
RESEARCH ARTICLE

Responding to Vaccine Safety Signals
during Pandemic Influenza: A Modeling
Study
Judith C. Maro1*, Dennis G. Fryback2, Tracy A. Lieu3, Grace M. Lee1,
David B. Martin4

1. Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute,
Boston, Massachusetts, United States of America, 2. Department of Population Health Sciences, University of
Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America, 3.
Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America,
4. Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland,
United States of America

*jmaro@mit.edu

Abstract

Background: Managing emerging vaccine safety signals during an influenza

pandemic is challenging. Federal regulators must balance vaccine risks against

benefits while maintaining public confidence in the public health system.

Methods: We developed a multi-criteria decision analysis model to explore

regulatory decision-making in the context of emerging vaccine safety signals during

a pandemic. We simulated vaccine safety surveillance system capabilities and

used an age-structured compartmental model to develop potential pandemic

scenarios. We used an expert-derived multi-attribute utility function to evaluate

potential regulatory responses by combining four outcome measures into a single

measure of interest: 1) expected vaccination benefit from averted influenza; 2)

expected vaccination risk from vaccine-associated febrile seizures; 3) expected

vaccination risk from vaccine-associated Guillain-Barre Syndrome; and 4) expected

change in vaccine-seeking behavior in future influenza seasons.

Results: Over multiple scenarios, risk communication, with or without suspension

of vaccination of high-risk persons, were the consistently preferred regulatory

responses over no action or general suspension when safety signals were detected

during a pandemic influenza. On average, the expert panel valued near-term

vaccine-related outcomes relative to long-term projected outcomes by 3:1.

However, when decision-makers had minimal ability to influence near-term

outcomes, the response was selected primarily by projected impacts on future

vaccine-seeking behavior.
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Conclusions: The selected regulatory response depends on how quickly a vaccine

safety signal is identified relative to the peak of the pandemic and the initiation of

vaccination. Our analysis suggested two areas for future investment: efforts to

improve the size and timeliness of the surveillance system and behavioral research

to understand changes in vaccine-seeking behavior.

Introduction

Responding to influenza vaccine safety signals experienced during a pandemic is a

scientific and public policy challenge. Not only must federal decision-makers

balance the immediate consequences of pandemic disease against uncertain

vaccine risks, they also must weigh how federal actions might affect future

vaccine-seeking behavior. For instance, in 1976, after initiating a National

Influenza Immunization Program in response to a localized swine flu outbreak,

federal authorities suspended vaccination after ten weeks because preliminary

surveillance suggested that the incidence of Guillain-Barre Syndrome was

approximately seven-fold greater among vaccinees [1].

Given that this particular swine flu virus was never isolated outside of Fort Dix

[2], the benefit-risk calculus appears simple in hindsight. However, the decision to

initiate and then withdraw a mass vaccination campaign was regarded by some as

a public health failure [3], resulting in sustained and unforeseen consequences on

vaccine-seeking behavior, and loss of public confidence in decision-making.

Firsthand accounts [4–8] and historical assessments [9, 10] have emphasized the

difficulty of compressed decision-making under conditions of uncertainty. While

improvements in near real-time vaccine safety surveillance now allow earlier

detection of vaccine safety signals [11, 12], the need to act in the context of

scientific uncertainty has not changed.

These circumstances are ripe for simulation and decision models. Recent

pandemic threats and the pandemic potential of H5N1 and H7N9 viruses have

stimulated multiple preparedness efforts [13–15] including scenario-based

mathematical modeling [16, 17]. Prior models have focused on influenza

transmission [18, 19], optimal vaccine allocation [20–26], social distancing

[27–29], antivirals [30], and layered interventions [31–33]. However, none have

considered regulatory responses to vaccine safety signals emerging during the

course of a mass vaccination program.

We addressed this gap using a multi-criteria decision analysis (MCDA) that

explored regulatory decision-making in the context of emerging vaccine safety

signals experienced during pandemic influenza. Specifically, the MCDA we

developed evaluates the effect of several alternative regulatory responses on the

transmissibility and severity of the pandemic, the burden of adverse events, and

the potential for sustained changes in vaccine-seeking behavior.
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Materials and Methods

Overview

The MCDA included several linked models. First, the vaccine safety signal was

simulated in a model of the surveillance system. Next, this signal and four

potential regulatory responses were the triggering input in a pandemic influenza

transmission model. Each response affected short-term vaccine-associated benefits

and risks (i.e., within the pandemic period), and future vaccine-seeking behavior.

The outputs of the influenza transmission model were inputs to an expert-derived

multi-attribute utility function. The multi-attribute utility function is used to

weight and combine multiple outcomes into a single figure of merit whose

expected value was maximized to select the preferred regulatory decision.

Model of Influenza Vaccination Surveillance System

We simulated surveillance in the Post-licensure Rapid Immunization Safety

Monitoring (PRISM) system, which is currently being tested for influenza vaccine

safety surveillance [34]. We projected 4.3 million adopters of influenza

vaccination in the PRISM system based on prior data. The methodology for the

simulation model is described elsewhere [35] and a detailed description of the

model is in S1 File.

Strength of Vaccine Safety Signals

In each scenario, we evaluated three vaccine safety signals based on historical

precedent: 1) vaccine-associated febrile seizures [36–38], 2) vaccine-associated

Guillain-Barre Syndrome [39, 40], and 3) both febrile seizures and Guillain-Barre

Syndrome. We simulated a vaccine-associated febrile seizures effect size as an

incidence risk difference of ,150 excess febrile seizures per 100,000 doses in a

cohort of 0–5 year olds when compared with a historical cohort of seasonal

influenza vaccinees. We simulated a vaccine-associated Guillain-Barre Syndrome

effect size as an incidence risk difference of 40 excess cases of Guillain-Barre

Syndrome per one million doses when compared with a historical cohort of

seasonal influenza vaccinees. We chose these levels of risk because they might

plausibly have escaped detection in clinical trials and thus pose a particular

challenge for decision-makers. We also presumed that vaccine safety signals were

not unique to a single manufacturer or to a specific lot or batch number.

Influenza Transmission Model with Bass Diffusion of Influenza

Vaccine

We adapted an age-structured disease transmission model [24] and added an

influenza vaccination adoption function modeled as a Bass diffusion process while

assuming a universal vaccination policy [41]. Bass diffusion models are commonly

used in the marketing literature to describe the diffusion of innovations [42, 43].

A detailed description of the deterministic, compartmental Susceptible-Exposed-
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Infectious-Recovered (SEIR) influenza transmission model and Bass diffusion

process are included in S1 File.

Pandemic Influenza Parameters

We characterized influenza epidemics by their transmissibility, severity, and

timing. We used R0, the basic reproduction number, to characterize transmis-

sibility. Severity was measured by influenza morbidity and mortality. Timing

refers to the amount of circulating virus present at the time vaccination began in

the modeled U.S. population. Modeled circulating virus determined whether the

peak of vaccination coverage was likely to precede, run concurrent with, or follow

the peak of influenza transmission.

We implemented two scenarios: mild and severe influenza. The ‘‘mild’’ scenario

was an influenza that had low transmissibility (i.e., R051.4), low severity, and the

peak of vaccination preceded the peak of influenza transmission. The ‘‘severe’’

scenario involved high transmissibility (i.e., R052.0), moderate-to-high severity,

and influenza transmission and vaccination peaked concurrently.

Influenza Vaccine Parameters

We assumed vaccination began September 1. We chose vaccination effectiveness

parameters and expected vaccination coverage based on data observed during the

H1N1 pandemic. Parameter details are in S1 File.

Multi-Criteria Decision Analysis Model

Simulated Regulatory Responses

When a vaccine safety signal was detected, the MCDA was evaluated using four

simulated regulatory responses: 1) No Action – no communication from the

regulatory agency to the public; 2) Risk Communication Alone – risk

communication issued (e.g., a ‘‘Dear Healthcare Provider’’ letter or website

announcement) that described the vaccine safety signal and identified ‘‘at-risk’’

individuals for a vaccine-associated adverse event but did not recommend changes

in vaccine use; 3) Selective Suspension – risk communication issued and

vaccination suspended in ‘‘at-risk’’ individuals; and 4) General Suspension – risk

communication issued and vaccination suspended for all individuals. These four

responses were an informative sample as the complete range of responses was

beyond the scope of this activity.

The No Action response did not alter vaccine-seeking behavior and universal

vaccination coverage continued as it had before. The Risk Communication Alone

response reduced vaccine-seeking behavior among the ‘‘at risk’’ individuals

targeted in the risk communication. ‘‘At risk’’ individuals were defined as children

age 5 and below for febrile seizures and adults age 50 and above for Guillain-Barre

Syndrome based on historical data associated with these vaccine safety signals

[36–40]. The individuals who were not at highest risk for the adverse event also

reduced their vaccine-seeking behavior by a minor amount during the pandemic

influenza. The Selected Suspension response reduced vaccine-seeking behavior to
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zero in ‘‘at risk’’ individuals, and all others reduced their vaccine-seeking behavior

by a minor amount during the pandemic influenza. The General Suspension

response reduced vaccine-seeking behavior to zero because the vaccine became

unavailable.

Expert-Derived Multi-Attribute Utility Function

In MCDAs, decisions are characterized by multiple competing criteria, and

decision-makers must consider all criteria when evaluating possible decision

options. A multi-attribute utility function is a mathematical equation used to

characterize the overall value (or ‘‘utility’’) of each decision option relative to the

others based on the specified criteria [44]. We developed an expert-derived

additive multi-attribute utility function to evaluate the MCDA. The four criteria

of interest were: 1) expected vaccination benefit from averted influenza as

measured by a composite index of influenza cases, hospitalizations, and deaths

averted; 2) expected vaccination risk from vaccine-associated febrile seizures as

measured by attributable cases; 3) expected vaccination risk from vaccine-

associated Guillain-Barre Syndrome as measured by attributable cases; and 4)

expected change in vaccine-seeking behavior in future seasons as a consequence of

public reaction to changes in federal vaccination policy during the pandemic. The

first three criteria were directly calculated from the influenza transmission model

and were limited to the pandemic time period. The fourth criterion describes

vaccine-seeking behavior in future seasons. For this criterion, we used a

qualitative variable with three levels: a) no change in future vaccine-seeking

behavior, b) minor change: anticipated 10% reduction in future vaccine-seeking

behavior, and c) major change: anticipated 25% reduction in future vaccine-

seeking behavior. These levels were based on anecdotes related to the 1976 swine

flu experience [4–8] and small studies showing that perceptions about vaccine-

associated adverse events can meaningfully reduce vaccine-seeking behavior [45–

48], but they were not validated by empirical research.

We convened an expert panel of six physicians who were currently serving, or

had previously served, on vaccine-related federal advisory committees to elicit

expert preferences [44, 49, 50] on prioritization of the four criteria of interest as

shown in Table 1. We performed separate elicitations for the mild and severe

scenarios, thereby creating separate multi-attribute utility functions for the two

situations. We combined each expert panelist’s multi-attribute utility function to

derive the ‘‘average’’ decision-maker. A detailed description of the multi-attribute

utility function elicitation process and result is in S1 File.

Conditional Probability Elicitation

In the MCDA, we were interested in modeling the general public’s reaction to

federal vaccination policy changes and how that reaction translated into vaccine-

seeking behavior in future seasons. We lacked any public preference surveys

similar to those described in [51, 52] and therefore, we asked the expert panel to

hypothesize about changes to future vaccine-seeking behavior as a result of

reaction to federal vaccination policy. For example, we asked panelists to describe
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the probability that the public would a) not change their future vaccine-seeking

behavior, b) reduce it by 10%, or c) reduce it by 25%, if the government received a

vaccine safety signal in the mild scenario and responded with No Action. We

repeated this procedure for both scenarios and all four regulatory responses.

Table 2 lists their averaged probabilities.

All modeling and subsequent analyses were completed using MATLAB and R.

Results

Vaccine Safety Signal Detection

Based on our assumptions of the surveillance system, the febrile seizures signal

was detected most often two months after the start of vaccination whereas the

Guillain-Barre Syndrome signal was detected most often six months after the start

of vaccination (Fig. 1). Statistical power to detect a vaccine safety signal at the

effect size we tested was nearly 100% for febrile seizures and 90% for Guillain-

Barre Syndrome. That is, in 10% of the simulations, the increased risk of vaccine-

associated Guillain-Barre Syndrome was missed.

Multi-Criteria Decision Analysis Results

The MCDA selected the regulatory responses shown in Table 3 primarily based on

the prioritization, or relative weight, assigned to the four competing criteria by the

expert panel in Table 1. In both scenarios, the average decision-maker valued

near-term vaccine-related outcomes relative to long-term, projected outcomes by

3:1. Table 2 shows how the expert panel linked regulatory responses to those long-

term projections. In particular, General Suspension maximized negative long-

term impacts on vaccine-seeking behavior in the mild scenario whereas No Action

did in the severe scenario. Figs. 2 and 3 are representative instantiations of the

mild and severe scenario respectively and show the near-term vaccine-related

outcomes associated with each regulatory response. Interpreted together,

outcomes in Figs. 2 and 3 are modified by the weight assigned to them in Table 1

and the probability of undesirable long-term effects in Table 2. Fig. 1 represents

Table 1. Averaged Scaling Constants of the Expert Panel for Multi-Criteria Decision Analysis.

Criteria
Expected Vaccination
Benefit

Expected Vaccine-associated
risk from Febrile Seizures

Expected Vaccine-associated risk
from Guillain-Barre Syndrome

Expected Future Change in
Vaccine-Seeking Behavior

Mild Scenarioa 0.55 0.01 0.16 0.28

Severe
Scenariob

0.664 0.012 0.074 0.250

A scaling constant represents the relative weight given to each criterion in the utility function. Each row must sum to 1.
aThe mild scenario was characterized by low transmissibility, low severity, and the peak of vaccination preceded the peak of influenza transmission.
bThe severe scenario was characterized by high transmissibility, moderate-to-high severity, and the peak of vaccination occurred concurrently with the peak
of influenza transmission.

doi:10.1371/journal.pone.0115553.t001
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Table 2. Anticipated Changes in Vaccine-Seeking Behavior associated with Four Regulatory Responses.

Reduction in Vaccine Seeking Behavior

No Change (0%) Minor Change (210%) Major Change (225%)

Mild Scenario

No Action 0.483 0.133 0.383

Risk Communication Alone 0.473 0.227 0.300

Selective Suspension 0.410 0.353 0.237

General Suspension 0.350 0.183 0.467

Severe Scenario

No Action 0.533 0.083 0.383

Risk Communication Alone 0.590 0.190 0.220

Selective Suspension 0.517 0.257 0.227

General Suspension 0.573 0.243 0.183

This criterion, defined with the three levels in the table, links regulatory responses to vaccine-seeking behavior in the long-term. If a particular regulatory
response is selected in the model, then each row represents the probability of the three levels (i.e., note that each row sums to 1.0). Therefore, regulatory
responses with the highest probability of no change are associated with the highest levels of future vaccine-seeking behavior.

doi:10.1371/journal.pone.0115553.t002

Fig. 1. Chance of a Vaccine Safety Signal Being Detected over 10,000 Simulations. Left panel is febrile seizures; right panel is Guillain-Barre Syndrome.
For Guillain-Barre Syndrome, the safety signal remains undetected (is missed) 10% of the time. ‘‘o’’ is the median, ‘‘x’’ is the mean, ‘‘*’’ is the 80th percentile.
Other details in S1 File.

doi:10.1371/journal.pone.0115553.g001
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the chance of vaccine safety signal detection in the months following the start of

vaccination.

Mild Scenario

In the mild scenario, by the time intervention opportunities occurred with a

probability described in Fig. 1, the peak of vaccination had passed and the indirect

benefits of vaccination had been achieved. Therefore, vaccine associated-benefits

for all regulatory responses except for General Suspension were roughly similar.

Over the multiple intervention opportunities and types of vaccine safety signals in

Table 3, General Suspension was not preferred because of its lower vaccine-related

benefit (see Fig. 2). (Note: the MCDA used a composite index for benefits but we

show saved hospitalizations here.) Also, No Action was not preferred because of

its projected impact on future vaccine-seeking behavior as described in Table 2.

With those regulatory responses eliminated, the MCDA was indifferent between

the remaining two options.

Generally, Risk Communication Alone had marginally higher vaccine-

associated benefit than Selective Suspension (e.g., a difference of ,2000 saved

hospitalizations in Fig. 2), but also had higher vaccine-associated risk (e.g., a

difference of 24 Guillain-Barre Syndrome cases in Fig. 2).

Fig. 2. One simulation run of the mild scenario with a Guillain-Barre Syndrome safety signal received four months after the start of the vaccination
campaign, i.e., January, which is five months after the start of the influenza pandemic scenario. The Multi-Criteria Decision Analysis model selected
Risk Communication Alone or Selective Suspension as the preferred regulatory response.

doi:10.1371/journal.pone.0115553.g002
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Severe Scenario

In the severe scenario, intervention opportunities occurred with the same

probability as in the mild scenario, but the timing of peak vaccination coincided

with peak influenza transmission, which meant that decision-makers had almost

no influence on the pandemic’s near-term outcomes (see Fig. 3). With near-term

vaccine-related benefits converging for the four regulatory responses, the MCDA

was driven by projected long-term impacts on future vaccine-seeking behavior. In

other words, with little leverage in the present pandemic, decision-makers focused

on the future. Under these circumstances, the MCDA favored Risk

Communication Alone most consistently over multiple intervention points in

Table 3 because it minimized negative impacts on future vaccine-seeking behavior

as shown in Table 2.

Depending on the month of detection of the vaccine safety signal, the MCDA

was sometimes indifferent between Risk Communication Alone and other options

when a Guillain-Barre Syndrome safety signal was detected. This occurred because

avoided vaccine-associated Guillain-Barre Syndrome cases compensated for

greater negative impacts on future vaccine-seeking behavior. However, the

number of vaccine-associated Guillain-Barre Syndrome cases that offset the

projected negative impact was quite low (e.g. 5 avoided cases). Compensation

Fig. 3. One simulation run of the severe scenario with a febrile seizures safety signal received three months after the start of the vaccination
campaign, i.e., December, which is four months after the start of the influenza pandemic scenario. The outcomes that occur with each of the four
simulated regulatory responses are shown in each panel. The Multi-Criteria Decision Analysis model selected Risk Communication Alone as the preferred
regulatory response.

doi:10.1371/journal.pone.0115553.g003
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sufficient to alter the MCDA’s calculated preferences did not occur with a febrile

seizures signal because of the low weight placed on avoided vaccine-associated

febrile seizures.

Sensitivity Analyses

Timing of Vaccination Availability

We varied the availability of vaccination from August 1 (day 1) to November 1

(day 90). In the mild scenario, the decision was unchanged from the results shown

in Table 3, but the logic contributing to the decision did change. In cases when

the timing of vaccine safety signal detection preceded the peak of the influenza

epidemic (February 1), the MCDA was indifferent between Risk Communication

Alone and Selective Suspension because the former was associated with greater

vaccine-associated benefits and greater vaccine-associated risk. However, when

vaccine safety signal detection aligned with the peak of the influenza pandemic,

then vaccine-associated benefits and risks converged among decision options, and

the projected impact on future vaccine-seeking behavior determined the decision.

Unlike in the severe scenario when Risk Communication Alone has the best

projection on this attribute, in the mild scenario, Risk Communication Alone and

Selective Suspension are nearly tied on this attribute and the MCDA is indifferent

among them for this reason.

In the severe scenario, if vaccine is available August 1 at the start of the

pandemic scenario and thus precedes the peak of influenza, Risk Communication

Alone is the preferred decision option for any receipt of a vaccine safety signal. It

performs the best on vaccination-related benefits and projected impacts on future

vaccine-seeking behavior.

Expert Preferences

We recalibrated the multi-attribute utility function with equal prioritization for

the four criteria in Table 1 (i.e., all set to 0.25) and re-ran the mild scenario. Here,

vaccine-associated risk was more important to the decision-maker since its weight

increased from 0.01 to 0.25 for vaccine-associated febrile seizures and 0.16 to 0.25

for vaccine-associated Guillain-Barre Syndrome. However, these adjustments did

not change the projected impact on future vaccine-seeking behavior (i.e., the

probabilities in Table 2), and No Action and General Suspension remained

undesirable. The MCDA consistently preferred Selective Suspension to Risk

Communication Alone regardless of when the safety signal was received because

more weight was assigned to avoiding excess vaccine-related risk.

Vaccine Effectiveness

We also evaluated the MCDA while re-parameterizing the vaccine to be half as

effective. While absolute levels of vaccine associated-risks and benefits changed,

these changes did not affect the relative standing among regulatory responses.

Therefore, the decision was insensitive to the changed parameters.
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Discussion

We developed an MCDA to evaluate regulatory decision-making following the

emergence of vaccine safety signals and evaluated potential regulatory responses.

The MCDA selected the best relative regulatory response among available choices

according to the averaged, expert-elicited preferences by maximizing the expected

value of the utility of these options. Numerically, the expected values were often

close among options, even though these regulatory responses carry different

logistical, social, and risk communication implications. Over multiple safety signal

timing situations, Risk Communication Alone was consistently the preferred

option in both scenarios, closely followed by Selective Suspension in the mild

pandemic scenario cases only. The preferred decision might change if the multi-

attribute utility function were developed with other stakeholders’ preferences.

Why a Multi-Criteria Decision Analysis Is Important

The MCDA prompts decision-makers to transparently and explicitly describe the

determinants of their decision-making by weighting multiple competing criteria.

While we present two scenarios herein, the model is flexible enough to be re-run

quickly with multiple sets of differing assumptions to understand which

regulatory responses are robust under numerous circumstances.

Other regulatory agencies have vetted the use of MCDA to aid decision-making

[53]. The general structure of our pandemic influenza MCDA enables regulatory

decision-makers outside of the U.S. to utilize our approach. However, sub-model

components would benefit from enhanced specificity for extension beyond the

U.S. For instance, we chose simulated regulatory responses that are globally

generalizable, but other users might want to precisely tailor the responses to their

country or region. Also, we modeled detection of vaccine safety signals in the U.S.

PRISM medical product safety surveillance system, but other regional medical

product safety surveillance systems would need to be explicitly modeled to

determine their performance in a pandemic context. The multi-attribute utility

function could be adopted, but it could also be re-parameterized using input from

experts in other countries and regions.

What This Multi-Criteria Decision Analysis Tells Us

When the near-term benefits and risks of regulatory responses converge, the

MCDA highlighted the weight decision-makers gave to the long-term stability of

vaccination programs. That is, Risk Communication Alone and Selective

Suspension were more desirable because of perceptions that No Action or General

Suspension would have created undesirable effects on future vaccine-seeking

behavior. Timing was critical to the MCDA, particularly the temporal relation-

ships between the influenza epidemic peak, initiation of vaccination, and

detection of the vaccine safety signal. These temporal relationships were most

directly affected by the availability and adoption of vaccine. For example, early

cycle vaccinations (i.e., September or October) had a greater per-vaccination
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ability to retard influenza transmission than late-cycle vaccinations (i.e., February

or March) because there was higher potential for indirect vaccine-related benefits.

Also important was the vaccine-attributable risk of adverse events. If the vaccine-

attributable risk were higher, then signal detection would likely occur earlier and

decision-makers would have more opportunity to affect near-term (i.e., within the

present pandemic) vaccine-related benefits and risks.

Limitations of the Model

First, the weakest element of the MCDA was the mapping of simulated regulatory

responses to future vaccine-seeking behavior, for which we relied on the expert

panel’s assessment. This element drove decision-making whenever intervention

opportunities occurred too late in the pandemic to influence its near-term

outcomes. Recent work by Blyth et al. [51] suggests that a major reduction in

vaccine-seeking behavior following a selective suspension in a mild scenario might

be more likely than the probability assigned during this exercise. Additionally,

Blyth et al. ’s paper suggests that a ‘‘major reduction’’ in vaccine-seeking behavior

could be modeled as high as 35%. If the probability of a major reduction in

future-vaccine seeking behavior following Selective Suspension in the mild

scenario were higher, then we would expect that Selective Suspension would be a

less desirable option. Consequently, we would expect Risk Communication Alone

to be the preferred decision option in most mild scenarios.

While the present probabilistic assumptions about long-term vaccine-seeking

behavior may be imperfect, we know decision-makers are focused on preserving

the integrity of such behavior. Future studies should ascertain how vaccine safety

guidance or warnings in one influenza season/pandemic affect the public’s

vaccine-seeking behavior during subsequent seasons.

Second, as with any modeling effort, the influenza transmission sub-model and

the surveillance system sub-model required multiple assumptions during

parameterization. The outputs of these models – vaccine-related outcomes and

the timing of signal detection – reflected these assumptions.

Third, within the multi-attribute utility function, we created a composite index

of vaccine-related benefits. Within that index, we weighted all influenza-associated

deaths equally, regardless of age. In the future, it may be preferred to weight

morbidity by age, or to adopt a structure analogous to cumulating quality-

adjusted life years [54].

Fourth, we examined risks and benefits with respect to the entire population.

Future modeling efforts could focus on risks and benefits for subpopulations such

as the elderly, infants or pregnant women.

Fifth, we chose not to model brand-specific risks although vaccine safety

problems in recent years have been attributed to particular products [55]. Future

extensions of the model could make assumptions about the age-specific market

share of various products and model a safety problem that was isolated to a

particular manufacturer.
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Lessons Learned for Future Pandemic Influenza Preparedness

Efforts in PRISM

Low attributable risks for rare adverse events pose a significant challenge to any

medical product safety surveillance system. If PRISM can detect safety signals

earlier in a pandemic, then decision-makers will have a greater impact on near-

term vaccine benefits and risks. Opportunities for earlier detection necessitate

increasing sample size early in a pandemic. This can be accomplished by

encouraging earliest possible vaccination within a pandemic period or season,

adding additional electronic healthcare databases to the PRISM system to increase

the number of vaccinees under surveillance, and accessing the existing PRISM

databases more frequently (e.g., using a weekly update instead of a monthly

update) [56].

Supporting Information
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