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Abstract

We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS)
vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis
juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation
Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while
WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product
(SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143
species- occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile
logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic
(ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region
(AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that
time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map
the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our
results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora.
Our methods can also be replicated for managing invasive species in other East African countries.
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Introduction

Invasive plants are naturalized plants that produce large

number of offspring, have the ability for long-distance dispersal,

and thus have a potential to spread over a considerable area [1].

Non-native plants, which are synonymous with alien plants and

non-indigenous plants, are plant taxa that are introduced to areas

beyond their native range through human activity [1,2]. Invasion

by non-native species is among the most critical threats to

natural ecosystems worldwide [3–6]. Prosopis species, commonly

known as mesquite, alagarroba, and kiawe, are some of the most

highly invasive plants in the world, dominating millions of

hectares of arid and semi-arid lands in Africa, Asia, Australia,

and the Americas [7,8]. Historical records show that Prosopis
was introduced to Sudan in 1917 [9]. There is growing evidence

that Prosopis species were introduced to Kenya, Somalia, Eritrea,

and Ethiopia in the 1970s through collaborative projects

involving local governments and international organizations

[10,11]. Today, Prosopis juliflora, P. pallida, and P. chilensis
are found in Kenya and Sudan [12,13]; only P. juliflora has

been reported in Ethiopia. Prosopis hybridizes very rapidly and

identification at a species level is often difficult [7,14]. Prosopis
species are rapidly spreading in several southern and eastern

African countries. In South Africa, for example, hybrid of

Prosopis is expanding its range at a rate of 18% per annum,

doubling its extent every five years [14].

Among the 44 recognized Prosopis species, P. glandulosa, P.
velutina, P. juliflora, and P. pallida are the most invasive [7]. In

Africa, Prosopis species are estimated to have invaded over four

million ha, threatening crop and range production, desiccating

limited water resources, and displacing native flora and fauna

[14,15]. Prosopis species have increased the mortality of Acacia
erioloba, one of South Africa’s important species, by depleting

water resources [16]. In Australia, hybrid Prosopis species are

having dramatic ecological impacts by forming extensive dense

stands, and completely excluding native herbs, grasses, and shrubs

[17]. Due to its deleterious environmental and economic impacts,

the non-native P. juliflora has been rated as a very high priority

invasive species in Ethiopia [18].

Early detection and mapping of invasive species are essential to

formulating effective containment strategies. However, in Ethio-

pia, quantitative assessments of the area invaded by P. juliflora
and its potential distribution have not been adequately conducted

[19]. Conventional ground surveys and mapping activities are time

consuming, and costly, especially over large areas. New integrative

spatial modeling approaches that employ advanced remote

sensing, Geographic Information Systems (GIS) and modeling

algorithms (e.g., correlative models) are increasingly being used to
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map both the current [20–23] and the potential distributions of

invasive species [23]. Correlative models include a wide range of

machine learning and regression based approaches that attempt to

create a relationship between species records (presence/absence),

and environmental predictors [24,25].

Vegetation mapping primarily involves understanding the

behavior of the electromagnetic radiation and the reflectance

properties of features and plants. Healthy vegetation has

chlorophyll which reflects the green, and absorbs the blue and

red, portion of the visible electromagnetic radiation. During

different phenological stages and stress conditions, the amount of

blue and red electromagnetic radiation reflected by plants

changes. Likewise, healthy vegetation highly reflects the near-

infrared portion of the electromagnetic spectrum. Variation in

internal leaf structure among plant species creates subtle

differences in reflectance values. This unique spectral value, also

called spectral signature, can be detected by remote sensing

sensors, and can be used to discriminate plants at a species level

[26]. By manipulating reflectance values in the blue, red, and near

infrared portion of the spectrum, it is possible to create different

ratios and vegetation indices which permit discrimination of

vegetated areas. Among the commonly used vegetation indices are

the Normalized Difference Vegetation Index (NDVI) [27,28] and

the Enhanced Vegetation Index (EVI) [28,29]. The NDVI is

calculated as:

NDVI~
pNIR{pRed
pNIRzpRed

ð1Þ

where pNIR and pRed represent the surface reflectance values of

the near-infrared and the red wavelengths, respectively. The EVI

is calculated as:

EVI~G
pNIR{pRed

pNIRzC1 � pRed{C2 � pBluezL
ð2Þ

where pNIR, pRed, and pBlue represent the atmospherically or

partially atmospherically corrected surface reflectance values of

the near-infrared, the red, and the blue wavelengths, respectively.

L represents the canopy background factor, while the coefficients

C1and C2 are used to correct aerosol scattering in the red band by

using the blue band. Generally, Cl = 6, C2 = 7.5, G (gain factor)

= 2.5, and L = 1 [29]. In the United States, both MODIS EVI and

NDVI have been used to identify crop lands with high overall

accuracy (97%) [30]. The two vegetation indices complement each

other in global vegetation studies and improve upon the detection

of vegetation changes and extraction of canopy biophysical

parameters [29].

Prosopis juliflora and P. pallida trees have evergreen to semi-

evergreen leaves, shedding leaves completely only under stressful

and drought conditions [7]. Besides having evergreen leaves, P.
juliflora forms dense thickets and dominates the canopy layer, all

of which are useful traits for remote detection of tree species.

Mapping current distributions of invasive plants is generally

conducted by discriminating spectral reflectance from different

remote sensing sensors and derived vegetation indices [20–23].

Recent studies have provided evidence that inclusion of topo-

graphic predictors with remote sensing data can improve these

mapping efforts (e.g., [31]). In contrast to mapping current

distributions, predicting potential distributions attempts to relate

species occurrence to environmental conditions, such as climate or

topography, and then uses these relationships to predict locations

with similar environmental conditions to those where a species is

found [32–35]. Neither the current nor the potential habitats of

invasive P. juliflora trees has been quantified in Ethiopia. Here,

we present correlative techniques for mapping and modeling both

the current and potential distributions of P. juliflora trees in Afar

(Ethiopia), using remote sensing and topo-climatic predictors,

species occurrence points, and Maxent species distribution

modeling software [36]. Specifically, our objectives were to: 1)

map the current distribution of P. juliflora in the Afar region of

Ethiopia using a time-series of vegetation indices from Moderate

Resolution Imaging Spectroradiometer (MODIS) satellite; and 2)

predict its potential distribution using climatic and topographic

environmental variables.

Materials and Methods

Ethics Statement
Animals were not the subject of this study, and nor were any

endangered or protected species. No special permits were required

for collecting geographic locations of P. juliflora plants from Afar,

Ethiopia. The study was approved by appropriate Ethiopian

Government Organization – the Afar Pastoral, Agriculture and

Rural Development Office (APARDO).

Study Area
Our study site is in the Afar Region of the northern part of

Ethiopia (between 8u 519 and 14u 349 latitudes, and 39u 479 and

42u 249 longitudes; Figure 1). The area covers approximately

95,266 km2 of land and water, with elevations ranging from

125 m below sea level to 2,870 m above sea level. Long-term

climate data (1968–2001) obtained from the Ethiopian Meteoro-

logical Agency (EMA) [37] indicates that the mean annual rainfall

ranges from 580 mm at Melka Werer to 215 mm at Dufti. The

mean maximum annual rainfall recorded for Melka Werer is

673 mm, while the mean minimum annual rainfall recorded at

Dufti is 92 mm. The mean annual temperature for Melka Werer

and Dufti is 26.6uC and 30.1uC, respectively. The recorded mean

minimum annual temperature for Melka Werer is 19.3uC, and

mean maximum annual temperature for Dufti is 37.3uC. The

study area is located within the kolla (arid to semi-arid) and the

bereha (desert) agro-ecological zones of Ethiopia.

The Afar Region, which is further divided into five smaller

administrative zones, is one of the nine administrative regions in

Ethiopia. The population living in Afar is estimated at 1,650,000

[38]. Eighty percent of Afar people are pastoralists, while another

10% are considered agro-pastoralist [39]. Prosopis juliflora is

threatening the livelihoods of Afar pastoralists by displacing native

plants that have high livestock grazing and foraging uses. The

native vegetation consists of grasses, forbs, shrubs, and woody

plants that are adapted to arid and semi-arid environments. The

dominant herbaceous (i.e., grasses and forbs) vegetation includes

Chrysopogon, Sporobolus, Dactyloctenium, Cymbopogon, and

Cynodon species [40,41]. The woody vegetation is mainly

composed of Acacia senegal, A. nubica, A. nilotica, A. tortilis, A.
mellifera, Acalypha species, Cadaba rotundifolia, Dobera glabra,

Grewia species, Salvadora persica, Tamarix nilotica, Balanites
aegyptiaca, and Ziziphus spina-christi [41–43]. In addition to

livestock, the native plants also provide grazing and foraging uses

to the wildlife found in the region. The region contains two

national parks (Awash and Yangudi-Rassa), three wildlife reserves

(Awash West, Alledeghi, and Mille-Serdo), three controlled

hunting areas (Gilen Hertalie, Chifra, and Telalak-Dewe), and

one open hunting area (Gelila Dura). The parks and wildlife

reserves are homes to the unique wildlife species of Afar including

the endangered Grevy’s zebra (Equus grevyi), and critically

endangered wild ass (E. africanus) [44–46].

Mapping Prosopis in Ethiopia
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Data Collection and Pre-analyses
A total of 143 P. juliflora observations with geographic

coordinates (presence points) were recorded in 2011 and 2012 in

Awsi, Gabi, and Hari Zones. Northern parts of Afar, Kilbet, and

Fantena, which border the Tigray and Amhara Region to the west

and Eritrea to the north and east, were not sampled due to

logistical and security concerns (Figure 1). We followed a targeted

sampling approach based on local knowledge. Local communities

and government employees, who had detailed knowledge of the

local vegetation, landscape, roads, foot-trails, conflict areas, and P.
juliflora infested sites, facilitated the targeted sampling and data

collection process. We covered all known infested sites within the

sampled zones. The majority of the occurrence records were 1km

apart with a minimum distance of 250 m between occurrence

points. In addition to avoiding duplication of sample records, this

approach allowed us to reduce spatial autocorrelation.

For the mapping analyses, we selected MODIS products (i.e.,

MOD13Q1) with 250 m2 spatial resolution. Monthly Normalized

Difference Vegetation Indices (NDVI) and Enhanced Vegetation

Indices (EVI) for the year 2012 were extracted. We obtained all

MODIS products from the Land Processes Distributed Active

Archive Center (LPDAAC) [47] and conducted all pre-processing

(i.e., reprojection, mosaicking and sub-setting) using the MODIS

Reprojection Tool (MRT) [48]. For predictive modeling of

potential distribution of P. juliflora, we used the 19 bioclimatic

variables derived from monthly temperature and precipitation

values (WorldClim) [49,50]. The spatial resolution of the

bioclimatic predictors for the study site was 0.00833 degrees.

Additionally, elevation and slope were obtained from the Shuttle

Radar Topography Mission (SRTM) data product [51]. The

SRTM products had a spatial resolution of 90 m2. All topo-

climatic predictors were resampled in ArcGIS 10.0 [52] to 250 m2

spatial resolution using the nearest neighborhood algorithm to

match the resolution of the remote sensing predictors.

Data Analyses and Model Evaluation
Maximum entropy modeling software (Maxent; version 3.3.3 k)

was selected for mapping the current and potential extent of P.
juliflora [36]. Maxent is a widely tested correlative model that

gives very high predictive accuracy both in terrestrial and marine

environments [24–25,53]. Maxent is both a machine learning and

statistical method that applies the maximum entropy principle.

The maximum entropy principle states that probability distribu-

tions should agree with what is known (or inferred from the

environmental conditions where the species has been observed),

but should avoid assumptions not supported by the data [36,54].

Maxent thus attempts to find the probability distribution of

maximum entropy (i.e., most spread out or close to uniform

Figure 1. Study Site. Zones are administrative units that are found within Killils (regions or states) and can have several Woredas (counties). The five
zones are referred as Awsi Rasu (Zone 1), Kilbet Rasu (Zone 2), Gabi Rasu (Zone 3), Fantena Rasu (Zone 4) and Hari Rasu (Zone 5).
doi:10.1371/journal.pone.0112854.g001
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distribution) subject to constraints imposed by the information

available from the observed occurrence records and environmen-

tal conditions across the study area [36,54–56]. Unlike other

correlative based models that use presence and absence data,

Maxent uses presence and background points that assess the

available environment for model calibration and testing. We tested

all predictors for correlation using presence and background

locations in SYSTAT 11.0 software [57]. We removed highly

correlated predictors (Pearson correlation coefficient values . +
0.8; ,20.8) and variables with low predictive power as measured

via percent contribution and variable importance during explor-

atory analyses.

Two preliminary Maxent models were run; the first with 24

MODIS predictors representing monthly NDVI and EVI, and a

second using the 19 available Bioclimatic variables. We identified

the best predictor variables based on the percent contribution and

permutation importance values provided by Maxent outputs. The

preliminary analyses allowed us to reduce the number of variables

to eight non-correlated MODIS and six non-correlated Bioclim

predictors for mapping distribution and predicting potential

habitat, respectively.

For mapping current Prosopis distribution, our final variables

included NDVI for the months of March, April, September, and

November; and EVI for the months of March, October,

November, and December. For predicting potential habitat for

Prosopis, our climate variables were temperature annual range

(Bio7), annual precipitation (Bio12), precipitation of wettest month

(Bio13), precipitation of driest month (Bio14), precipitation

seasonality coefficient of variation (Bio15), and precipitation of

coldest quarter (Bio19). In addition, slope and elevation, which

also had strong predictive contributions in our preliminary

analyses, were included in both of our final models after being

subjected to correlative tests (Tables 1 and 2).

The Maxent model allows the user to define or change model

parameters beyond the default settings. For our final models, we

set the replication type to sub-sample, random test percentage to

30%, the number of iterations to 5,000, and the number of

replicates to 25. The regularization value in Maxent controls the

complexity of the model [36,58]. We assessed model over-fitting

by testing regularization values of 0.5,1, 1.5 and 2. We selected the

optimum regularization value of one, which is the default value in

Maxent, after visually inspecting response curves for complexity

and comparing the train and test AUC (area under the receiver-

operating characteristic curve) values.

Sample selection bias is handled in Maxent by manipulating

background points during model training and testing. Generating

background points in the vicinity of the occurrence records allows

both the background and the occurrence points to carry similar

types of bias that balance out [55]. Generating background points

beyond 100 km distance of occurrence records may result in

inflated AUC and simplified predictions [59]. In this study, we

randomly generated background points within 50 km distance of

the occurrence records. We trained the potential distribution

model using the 50 km buffer and made extrapolations (projec-

tions) to the entire study site. We selected the Do clamping option

in Maxent which applies same data ranges for model calibration

and extrapolation. Clamping ensures that projection is made using

data range found only within the training data set [36,56].

Predictions into novel environments were assessed using Multi-

variate Environmental Similarity Surfaces (MESS), which identi-

fies locations which are outside the range of values included in the

data used to train the model (the presence and background points)

for any predictor [35].

Threshold values used for converting Maxent probability

outputs into binary maps can affect the extent of the predicted

distribution especially when few number of occurrence records are

used and the sampling is biased [60]. Among the four commonly

used Maxent threshold values, the 10-percentile training presence

produces reliable distributional areas [61]. The 10-percentile

threshold miss-classifies 10% of the training presence locations as

unsuitable. We converted the probability surfaces generated by the

two Maxent models into binary maps using the 10-percentile

training presence logistic threshold values and calculated their

respective areas. We used large number of occurrence records

(143) and we reduced the sampling bias; therefore, the threshold

value selected for this study is reasonable.

Model performance was assessed using area under the receiver

operating characteristics (ROC) curve (AUC) [62,63], and

maximized Kappa statistic [63,64]. AUC values ranging from

0.5–0.7, 0.7–0.9, and .0.9 show poor, reasonable, and very good

predictions, respectively [62,65]. Kappa values ,0.4, 0.4–0.75,

and .0.75 indicate poor, good, and excellent agreements

(predictions), respectively [63]. Both AUC and Kappa were

calculated using Schröder’s ROC-AUC software [66] on inde-

pendent data sets obtained from the Ethiopian Wildlife Conser-

vation Authority (EWCA; personal communication with Fanuel

Kebede). We obtained 50 presence points from EWCA and

collected another 50 absence points in December 2013 from the

Table 1. Percent contribution and permutation importance of remote sensing predictors.

Variable name Percent contribution Permutation importance

November EVI 43.5 50.0

April NDVI 15.7 10.8

Elevation 12.8 18.7

Slope 6.6 7.3

October EVI 8.2 1.2

March EVI 4.6 1.8

December EVI 2.6 0.8

September NDVI 2.1 1.9

March NDVI 2.0 3.0

November NDVI 1.8 4.4

Maxent model was set to 30% random test percentage and sub-sample replication type.
doi:10.1371/journal.pone.0112854.t001
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field to validate our results. The test data were evenly distributed

across the study site.

Results

Current Distribution
The remote sensing and topographic predictors with the highest

percent contribution for mapping current distributions were

November EVI (43.5%), April NDVI (15.7%), elevation (12.8%),

and slope (6.6%; Table 1). The NDVI and EVI values for P.
juliflora showed similar trends with higher values recorded in

September, and lower values recorded in March (Figure 2). The

NDVI values were always higher than the EVI values. Visual

inspection of the current P. juliflora distribution map shows that

infestation is dominant in the Gabi, Awsi, and Hari administrative

zones, respectively (Figure 3). According to the model, the

northern most administrative area, Kilbet, is the least invaded.

The banks of Awash River are heavily invaded by P. juliflora
(Figure 3). Area calculations of model results show that the current

predicted distribution of P. juliflora invasion covers 3,605 km2 of

the Afar region. The remote sensing and topo-climatic predictors

correlated well with the P. juliflora occurrence data, with both

having high Kappa and AUC values. Kappa and AUC values

based on the independent data for the current model were 0.85

and 0.94, respectively (Table 3).

Potential Distribution
The topo-climatic predictors with the highest contribution for

the potential distribution model were temperature annual range

(Bio7; 45.9%), and precipitation of wettest month (Bio13; 10.1%;

Table 2). Suitable habitats for P. juliflora were predicted

throughout the Afar region (Figure 3). The extrapolation assess-

ment (MESS analysis) identified areas of extrapolation (environ-

mental variable values outside the range of those used to train the

model) in the northern tip parts of the study site, where the

Maxent model did not predict suitable habitats for P. juliflora
(Figure 3). We are uncertain about the models’ prediction in the

northern tip of Afar, and thus advise users to interpret our results

with caution. Based on area calculations of model results, the

potential extent of P. juliflora distribution in Afar is 5,024 km2.

The results show that more than half of the potentially suitable

habitats have been invaded. The potential distribution model had

an AUC value of 0.95 and a Kappa value of 0.86 based on the

independent data set (Table 3).

Discussion

We found that MODIS Vegetation Indices (VIs) are highly

useful for mapping P. juliflora in the extensive land of the Afar.

The phenological signals of P. juliflora were best detected by the

November EVI and April NDVI MODIS predictors (Table 1).

November represents hagay to Afar people, a cold and dry period

early in the dry season. During this time, the foliage of most woody

shrubs and trees remains green, while herbaceous flora, such as

annual grasses and agricultural crops, become less green, creating

phenological contrasts for better discrimination of woody vegeta-

tion. At the end of the dry season, P. juliflora remains green, while

woody shrubs and trees lose most of their foliage or take on a

yellow coloration due to water stress (personal observation). In

addition, P. juliflora takes advantage of its deep root systems [67]

and the moisture from the short rainy season (between March and

April and referred by Afar people as hugum) to remain green

(Figure 4). These differences were likely detected by the dry season

VIs (November, October and December EVIs), and the short

rainy season hugum VIs (April and March NDVIs, and March

EVI). The trend for NDVI and EVI was similar but EVI values

were lower (Figure 2). EVI values are generally lower as they avoid

saturation in high biomass areas [29]. In mapping current

distributions, we hypothesize that EVI was the top predictor

because it was able to detect the dense P. juliflora thickets that

often possess high biomass. Wet season NDVI and dry season EVI

predictors highly contributed to the model. The observed seasonal

Table 2. Percent contribution and permutation importance of topo-climatic predictors.

Variable name Percent contribution Permutation importance

Temperature annual range (bio7) 45.9 73.9

Precipitation of wettest month (bio13) 10.1 16.6

Precipitation of coldest quarter (bio19) 12.4 2.0

Slope 9.5 1.7

Precipitation seasonality (bio15) 8.3 2.7

Precipitation of driest month (bio14) 7.5 1.5

Annual precipitation (bio12) 3.8 1.0

Elevation 2.5 0.6

Maxent model was set to 30% random test percentage and sub-sample replication type.
doi:10.1371/journal.pone.0112854.t002

Figure 2. Prosopis juliflora reflectance. Box plots of P. juliflora EVI
and NDVI reflectance values. Note that NDVI and EVI values for the
other months were dropped from the final model due to cross-
correlations.
doi:10.1371/journal.pone.0112854.g002
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variability among EVI and NDVI predictors in model contribu-

tion needs further investigation. Our findings suggest that images

taken in November and April are highly useful for remotely

detecting P. juliflora. In general, our intensive sampling and data

collection efforts, the species’ distinct canopy architecture and its

unique spectral signature have allowed us to detect and map P.
juliflora trees with acceptable degree of accuracy (Table 3). Our

results support the conclusion made by Viña et al. [68] that

MODIS vegetation indices can have considerable potential in

mapping distributions of species.

Two climate variables appear to best predict the potential

distribution of P. juliflora. Temperature annual range (Bio7),

which is a function of maximum temperature of warmest month

and minimum temperature of coldest month, was the most

important variable, followed by precipitation of wettest month

(Bio13). Our results suggest that temperature and rainfall are

important in the distribution of P. juliflora. Although slope and

elevation did not contribute much in the prediction of potential

habitat, they were the third and fourth contributors in mapping

current distributions, suggesting incidence of topographic prefer-

ences in the distribution of P. juliflora. The potential distribution

Figure 3. Distribution of P. juliflora. The current distribution (shown in green) is superimposed on the potential distribution (shown in yellow). The
143 P. juliflora occurrence records used in the model are shown in red. The Multivariate Environmental Similarity Surfaces (MESS) results that indicate
areas that are environmentally dissimilar to the training data are shown in light green color.
doi:10.1371/journal.pone.0112854.g003

Table 3. AUC and Maximized Kappa Statistic values calculated for an independent data set for both the current and the potential
distribution models.

Model Type AUC Maximized Kappa Statistic

Current Distribution 0.94 0.85

Potential Distribution 0.95 0.86

doi:10.1371/journal.pone.0112854.t003
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did not cover 100% of the current distribution. This is to be

expected when sampling is conducted only in the invaded range,

where the invasive species is still expanding and may not be in

equilibrium with its environment [54].

The models’ high AUC values give us confidence in the overall

accuracies of the current and potential distribution maps.

However, we believe our model results might be improved if we

had the opportunity to sample a wider area within the Afar. We

also tested a single correlative modeling approach, Maxent, where

other modeling techniques might have produced different results

(e.g., Boosted Regression Trees) [69]. Future modeling efforts may

consider using samples from the native range for the potential

distribution model and using models that can handle both

presence and absence data for the current distribution model.

Finally, we must recognize the limitations in using coarse-

resolution satellite imagery such as MODIS. Detailed modeling

using moderate-resolution remote sensing (e.g., Landsat 8, SPOT)

and topo-climatic variables may provide more accurate results for

smaller geographic areas of interest. For a different perspective on

current distribution vs potential distribution (with wildlife exam-

ples), and realized-potential niche gradient concept, we advise the

reader to refer to Jiménez-Valerde et al. [70], Lobo [71], and

Gormley et al. [72].

Conclusions

We identified suitable habitats for the invasive P. juliflora plant

throughout the Afar region. Since P. juliflora seeds are easily

dispersed by domestic and wild animals, streams, and overland

water flow [7,8,73], we anticipate further expansion of P. juliflora
invasion into most parts of Afar, Ethiopia. We quantified, for the

first time, the current and potential extent of P. juliflora invasion

in Afar. We found that MODIS vegetation indices and topo-

climatic variables can be used with species occurrence data and

correlative models to map both the current and potential

distribution of P. juliflora. The methods described here can be

easily applied in other countries that need to monitor invasive

species in arid and semi-arid ecosystems. We anticipate that the P.
juliflora distribution maps that we created will be used as baseline

for future monitoring activities, and may inform land managers

and policy makers in formulating preventive, control and or

eradication measures. Our estimates can also be used to

parameterize economic models that may be conducted in the

region. Future research should incorporate species presence points

from northern parts of Afar and from the species native range.

Including soil and hydrologic related predictors in the analyses,

using high-resolution time series images and additional species

distribution models may also give new insights on the current and

potential distribution of P. juliflora in Ethiopia.
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