C) liver, D) spleen, E) brain, F) lung, G) kidney, H) adrenal gland,
I) pancreas, J) large intestine, and K) eye virus titers. Unique symbols represent values for the same animal across all parameters assessed and the gray
dotted lines represents the limits of detection for each tissue or serum. DPI, day post-infection.

doi:10.1371/journal.pone.0116722.g002
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Histopathology and IHC analysis
Histopathology and subsequent IHC analysis was performed on all collected tissues, as de-
scribed above. Histologic examination of the livers from the 10 and 1 PFU challenged animals
identified the liver as the primary target organ of infection. Overall, the main histologic lesion
in the liver was randomly distributed multifocal acute hepatocellular necrosis with frequent eo-
sinophilic intranuclear inclusions (Cowdry type A) in hepatocytes surrounding the areas of ne-
crosis (Fig. 4B), which become apparent by day 2 and 3 p.i. for the 10 and 1 PFU challenged
animals, respectively.

Figure 3. Temporal analysis of ALT levels and virus titers in hamsters challenged with 1 PFU of RVFV.Groups of 3–4 animals were sacrificed on the
specified days post-infection for analysis of A) serum ALT concentration, and B) serum, C) liver, D) spleen, E) brain, F) lung, G) kidney, H) adrenal gland, I)
pancreas, J) large intestine, and K) eye virus titers. Several hamsters succumbed prior to their designated time of sacrifice (3 in the day 3 sacrifice group and
2 in the day 4 group) and thus were not included in the analysis. The limits of detection are indicated by the grey dotted lines. Unique symbols represent
values for the same animal across all parameters assessed. DPI, day post-infection.

doi:10.1371/journal.pone.0116722.g003
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In general, the spleens of hamsters from both 1 and 10 PFU challenge groups exhibited a
mild increase in lymphocyte area, and cellularity of the periarteriolar lymphoid sheath and
lymphoid follicle. Erythrocyte depletion of the splenic red pulp, possibly due to splenic con-
traction, was detected in 2 of 4 animals in the 10 PFU group at day 1 p.i, with one animal also
having white pulp (lymphoid) depletion (Fig. 4E). In the day 2 p.i. 10 PFU sacrifice group, 3 of

Figure 4. Histological findings in livers and spleens from RVFV-infected hamsters. A) Hamster liver
section from sham-infected control animal showing normal liver histology, 400X, bar = 50 μm. B) Hamster
spleen from sham-infected control showing normal red pulp, 200X, bar = 100 μm and C) white pulp, 400X,
bar = 50 μm. D) 1 PFU, day 3 p.i. hamster liver (Fig. 3, half-filled triangle) showing acute hepatocellular
necrosis and eosinophilic nuclear inclusions (arrows) in hepatocytes surrounding the area of necrosis 400X,
bar = 30 μm. E) 10 PFU, day 2 p.i. hamster spleen (Fig. 2, open triangle) displaying diffuse erythroid depletion
of the red pulp and lymphoid depletion of the white pulp, 200X, bar = 100 μm. F) 1 PFU, day 3 p.i. hamster
spleen (Fig. 3, half-filled triangle) displaying diffuse lymphoid depletion of the white pulp. Heterochromatic cell
fragments, indicative of apoptotic bodies and tingible body macrophages with cytoplasmic phagocytized
apoptotic debris are scattered in the periarteriolar lymphoid sheath. 400X, bar = 50 μm. Hematoxylin and
Eosin stain.

doi:10.1371/journal.pone.0116722.g004

Rift Valley Fever Virus Infection in Golden Syrian Hamsters

PLOS ONE | DOI:10.1371/journal.pone.0116722 January 21, 2015 9 / 15



4 animals began to exhibit multifocal hepatocellular necrosis; one animal also had discernable
erythroid and lymphoid depletion in the spleen (Fig. 4F). Comparatively, erythroid or lym-
phoid depletion was not observed in the 1 PFU challenge group until day 3 p.i. in 1 of the 3 sur-
viving animals (Fig. 4F). Additionally, a significant amount of cell debris in the red pulp was
observed, suggesting necrosis or apoptosis of lymphocytes and/or other circulating cells mi-
grating through the splenic parenchyma. Of the hamsters sacrificed on day 4 p.i. only one ani-
mal had detectable white pulp depletion (data not shown). Little to no significant microscopic
lesions was observed in pancreas, lung, brain, large intestine, kidney, adrenal gland, or
eye tissues.

Successive IHC staining of the collected tissues generally demonstrated increased immuno-
reactivity in the liver with the most severe lesions. No immunoreactivity was observed in any of
the animals challenged with 10 PFU at day 1 p.i., but by day 2 p.i. approximately 30–40% of he-
patocytes examined showed multifocal to diffuse, and mild to strong cytoplasmic immunoreac-
tivity for RVFV antigen (Fig. 5B); positive hepatocytes are in small groups or randomly
distributed individual hepatocytes. The 1 PFU challenge group did not display any immunore-
activity until day 3 p.i., when IHC staining revealed most hepatocytes (approximately 90%) in
the liver sections having strong, diffuse, cytoplasmic immunoreactivity for RVFV antigen
(Fig. 5C). Occasional multifocal RVFV positive cells were present in the sinusoids and were in-
terpreted as likely infected Kupffer cells (data not shown). On day 4 p.i. approximately 40–50%

Figure 5. Immunohistochemistry of liver tissues from RVFV-infected hamsters demonstrates
presence of viral antigen. A) Hamster liver section from sham-infected control animal, 400X, bar = 50μm. B)
10 PFU, day 2 p.i. hamster liver (Fig. 2, open circle) with 30–40% of hepatocytes exhibiting immunoreactivity
for RVFV antigen, 20X, bar = 100 μm. C) 1 PFU, day 3 p.i. hamster liver (Fig. 3, half-filled triangle) with
hepatocytes showing strong diffuse cytoplasmic immunoreactivity for RVFV antigen, 400X, bar = 50 μm. D) 1
PFU, day 4 p.i. hamster liver (Fig. 3, open upside-down triangle) with hepatocytes staining positive for RVFV
antigen, 400X, bar = 50 μm. NovaRed stain with hematoxylin QS counterstain.

doi:10.1371/journal.pone.0116722.g005
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of hepatocytes exhibited a multifocal to diffuse, and mild to strong, cytoplasmic immunoreac-
tivity for RVFV antigen (Fig. 5D); positive hepatocytes are in larger areas/groups of hepato-
cytes. The hepatocytes surrounding the areas of hepatocellular necrosis were positive for
RVFV, but only rare cell debris was positive for viral antigen in the areas of necrosis (Fig. 5C).
Inclusion bodies in the nuclei of hepatocytes, endothelial cell lining blood vessels and sinusoids,
and biliary cells were not immunoreactive. As observed with the 10 PFU animals, no staining
for RVFV antigen was observed in the spleen, brain, kidneys, lung, pancreas, adrenal gland, in-
testine, blood vessels, or eye in the hamsters challenged with 1 PFU.

Discussion
Although previous studies have examined the susceptibility of hamsters to lethal RVFV infec-
tion [29–34], a more detailed description of the natural history is lacking. Here, we have char-
acterized a model of s.c. RVFV infection in hamsters based on challenge with the ZH501 strain
of the virus and discuss our findings in terms of other rodent RVFV models and severe cases of
disease in humans. Consistent with earlier studies reporting a high degree of susceptibility,
hamsters succumbed to a 10 PFU challenge with the ZH501 strain of RVFV within 2 to 3 days.
By comparison, C57BL/6J mice challenged with 100× more PFU of the same virus stock suc-
cumbed in 3 to 6 days [36], underscoring the heightened sensitivity of hamsters to acute
RVFV-induced disease.

As described by Smith and colleagues [17], we found that a wide variety of tissues supported
RVFV infection in hamsters. Moreover, previous hamster studies utilizing RVFV describe vire-
mia and elevated viral loads in liver, brain, and spleen tissues similar to our findings [29, 31,
34]. Based on our viral titer, serum ALT, histopathology, and IHC data, the liver was clearly
the primary target for RVFV infection. The severe hepatocellular necrosis seen early during in-
fection and the intense immunoreactivity of affected hepatocytes suggests that the hamsters
were likely succumbing from fulminant hepatitis. This is in contrast the age-dependent gerbil
RVFV infection model where liver involvement is minimal and encephalitis is believed to be
the cause of death [37]. Marked elevation of serum ALT levels indicative of hepatocellular inju-
ry was observed in several hamsters in the 10 PFU challenge group that had substantial liver
viral titers. In contrast, despite considerably high viral loads on day 4 in the livers of most of
the hamsters challenged with 1 PFU, the ALT levels were not elevated. Because we did not per-
fuse the animals prior to tissue collection, contamination from virus present in the residual
blood likely contributed to the elevation in the tissue viral loads. However, we suspect that de-
layed seeding of the liver may have resulted in slower replication of RVFV in the low-dose (1
PFU) challenge group, thereby affecting the kinetics of hepatocellular damage and subsequent
release of ALT into the circulation. In mouse RVFV infection models, substantial liver viral ti-
ters have been observed as early as day 2 p.i., yet increases in serum ALT levels lag behind by
approximately 1 day [17, 36, 38].

Although infectious RVFV was present in many tissues, histopathology was restricted pri-
marily to the liver and, to a lesser extent, the spleen. The observed red and white pulp depletion
of the spleen is similar to the pathology documented in the PTV hamster infection model
wherein splenic necrosis involved both the red pulp and the lymphoid zone [15]. In contrast,
PTV-infected C57BL/6 mice present with lesions that are more prominent in the white pulp
[39]. RVFV infection in BALB/c mice displayed depletion of red pulp and lymphocyte apopto-
sis [17]. Although apoptotic bodies were visually identified, we did not perform a TUNEL
assay or electron microscopy to confirm cellular apoptosis of the splenic white pulp.

The lack of RVFV antigen staining in tissues which contain high infectious viral loads and
limited cellular damage, as observed in the spleen, could be due to a delay in the accumulation
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of detectable levels of antigen which may have reduced immunoreactivity, masking by pro-
longed exposure to the formalin preservative, or the sensitivity of the IHC staining. In the
study by Smith et al., infectious RVFV was detected in the brain as early as day 3 p.i. yet antigen
was not detected until day 6 p.i. and histological changes in the brain were not pronounced
until day 8 p.i. [17]. A different study investigating chemotactic and inflammatory responses in
mice reported that despite moderate amounts of necrotic debris observed in the spleen, viral
antigen was not detectable in 20% of RVFV infected mice, and only very low level staining was
observed in a small percentage of cells in the remaining 80% of the animals [38]. Additionally,
in the related hamster PTV infection model, despite marked splenic necrosis, viral antigen was
not detected [15].

Due to the inherent challenges of collecting samples from lethal cases of RVFV infection in
remote regions of Africa and neighboring regions where the virus is endemic and medical in-
frastructure is often lacking, detailed description of RVF in humans is limited. The develop-
ment of non-human primates (NHP) models of RVFV infection has facilitated investigations
into the pathogenesis of the disease and the evaluation of potential antiviral therapies [14].
During severe infections in rhesus macaques, hemolytic anemia, extensive liver necrosis and
possible disseminated intravascular coagulation (DIC) have been reported [40–42]. Despite
limited histologic and IHC data, viremia, elevated serum ALT levels, and increased viral titers
in the livers and spleens of fatally infected monkeys are consistent with our findings in RVFV-
infected hamsters. Although both species develop significant lesions in the liver following
RVFV challenge, the macaques exhibit a hepatocellular coagulative necrosis with cellular infil-
trates not specifically observed in the hamster infection model [43]. Spleens from RVFV-in-
fected rhesus macaque contained deposits of eosinophilic fibrin-like material in the red pulp of
the spleen and a mild depletion of lymphocytes in the white pulp, similar to human infection,
and our findings in hamsters infected with RVFV [40].

Although NHP models are considered the gold-standard when modeling RVF, they are
cost-prohibitive and require special handling facilities. Thus, rodent models are better suited
for initial stages of antiviral drug and vaccine development. Unlike NHP models, challenge of
commonly used rodent species produces peracute disease and uniform lethality. The high mor-
tality is favorable for antiviral and vaccine efficacy studies, but the often sublethal infection in
NHPs is more representative of human infection wherein only a small percentage of those ex-
posed progress to severe disease [3, 44–46]. Table 1 provides a comparison of the principal
RVFV infection animal models in terms of general aspects one may want to consider to assist
in selecting the most appropriate model for their research needs. These are only generalized
guidelines as many factors such as the route of infection, dose and strain of challenge virus, and
the age and strain of the animal species can affect the outcome of RVFV infection and
associated disease.

In summary, RVFV infection of hamsters most closely resembles the disease observed in
mice, but with a more accelerated progression and without the development of encephalitis
which can develop in mice. Although rapid lethality makes for an abbreviated therapeutic win-
dow and translation to the human condition difficult, the uniform lethality via low-dose inocu-
lation with an acute, fulminant hepatic disease makes the hamster RVFV infection model a
cost-effective system for evaluating experimental vaccines and antivirals to demonstrate initial
proof-of-concept. More specifically, the hamster model is most useful for the evaluation of
host-targeted interventions that are not active in the mouse, but do cross-react with the ortho-
logous target in hamsters [28]. In addition, the ability to reliably produce a delayed neurologic
disease when treating RVFV infection with ribavirin may prove useful for future studies inves-
tigating the role of ribavirin in late-onset neuroinvasion and associated encephalitis and the
evaluation of potential neuroprotective countermeasures [13]. Infection by low volume
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intranasal or aerosol exposure should be evaluated to determine whether neurologic disease is
favored under such exposure conditions, as has been demonstrated in mice and rats
[18, 47]. This challenge route is highly relevant in terms of biodefense, as it would mimic respi-
ratory route exposure that could occur through intentional release, and would likely produce a
slower-progressing disease model.
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