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Abstract

Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate
these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique
user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level
patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter’s
sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of
demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on
geographical proximity and population size. However, demographic similarity – especially with regard to race – plays an
even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than
moving towards a single unified ‘‘netspeak’’ dialect, language evolution in computer-mediated communication reproduces
existing fault lines in spoken American English.
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Introduction

An increasing proportion of informal communication is

conducted in written form, mediated by technology such as

smartphones and social media platforms. Written language has

been forced to adapt to meet the demands of synchronous

conversation, resulting in a creative burst of new forms, such as

emoticons, abbreviations, phonetic spellings, and other neologisms

[1–3]. Such changes have often been considered as a single,

uniform dialect — both by researchers [4,5] and throughout the

popular press [5,6]. But despite the fact that social media facilitates

instant communication between distant corners of the earth, the

adoption of new written forms is often sharply delineated by

geography and demographics [7–9]. For example, in our corpus of

social media text from 2009 to 2012, the abbreviation ikr (I know,
right?) occurs six times more frequently in the Detroit area than in

the United States overall; the emoticon ^{^ occurs four times

more frequently in Southern California; the phonetic spelling

suttin (something) occurs five times more frequently in New York

City.

These differences raise questions about how language change

spreads in online communication. What groups are influential,

and which communities evolve together? Is written language

moving toward global standardization or increased fragmentation?

As language is a crucial constituent of personal and group identity,

examination of the competing social factors that drive language

change can shed new light on the hidden structures that shape

society. This paper offers a new technique for inducing networks of

linguistic influence and co-evolution from raw word counts. We

then seek explanations for this network in a set of demographic

and geographic predictors, using a logistic regression in which

these predictors are used to explain the induced transmission

pathways.

A wave of recent research has shown how social media datasets

can enable large-scale analysis of patterns of communication

[10,11], sentiment [12–14], and influence [15–19]. Such work has

generally focused on tracking the spread of discrete behaviors,

such as using a piece of software [16], reposting duplicate or near-

duplicate content [10,20,21], voting in political elections [17], or

posting a hyperlink to online content [18,19]. Tracking linguistic

changes poses a significant additional challenge, as we are

concerned not with the first appearance of a word, but with the

bursts and lulls in its popularity over time [22]. In addition, the

well known ‘‘long-tail’’ nature of both word counts and city sizes

[23] ensures that most counts for words and locations will be

sparse, rendering simple frequency-based methods inadequate.
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Language change has long been an active area of research, and

a variety of theoretical models have been proposed. In the wave
model, linguistic innovations spread through interactions over the

course of an individual’s life, so the movement of linguistic

innovation from one region to another depends on the density of

interactions [24]. In the simplest version of this model, the

probability of contact between two individuals depends on their

distance, so linguistic innovations should diffuse continuously

through space. The gravity model combines population and

geographical distance: starting from the premise that the likelihood

of contact between individuals from two cities depends on the size

of the cities as well as their distance, this model predicts that

linguistic innovations will travel between large cities first [25]. The

closely-related cascade model focuses on differences in population,

arguing that linguistic changes will proceed from the largest cities

to the next largest, passing over sparsely populated intermediate

geographical areas [26]. Quantitative validation of these models

has focused on edit-distance metrics of pronunciation differences

amongst European dialects, with mixed findings on the relative

importance of geography and population [27–29].

Cultural factors also play an important role in both the diffusion

of, and resistance to, language change. Many words and phrases

have entered the standard English lexicon from minority dialects

[30]; conversely, there is evidence that minority groups in the

United States resist regional sound changes associated with

European American speakers [31], and that racial differences in

speech persist even in conditions of very frequent social contact

[32]. At present there are few quantitative sociolinguistic accounts

of how geography and demographics interact [33]; nor are their

competing roles explained in the menagerie of theoretical models

of language change, such as evolutionary biology [34,35],

dynamical systems [36], Nash equilibria [37], Bayesian learners

[38], and agent-based simulations [39]. In general, such research is

concerned with demonstrating that a proposed theoretical

framework can account for observed phenomena like geographical

distribution of linguistic features and their rate of adoption over

time. In contrast, this paper takes a data-driven approach, fitting a

model to a large corpus of text data from individual language

users, and analyzing the social meaning of the resulting

parameters.

Research on reconstructing language phylogenies from cognate

tables is also related [40–43], but rather than a phylogenetic

process in which languages separate and then develop in relative

independence, we have closely-related varieties of a single

language, which are in constant interaction. Other researchers

have linked databases of typological linguistic features (such as

morphological complexity) with geographical and social properties

of the languages’ speech communities [44]. Again, our interest is in

more subtle differences within the same language, rather than

differences across the entire set of world languages. The

typological atlases and cognate tables that are the basis such work

are inapplicable to our problem, requiring us to take a corpus-

based approach [45], estimating an influence network directly

from raw text.

The overall aim of this work is to build a computational model

capable of identifying the demographic and geographic factors

that drive the spread of newly popular words in online text. To this

end, we construct a statistical procedure for recovering networks of

linguistic diffusion from raw word counts, even as the underlying

social media sampling rate changes unaccountably. We present a

procedure for Bayesian inference in this model, capturing

uncertainty about the induced diffusion network. We then

consider a range of demographic and geographic factors that

might explain the networks induced from this model, using a post

hoc logistic regression analysis. This lends support to prior work on

the importance of population and geography, but reveals a strong

role for racial homophily at the level of city-to-city linguistic

influence.

Materials and Methods

We conducted a statistical analysis of a corpus of public data

from the microblog site Twitter, from 2009–2012. The corpus

includes 107 million messages, mainly in English, from more than

2.7 million unique user accounts. Each message contains GPS

coordinates to locations in the continental United States. The data

was temporally aggregated into 165 week-long bins. After taking

measures to remove marketing-oriented accounts, each user

account was associated with one of the 200 largest Metropolitan

Statistical Areas (MSA) in the United States, based on their

geographical coordinates. The 2010 United Census provides

detailed demographics for MSAs. By linking this census data to

changes in word frequencies, we can obtain an aggregate picture

of the role of demographics in the diffusion of linguistic change in

social media.

Empirical research suggests that Twitter’s user base is younger,

more urban, and more heavily composed of ethnic minorities, in

comparison with the overall United States population [46,47].

Our analysis does not assume that Twitter users are a represen-

tative demographic sample of their geographic areas. Rather, we

assume that on a macro scale, the diffusion of words between

metropolitan areas depends on the overall demographic properties

of those areas, and not on the demographic properties specific to

the Twitter users that those areas contain. Alternatively, the use of

population-level census statistics can be justified on the assumption

that the demographic skew introduced by Twitter — for example,

towards younger individuals — is approximately homogeneous

across cities. Table 1 shows the average demographics for the 200

MSAs considered in our study.

Linguistically, our analysis begins with the 100,000 most

frequent terms overall. We narrow this list to 4,854 terms whose

frequency changed significantly over time; the excluded terms

have little dynamic range; they would therefore not substantially

effect on the model parameters, but would increase the

computational cost if included. We then manually refine this list

to 2,603 English words, by excluding names, hashtags, and foreign

language terms. A complete list of terms is given in Appendix S1 in

File S1, examples of each term are given in Appendix S2 in File

S1, and more detailed procedures for data acquisition are given in

Appendix S3 in File S1. Manual annotations of each term are

given in Table S1 in File S1, and the software for our data

preprocessing pipeline is given in Software S1 in File S1.

Figure 1 shows the geographical distribution of six words over

time. The first row shows the word ion, which is a shortened form

of I don’t, as in ion even care. Systematically coding a random

sample of 300 occurrences of the string ion in our dataset revealed

two cases of the traditional chemistry sense of ion, and 294 cases

that clearly matched I don’t. This word displays increasing

popularity over time, but remains strongly associated with the

Southeast. In contrast, the second row shows the emoticon -_-

(indicating annoyance), which spreads from its initial bases in

coastal cities to nationwide popularity. The third row shows the

abbreviation ctfu, which stands for cracking the fuck up (i.e.,

laughter). At the beginning of the sample it is active mainly in the

Cleveland area; by the end, it is widely used in Pennsylvania and

the mid-Atlantic, but remains rare in the large cities to the west of

Cleveland, such as Detroit and Chicago. What explains the non-

uniform spread of this term’s popularity?

Diffusion of Lexical Change in Social Media
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While individual examples are intriguing, we seek an aggregated

account of the spatiotemporal dynamics across many words, which

we can correlate against geographic and demographic properties

of metropolitan areas. Due to the complexity of drawing inferences

about influence and demographics from raw word counts, we

perform this process in stages. A block diagram of the procedure is

shown in Figure 2. First, we model word frequencies as a

dynamical system, using Bayesian inference over the latent

spatiotemporal activation of each word. We use sequential Monte

Carlo [48] to approximate the distribution over spatiotemporal

activations with a set of samples. Within each sample, we induce a

model of the linguistic dynamics between metropolitan areas,

which we then discretize into a set of pathways. Finally, we

perform logistic regression to identify the geographic and

demographic factors that correlate with the induced linguistic

pathways. By aggregating across samples, we can estimate the

confidence intervals of the resulting logistic regression parameters.

Modeling spatiotemporal lexical dynamics in social
media data

This section describes our approach for modeling lexical

dynamics in our data. We represent our data as counts cw,r,t,

Table 1. Statistics of metropolitan statistical areas.

mean st. dev

Population 1,170,000 2,020,000

Log Population 13.4 0.9

% Urbanized 77.1 12.9

Median Income 61,800 11,400

Log Median Income 11.0 0.2

Median age 36.8 3.9

% Renter 34.3 5.2

% Af. Am 12.9 10.6

% Hispanic 15.0 17.2

Mean and standard deviation for demographic attributes of the 200 Metropolitan Statistical Areas (MSAs) considered in our study.
doi:10.1371/journal.pone.0113114.t001

Figure 1. Change in frequency for six words: ion, -—-, ctfu, af, ikr, ard. Blue circles indicate cities where on average, at least 0.1% of users use
the word during a week. A circle’s area is proportional to the word’s probability.
doi:10.1371/journal.pone.0113114.g001
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which is the number of individuals who used the word w at least

once in MSA r at time t (i.e., one week). (Mathematical notation is

summarized in Table 2. We do not consider the total number of

times a word is used, since there are many cases of a single

individual using a single word hundreds or thousands of times.) To

capture the dynamics of these counts, we employ a latent vector

autoregressive model, based on the binomial distribution with a

logistic link function. The use of latent variable modeling is

motivated by properties of the data that are problematic for

simpler autoregressive models that operate directly on word counts

and frequencies (without a latent variable). We begin by briefly

summarizing these problems; we then present our model, describe

the details of inference and estimation, and offer some examples of

the inferences that our model supports.

Challenges for direct autoregressive models. The sim-

plest modeling approach would be an autoregressive model that

operates directly on the word counts or frequencies [49]. A major

challenge for such models is that Twitter offers only a sample of all

public messages, and the sampling rate can change in unclear ways

[50]. For example, for much of the timespan of our data, Twitter’s

documentation implies that the sampling rate is approximately

10%; but in 2010 and earlier, the sampling rate appears to be 15%

or 5%. (This estimate is based on inspection of message IDs

modulo 100, which appears to be how sampling was implemented

at that time.) After 2010, the volume growth in our data is

relatively smooth, implying that the sampling is fair (unlike

findings of [50], which focus on a more problematic case involving

query filters, which we do not use).

Raw counts are not appropriate for analysis, because the MSAs

have wildly divergent numbers of users and messages. New York

City has four times as many active users as the 10th largest

metropolitan area (San Francisco-Oakland, CA), twenty times as

many as the 50th largest (Oklahoma City, OK), and 200 times as

many as the 200th largest (Yakima, WA); these ratios are

substantially larger when we count messages instead of active

users. This necessitates normalizing the counts to frequencies

pw,r,t~cw,r,t =sr,t, where sr,t is the number of individuals who have

written at least one message in region r at time t. The resulting

frequency pw,r,t is the empirical probability that a random user in

Figure 2. Block diagram for our statistical modeling procedure. The dotted outline indicates repetition across samples drawn from
sequential Monte Carlo.
doi:10.1371/journal.pone.0113114.g002

Table 2. Table of mathematical notation.

cw,r,t Number of individuals who used word w in metropolitan area r during week t.

sr,t Number of individuals who posted messages in metropolitan area r at time t.

pw,r,t Empirical probability that an individual from metropolitan area r will use word w during week t.

gw,r,t Latent spatiotemporal activation for word w in metropolitan area r at time t.

nw,t Global activation for word w at time t.

mr,t Regional activation (‘‘verbosity’’) for metropolitan area r at time t.

ar1 ,r2
Autoregressive coefficient from metropolis r1 to r2 .

A~far1 ,r2
g Complete autoregressive dynamics matrix.

s2
w,r

Autoregressive variance for gw,r,t , for all times t.

l Variance of zero-mean Gaussian prior over each ar1 ,r2
.

v(k)
w,r,t

Weight of sequential Monte Carlo hypothesis k for word w, metropolis r, and time t.

zr1 ,r2
z-score of ar1 ,r2

, computed from empirical distribution over Monte Carlo samples.

B Set of ordered city pairs for whom ar1 ,r2
is significantly greater than zero, computed over all samples.

B(k) Top L ordered city pairs, as sorted by the bottom of the 95% confidence interval on fa(k)
r1 ,r2
g.

Q Random distribution over discrete networks, designed so that the marginal frequencies for ‘‘sender’’ and ‘‘receiver’’ metropolises are
identical to their empirical frequencies in the model-inferred network.

doi:10.1371/journal.pone.0113114.t002
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(r,t) used the word w. Word frequencies treat large and small cities

more equally, but suffer from several problems:

N The frequency pw,r,t is not invariant to a change in the

sampling rate: if, say, half the messages are removed, the

probability of seeing a user use any particular word goes down,

because sr,t will decrease more slowly than cw,r,t for any w. The

changes to the global sampling rate in our data drastically

impact pw,r,t.

N Users in different cities can be more or less actively engaged

with Twitter: for example, the average New Yorker contrib-

uted 55 messages to our dataset, while the average user within

the San Francisco-Oakland metropolitan area contributed 21

messages. Most cities fall somewhere in between these

extremes, but again, this ‘‘verbosity’’ may change over time.

N Word popularities can be driven by short-lived global

phenomena, such as holidays or events in popular culture

(e.g., TV shows, movie releases), which are not interesting

from the perspective of persistent changes to the lexicon. We

manually removed terms that directly refer to such events (as

described in the Appendix S3 in File S1), but there may be

unpredictable second-order phenomena, such as an emphasis

on words related to outdoor cooking and beach trips during

the summer, and complaints about boredom during the school

year.

N Due to the long-tail nature of both word counts and city

populations [51], many word counts in many cities are zero at

any given point in time. This floor effect means that least

squares models, such as Pearson correlations or the Kalman

smoother, are poorly suited for this data, in either the cw,r,t or

pw,r,t representations.

Latent vector autoregressive model. To address these

issues, we build a latent variable model that controls for these

confounding effects, yielding a better view of the underlying

frequency dynamics for each word. Instead of working with raw

frequencies pw,r,t, we perform inference over latent variables gw,r,t,

which represent the underlying activation of word w in MSA r at

time t. We can convert between these two representations using

the logistic transformation, pw,r,t~Logistic(gw,r,t), where

Logistic(g)~1=(1ze{g). We will estimate each gw,r,t by maxi-

mizing the likelihood of the observed count data cw,r,t, which we

treat as a random draw from a binomial distribution, with the

number of trials equal to sr,t, and the frequency parameter equal

to Logistic(gw,r,t).

An g-only model, therefore, would be

cw,r,t*Binomial(sr,t, Logistic(gw,r,t)) ð1Þ

This is a very simple generalized linear model with a logit link

function [52], in which the maximum likelihood estimate of g
would simply be a log-odds reparameterization of the probability

of a user using the word, ĝgw,r,t~ log (pw,r,t = (1{pw,r,t)). By itself,

this model corresponds to directly using pw,r,t, and has all the same

problems as noted in the previous section; in addition, the estimate

ĝgw,r,t goes to negative infinity when cw,r,t~0.

The advantage of the logistic binomial parameterization is that

it allows an additive combination of effects to control for

confounds. To this end, we include two additional parameters

nw,t and mr,t:

cw,r,t*Binomial(sr,t, Logistic(gw,r,tznw,tzmr,t)): ð2Þ

The parameter nw,t represents the overall activation of the word

w at time t, thus accounting for non-geographical changes, such as

when a word becomes more popular everywhere at once. The

parameter mr,t represents the ‘‘verbosity’’ of MSA r at time t,

which varies for the reasons mentioned above. These parameters

control for global effects due to t, such as changes to the API

sampling rate. (Because mr,t and nw,t both interact with t, it is

unnecessary to introduce a main effect for t.) In this model, the g
variables still represent differences in log-odds, but after control-

ling for ‘‘base rate’’ effects; they can be seen an adjustment to the

base rate, and can be estimated with greater stability.

We can now measure lexical dynamics in terms of the latent

variable g rather than the raw counts c. We take the simplest

possible approach, modeling g as a first-order linear dynamical

system with Gaussian noise [53],

gw,r,t*N
X

r’

ar’,rgw,r’,t{1,s2
w,r

 !
: ð3Þ

The dynamics matrix A~far1,r2
g is shared over both words and

time; we also assume homogeneity of variance within each

metropolitan area (per word), using the variance parameter s2
w,r.

These simplifying assumptions are taken to facilitate statistical

inference, by keeping the number of parameters at a reasonable

size. If it is possible to detect clear patterns of linguistic diffusion

under this linear homoscedastic model, then more flexible models

should show even stronger effects, if they can be estimated

successfully; we leave this for future work. It is important to

observe that this model does differentiate directionality: in general,

ar1,r2
=ar2,r1

. The coefficient ar1,r2
reflects the extent to which gr1,t

predicts gr2,tz1, and vice versa for ar2,r1
. In the extreme case that

r1 ignores r2, while r2 imitates r1 perfectly, we will have ar1,r2
~1

and ar2,r1
~0. Note that both coefficients can be positive, in the

case that gr1
and gr2

evolve smoothly and synchronously; indeed,

such mutual connections appear frequently in the induced

networks.

Equation 2 specifies the observation model, and Equation 3

specifies the dynamics model; together, they specify the joint

probability distribution,

P(g,cDs; A,s2,m,n)~P(cDg,s; m,n)P(g; A), ð4Þ

where we omit subscripts to indicate the probability of all gw,r,t and

cw,r,t, given all sr,t,mr,t,nw,t and A.

Because the observation model is non-Gaussian, the standard

Kalman smoother cannot be applied. Inference under non-

Gaussian distributions is often handled via second-order Taylor

approximation, as in the extended Kalman filter [53], but a

second-order approximation to the Binomial distribution is

unreliable when the counts are small. In contrast, sequential

Monte Carlo sampling permits arbitrary parametric distributions

for both the observations and system dynamics [54]. Forward-

filtering backward sampling [48] gives smoothed samples from the

distribution P(gw,1:R,1:T Dcw,1:R,1:T ,s1:R,1:T ,A), so for each word w,

we obtain a set of sample trajectories g(k)
w,1:R,1:T , where

k[f1, . . . ,K~100g indexes the sample. Monte Carlo approxima-

Diffusion of Lexical Change in Social Media
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tion becomes increasingly accurate as K?? [54], but we found

little change in the overall results for values of Kw100.

Inference and estimation. The total dimension of g is equal

to the product of the number of MSAs (200), words (2,603), and

time steps (165), requiring inference over 85 million interrelated

random variables. To facilitate inference and estimation, we adopt

a stagewise procedure. First we make estimates of the parameters n
(overall activation for each word) and m (region-specific verbosity),

assuming gw,r,t~0,Vw,r,t. Next, we perform inference over g,

assuming a simplified dynamics matrix ~AA, which is diagonal. Last,

we perform inference over the full dynamics matrix A, under P(g);
this procedure is described in the next section. See Figure 2 for a

block diagram of the inference and estimation procedure.

The parameters n (global word activation) and m (region-specific

verbosity) are estimated first. We begin by computing a simplified

nw as the inverse logistic function of the total frequency of word w,

across all time steps. Next, we compute the maximum likelihood

estimates of each mr,t via gradient descent. We then hold m fixed,

and compute the maximum likelihood estimates of each nw,t.

Inference over the latent spatiotemporal activations gw,r,t is

performed via Monte Carlo Expectation Maximization (MCEM)

[55]. For each word w, we construct a diagonal dynamics matrix
~AAw. Given estimates of ~AAw and s2

w, we use the sequential Monte

Carlo (SMC) algorithm of forward-filtering backward sampling

(FFBS) [48] to draw samples of gw,1:R,1:T ; this constitutes the E-step

of the MCEM process. Next, we apply maximum-likelihood

estimation to update ~AAw and s2
w; this constitutes the M-step. These

updates are repeated until either the parameters converge or we

reach a limit of twenty iterations. We now describe each step in

more detail:

N E-step. The E-step consists of drawing samples from the

posterior distribution over g. FFBS appends a backward pass

to any SMC filter that produces a set of hypotheses and

weights, indexed by k. The weight v
(k)
w,r,t represents the

likelihood of the hypothesis g
(k)
w,r,t, so that the expected value

E½gw,r,t�~ 1P
k

v(k)
w,r,t

P
k v

(k)
w,r,tg

(k)
w,r,t. The role of the backward

pass is to reduce variance by resampling the hypotheses

according to the joint smoothing distribution. Our forward

pass is a standard bootstrap filter [54]: by setting the proposal

distribution q(gw,r,tDgw,r,t{1) equal to the transition distribution

P(gw,r,tDgw,t{1; Aw,s2
w,r), the forward weights are equal to the

recursive product of the observation likelihoods,

N

v
(k)
w,r,t~v

(k)
w,r,t{1P(cw,r,tDgw,r,t,sw,t; nw,t,mr,t): ð5Þ

The backward pass uses these weights, and returns a set of

unweighted hypotheses that are drawn directly from

P(gw,r,tDcw,r,t,sr,t; nw,t,mr,t). More complex SMC algorithms —

such as resampling, annealing, and more accurate proposal

distributions — did not achieve higher likelihood than the

bootstrap filter.

N M-step. The M-step consists of computing the average of the

maximum likelihood estimates of ~AAw and s2
w. Within each

sample, maximum likelihood estimation is straightforward: the

dynamics matrix ~AAw is obtained by least squares, and s2
w,r is set

to the empirical variance 1
T

PT
t (gw,r,t{~aaw,rgw,r,t{1)2:

Examples. Figure 3 shows the result of this modeling

procedure for several example words. In the right panel, each

sample of g is shown with a light dotted line. In the left panel, the

empirical word frequencies are shown with circles, and the

smoothed frequencies for each sample are shown with dotted lines.

Large cities generally have a lower variance over samples, because

the variance of the maximum a posteriori estimate of the binomial

decreases with the total event count. For example, in Figure 3(c),

the samples of g are tightly clustered for Philadelphia (the sixth-

largest MSA in the United States), but are diffuse for Youngstown

(the 95th largest MSA). Note also that the relationship between

frequency and g is not monotonic — for example, the frequency of

ion increases in Memphis over the duration of the sample, but the

value of g decreases. This is because of the parameter for

background word activation, nw,t, which increases as the word

attains more general popularity. The latent variable model is thus

able to isolate MSA-specific activation from nuisance effects that

include the overall word activation and Twitter’s changing

sampling rate.

Constructing a network of linguistic diffusion
Having obtained samples from the distribution P(gDc,s) over

latent spatiotemporal activations, we now estimate the system

dynamics, which describes the pathways of linguistic diffusion.

Given the simple Gaussian form of the dynamics model (Equation

3), the coefficients A can be obtained by ordinary least squares.

We perform this estimation separately within each of the K

sequential Monte Carlo samples g(k), obtaining K dense matrices

A(k), for k[f1, . . . ,Kg.
The coefficients of A(k) are not in meaningful units, and their

relationship to demographics and geography will therefore be

difficult to interpret, model, and validate. Instead, we prefer to use

a binarized, network representation, B. Given such a network, we

can directly compare the properties of linked MSAs with the

properties of randomly selected pairs of MSAs not in B, offering

face validation of the proposed link between macro-scale linguistic

influence and the demographic and geographic features of cities.

Specifically, we are interested in a set of pairs of MSAs,

B~fSr1,r2Tg, for which we are confident that ar1,r2
w0, given the

uncertainty inherent in estimation across sparse word counts.

Monte Carlo inference enables this uncertainty to be easily

quantified: we compute z-scores zr1,r2
for each ordered city pair,

using the empirical mean and standard deviation of a(k)
r1,r2

across

samples k[f1, . . . ,Kg. We select pairs whose z-score exceeds

a threshold z(thresh), denoting the selected set

B~fSri,rjT : zi,jwz(thresh)g. To compute uncertainty around a

large number of coefficients, we apply the Benjamini-Hochberg

False Discovery Rate (FDR) correction for multiple hypothesis

testing [56], which controls the expected proportion of false

positives in B as

FDR(z(thresh)) ~
Pnull(zi,jwz(thresh))

~PP(zi,jwz(thresh))

~
1{W(z(thresh))

½R(R{1)�{1P
i=j 1fzi,jwz(thresh)g

,

ð6Þ

where Pnull is the probability, under a one-sided hypothesis, that z

exceeds z(thresh) under a standard normal distribution, which we

would expect if ai,j values were random; this has probability

1{W(z(thresh)), where W is the Gaussian CDF. ~PP is the simulation-

generated empirical distribution over z(ai,j) values. If high z-scores
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occur much more often under the model (~PP) than we would expect

by chance (Pnull ), only a small proportion should be expected to be

false positives; the Benjamini-Hochberg ratio is an upper bound

on the expected proportion of false positives in B. To obtain

FDRv0:05, the individual test threshold is approximately

z(thresh)~3:2, or in terms of p-values, pv6 | 10{4. We see 510

dynamics coefficients survive this threshold; these indicate high-

probability pathways of linguistic diffusion. The associated set of

city pairs is denoted B0:05.

Figure 4 shows a sparser network B0:001, induced using a more

stringent threshold of FDRv0:001. The role of geography is

apparent from the figure: there are dense connections within

regions such as the Northeast, Midwest, and West Coast, and

relatively few cross-country connections. For example, we observe

many connections among the West Coast cities of San Diego, Los

Angeles, San Jose, San Francisco, Portland, and Seattle (from

bottom to top on the left side of the map), but few connections

from these cities to other parts of the country.

Practical details. To avoid overfitting and degeneracy in the

estimation of A(k), we place a zero-mean Gaussian prior on each

element a(k)
r1,r2

, tuning the variance l by grid search on the log-

likelihood of a held-out subset of time slices within g1:T . The

maximum a posteriori estimate of A can be computed in closed

form via ridge regression. Lags of length greater than one are

accounted for by regressing the values of gt against the moving

average from the previous ten time steps. Results without this

smoothing are broadly similar.

Geographic and demographic correlates of linguistic
diffusion

By analyzing the properties of pairs of metropolitan areas that

are connected in the network B, we can quantify the geographic

and demographic drivers of online language change. Specifically,

we construct a logistic regression to identify the factors that are

associated with whether a pair of cities have a strong linguistic

connection. The positive examples are pairs of MSAs with strong

transmission coefficients ar1,r2
; an equal number of negative

examples is sampled randomly from a distribution Q, which is

designed to maintain the same empirical distribution of MSAs as

appears in the positive examples. This ensures that each MSA

appears with roughly the same frequency in the positive and

negative pairs, eliminating a potential confound.

The independent variables in this logistic regression include

geographic and demographic properties of pairs of MSAs. We

include the following demographic attributes: median age, log

median income, and the proportions of, respectively, African

Americans, Hispanics, individuals who live in urbanized areas,

and individuals who rent their homes. The proportion of

European Americans was omitted because of a strong negative

correlation with the proportion of African Americans; the

proportion of Asian Americans was omitted because it is very

low for the overwhelming majority of the 200 largest MSAs. These

raw attributes are then converted into both asymmetric and

symmetric predictors, using the raw difference and its absolute

value. The symmetric predictors indicate pairs of cities that are

likely to share influence; besides the demographic attributes, we

include the geographical distance. The asymmetric predictors are

properties that may make an MSA likely to be the driver of online

language change. Besides the raw differences of the six

demographic attributes, we include the log difference in popula-

tion. All variables are standardized.

For a given demographic attribute, a negative regression

coefficient for the absolute difference would indicate that similarity

is important; a positive regression coefficient for the (asymmetric)

raw difference would indicate that regions with large values of this

attribute tend to be senders rather than receivers of linguistic

innovations. For example, a strong negative coefficient for the

Figure 3. Left: empirical term frequencies (circles) and their Monte Carlo smoothed estimates (dotted lines); Right: Monte Carlo
smoothed estimates of g.
doi:10.1371/journal.pone.0113114.g003

Figure 4. Induced network, showing significant coefficients among the 40 most populous MSAs (using an FDR ,0.001 threshold,
yielding 254 links). Blue edges represent bidirectional influence, when there are directed edges in both directions; orange links are unidirectional.
doi:10.1371/journal.pone.0113114.g004
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asymmetric log difference in population would indicate that larger

cities usually lead smaller ones, as proposed in the gravity and

cascade models.

To visually verify the geographic distance properties of our

model, Figure 5 compares networks obtained by discretizing A(k)

against networks of randomly-selected MSA pairs, sampled from

Q. Histograms of these distances are shown in Figure 6, and their

average values are shown in Table 3. The networks induced by

our model have many more short-distance connections than would

be expected by chance. Table 3 also shows that many other

demographic attributes are more similar among cities that are

linked in our model’s network.

A logistic regression can show the extent to which each of the

above predictors relates to the dependent variable, the binarized

linguistic influence. However, the posterior uncertainty of the

estimates of the logistic regression coefficients depends not only on

the number of instances (MSA pairs), but principally on the

variance in the Monte Carlo-based estimates for A(k), which in

turn depends on the sampling variance and the size of the

observed spatiotemporal word counts. To properly account for this

complex variance, we run the logistic regression separately within

each Monte Carlo sample k, and report the empirical standard

errors of the logistic coefficients across the samples.

Practical details. This procedure requires us to discretize the

dynamics network within each sample, which we will write B(k).

One solution would be simply take the L largest values;

alternatively, we could take the L coefficients for which we are

most confident that a(k)
r1,r2

w0. We strike a balance between these

two extremes by sorting the dynamics coefficients according to the

lower bound of their 95% confidence intervals. This ensures that

we get city pairs for which a(k)
r1,r2

is significantly distinct from zero,

but that we also emphasize large values rather than small values

with low variance. Per-sample confidence intervals are obtained by

computing the closed form solution to the posterior distribution

over each dynamics coefficient, P(a(k)
r1,r2

Dg(k)
r1

,g(k)
r2

,l), which, in ridge

regression, is normally distributed. We can then compute the 95%

confidence interval of the coefficients in each A(k), and sort them

Figure 5. Top: two sample networks inferred by the model, B0:05. (Unlike Figure 4, all 200 cities are shown.) Bottom: two ‘‘negative’’
networks, sampled from Q; these are samples from the non-linked pair distribution Q, which is constructed to have the same marginal
distributions over senders and receivers as in the inferred network. A blue line indicates directed edges in both directions between the pair of cities;
orange lines are unidirectional.
doi:10.1371/journal.pone.0113114.g005

Figure 6. Histograms of distances between pairs of connected
cities, in model-inferred networks (top), versus ‘‘negative’’ networks
from Q (bottom).
doi:10.1371/journal.pone.0113114.g006
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by the bottom of this confidence interval, ~aa(k)
i,j ~m

a
(k)
i,j

{Z(:975)s
2

a
(k)
i,j

,

where Z(:975) is the inverse Normal cumulative density function

evaluated at 0.975, Z(:975)~1:96. We select L by the number of

coefficients that pass the pv0:05 false discovery rate threshold in

the aggregated network (L~510), as described in the previous

section. This procedure yields K~100 different discretized

influence networks B(k), each with identical density to the

aggregated network B. By comparing the logistic regression

coefficients obtained within each of these K networks, it is possible

to quantify the effect of uncertainty about g on the substantive

inferences that we would like to draw about the diffusion of

language change.

Results

Figure 7 shows the resulting logistic regression coefficients.

While geographical distance is prominent, the absolute difference

in the proportion of African Americans is the strongest predictor:

the more similar two metropolitan areas are in terms of this

demographic, the more likely that linguistic influence is transmit-

ted between them. Absolute difference in the proportion of

Hispanics, residents of urbanized areas, and median income are

also strong predictors. This indicates that while language change

does spread geographically, demographics play a central role, and

nearby cities may remain linguistically distinct if they differ

demographically, particularly in terms of race. In spoken

language, African American English differs more substantially

from other American varieties than any regional dialect [57]; our

analysis suggests that such differences persist in the virtual and

disembodied realm of social media. Examples of linguistically

linked city pairs that are geographically distant but demograph-

ically similar include Washington D.C. and New Orleans (high

proportions of African-Americans), Los Angeles and Miami (high

proportions of Hispanics), and Boston and Seattle (relatively few

minorities, compared with other large cities).

Of the asymmetric features, population is the most informative,

as larger cities are more likely to transmit to smaller ones. In the

induced network of linguistic influence B0:05, the three largest

metropolitan areas – New York, Los Angeles, and Chicago – have

40 outgoing connections and only fifteen incoming connections.

These findings are in accord with theoretical models offered by

Trudgill [25] and Labov [26]. Wealthier and younger cities are

also significantly more likely to lead than to follow. While this may

seem to conflict with earlier findings that language change often

originates from the working class, wealthy cities must be

differentiated from wealthy individuals: wealthy cities may indeed

be the home to the upwardly-mobile working class that Labov

associates with linguistic creativity [58], even if they also host a

greater-than-average number of very wealthy individuals.

Additional validation for the logistic regression is obtained by

measuring its cross-validated predictive accuracy. For each of the

K samples, we randomly select 10% of the instances (positive or

negative city pairs) as a held-out test set, and fit the logistic

regression on the other 90%. For each city pair in the test set, the

logistic regression predicts whether a link exists, and we check the

prediction against whether the directed pair is present in B(k).

Results are shown in Table 4. Since the number of positive and

negative instances are equal, a random baseline would achieve

50% accuracy. A classifier that uses only geography and

population (the two components of the gravity model) gives

66.5% predictive accuracy. The addition of demographic features

(both asymmetric and symmetric) increases this substantially, to

74.4%. While symmetric features obtain the most robust

regression coefficients, adding the asymmetric features increases

the predictive accuracy from 74.1% to 74.4%, a small but

statistically significant difference.

Discussion

Language continues to evolve in social media. By tracking the

popularity of words over time and space, we can harness large-

Table 3. Differences between linked and (sampled) non-linked pairs of cities, summarized by their mean and its standard error.

linked mean linked s.e. nonlinked mean nonlinked s.e.

geography

distance (km) 919 36:5 1940 28:6

symmetric

abs diff % urbanized 9:09 0:246 13:2 0:215

abs diff log median income 0:163 0:00421 0:224 0:00356

abs diff median age 2:79 0:0790 3:54 0:0763

abs diff % renter 4:72 0:132 5:38 0:103

abs diff % af. am 6:19 0:175 14:7 0:232

abs diff % hispanic 10:1 0:375 20:2 0:530

asymmetric

raw diff log population 0:247 0:0246 {0:0127 0:00961

raw diff % urbanized 1:77 0:389 {0:0912 0:112

raw diff log median income 0:0320 0:00654 {0:00166 0:00187

raw diff median age {0:198 0:113 {0:00449 0:0296

raw diff % renter 0:316 0:195 {0:00239 0:0473

raw diff % af. am 0:00292 0:244 0:00712 0:109

raw diff % hispanic 0:0327 0:472 0:0274 0:182

doi:10.1371/journal.pone.0113114.t003
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scale data to uncover the hidden structure of language change. We

find a remarkably strong role for demographics, particularly as our

analysis is centered on a geographical grouping of individual users.

Language change is significantly more likely to be transmitted

between demographically-similar areas, especially with regard to

race — although demographic properties such as socioeconomic

class may be more difficult to assess from census statistics.

Language change spreads across social network connections,

and it is well known that the social networks that matter for

language change are often strongly homophilous in terms of both

demographics and geography [58,59]. This paper approaches

homophily from a macro-level perspective: rather than homophily

between individual speakers [60], we identify homophily between

geographical communities as an important factor driving the

observable diffusion of lexical change. Individuals who are

geographically proximate will indeed be more likely to share

social network connections [61], so the role of geography in our

analysis is not difficult to explain. But more surprising is the role of

demographics, since it is unclear whether individuals who live in

cities that are geographically distant but demographically similar

will be likely to share a social network connection. Previous work

has shown that friendship links on Facebook are racially

homophilous [62], but to our knowledge the interaction of urban

demographics with geography has not been explored. In principle,

a large-scale analysis of social network links on Twitter or some

other platform could shed light on this question. Such platforms

impose restrictions that make social networks difficult to acquire,

but one possible approach would be to try to link the ‘‘reply trees’’

considered by Gonçalves et al. [63] with the geographic and

demographic metadata considered here; while intriguing, this is

outside the scope of the present paper. A methodological

contribution of our paper is the demonstration that similar

macro-scale social phenomena can be inferred directly from

spatiotemporal word counts, even without access to individual

social networks.

Our approach can be refined in several ways. We gain

robustness by choosing metropolitan areas as the basic units of

analysis, but measuring word frequencies among sub-communities

or individuals could shed light on linguistic diversity within
metropolitan areas. Similarly, estimation is facilitated by fitting a

single first-order dynamics matrix across all words, but some

regions may exert more or less influence for different types of

words, and a more flexible model of temporal dynamics might

yield additional insights. Finally, language change occurs at many

different levels, ranging from orthography to syntax and

pragmatics. This work pertains only to word frequencies, but

future work might consider structural changes, such as the

phonetical process resulting in the transcription of i don’t into ion.

It is inevitable that the norms of written language must change

to accommodate the new ways in which writing is used. As with all

language changes, innovation must be transmitted between real

language users, ultimately grounding out in countless individual

Figure 7. Logistic regression coefficients for predicting links between city (MSA) pairs. 95% confidence intervals are plotted; standard
errors are in parentheses. Coefficient values are from standardized inputs; the mean and standard deviations are shown to the right.
doi:10.1371/journal.pone.0113114.g007

Table 4. Average accuracy predicting links between MSA pairs, and its Monte Carlo standard error (calculated from K~100
simulation samples).

mean acc std. err

geography + symmetric + asymmetric 74:37 0:08

geography + symmetric 74:09 0:07

symmetric + asymmetric 73:13 0:08

geography + population 67:33 0:08

geography 66:48 0:09

The feature groups are defined in Table 3; ‘‘population’’ refers to ‘‘raw diff log population.’’
doi:10.1371/journal.pone.0113114.t004
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decisions — conscious or not — about whether to use a new

linguistic form. Traditional sociolinguistics has produced many

insights from the close analysis of a relatively small number of

variables. Analysis of large-scale social media data offers a new,

complementary methodology by aggregating the linguistic deci-

sions of millions of individuals.
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