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Abstract

Some tick populations have increased dramatically in the past several decades leading to an increase in the incidence and
emergence of tick-borne diseases. Management strategies that can effectively reduce tick populations while better
understanding regional tick phenology is needed. One promising management strategy is prescribed burning. However,
the efficacy of prescribed burning as a mechanism for tick control is unclear because past studies have provided conflicting
data, likely due to a failure of some studies to simulate operational management scenarios and/or account for other
predictors of tick abundance. Therefore, our study was conducted to increase knowledge of tick population dynamics
relative to long-term prescribed fire management. Furthermore, we targeted a region, southwestern Georgia and
northwestern Florida (USA), in which little is known regarding tick dynamics so that basic phenology could be determined.
Twenty-one plots with varying burn regimes (burned surrounded by burned [BB], burned surrounded by unburned [BUB],
unburned surrounded by burned [UBB], and unburned surrounded by unburned [UBUB]) were sampled monthly for two
years while simultaneously collecting data on variables that can affect tick abundance (e.g., host abundance, vegetation
structure, and micro- and macro-climatic conditions). In total, 47,185 ticks were collected, of which, 99% were Amblyomma
americanum, 0.7% were Ixodes scapularis, and fewer numbers of Amblyomma maculatum, Ixodes brunneus, and Dermacentor
variabilis. Monthly seasonality trends were similar between 2010 and 2011. Long-term prescribed burning consistently and
significantly reduced tick counts (overall and specifically for A. americanum and I. scapularis) regardless of the burn regimes
and variables evaluated. Tick species composition varied according to burn regime with A. americanum dominating at
UBUB, A. maculatum at BB, I. scapularis at UBB, and a more even composition at BUB. These data indicate that regular
prescribed burning is an effective tool for reducing tick populations and ultimately may reduce risk of tick-borne disease.
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Introduction

In the past several decades, numerous novel tick-borne diseases

have emerged and the incidence of other tick-borne diseases has

increased [1–8]. While this increase is likely due to a number of

factors, such as increases in reporting, diagnosis and host

abundance, one of the primary drivers is thought to be human

land modification and management practices [3,8,9]. This

hypothesis has underscored the importance of understanding

how human land management practices affect tick population

dynamics as well as identifying methods to control tick populations

and reduce human disease risk.

Perhaps one of the most promising methods for controlling tick

populations is prescribed burning because it can be applied on a

landscape level and is relatively time and cost efficient. Addition-

ally, prescribed burning is a well-accepted form of ecosystem

management and wildfire prevention [10–12]. In the southeastern

United States, the value of prescribed burning is particularly

apparent where forests are dominated by fire-adapted or fire–

dependent tree species, such as longleaf pines (Pinus palustris).
Specifically, burns reduce fuel load and cause regeneration and

diversification of the understory of forests [11,13–16]. In addition,

the immediate regeneration of understory vegetation after a burn

and the long-term density and diversity of understory vegetation
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within regularly burned habitat provides resources for many

wildlife species including the endangered or threatened gopher

tortoise (Gopherus polyphemus), Eastern indigo snake (Drymarchon
couperi), and red-cockaded woodpecker (Picoides borealis)
[11,15,17–18].

Several past studies have been conducted on the impacts of

prescribed burning on tick populations. Although there have been

conflicting results, the majority of studies concluded that tick

populations are reduced immediately after a burn event, but

recover to pre-burn abundance within one year [19–27].

However, other studies have failed to observe a significant

reduction in ticks and some even observed an increase [28–30].

These studies often did not simulate real-world management

conditions in that burns in many studies were performed only

once, over a small area of land, and/or were performed in areas

that were previously unburned [19–21,23,24,26,31,32]. This is in

direct contrast to the typical regimen for applying prescribed

burns, which are conducted over hundreds to thousands of acres

on a regular basis. These discrepancies have clear implications for

tick re-establishment after a burn and should be accounted for in

an analysis on the impacts of burning on tick populations.

Furthermore, previous studies typically did not investigate other

factors known to affect tick populations such as host abundance,

microclimate and vegetation structure [21,24]. Failure to account

for such factors may explain some of the conflicting results of past

studies.

To address impacts of long-term prescribed burning on tick

population dynamics and evaluate how prescribed burns might

interact with other factors to affect tick abundance, we determined

tick abundance, species composition, and seasonality at multiple

plots with variable burn histories with .10 years of operational

burn management. Additionally, other factors known to poten-

tially affect tick abundance (e.g., host abundance, vegetation

structure and micro- and macroclimate) were evaluated at each

plot. Collectively, these data provided insight in to the efficacy of

long-term prescribed burning for tick control and also revealed

phenologies for numerous tick species in southwestern Georgia

and northwestern Florida (USA), an area for which there is

currently little to no data on ticks or tick-borne pathogens.

Methods

Study Area
This study was conducted in southwestern Georgia and

northwestern Florida, which is dominated by pine and mixed

pine forests and agriculture. Prescribed burning is commonly used

throughout the region to maintain various pine ecosystems

including, longleaf pine ecosystems. We selected 21 sites (two

privately owned, eight state-owned, and 11 owned by the J.W.

Jones Ecological Research Center [JERC]) based on the presence

or absence of a long-term history of prescribed burning, with

burned sites having had at least 10 years of regular prescribed

burns and unburned sites having no history of prescribed burning

for over 10 years (Table 1). Study sites (not including our control

sites) ranged in size from 7.2–78.9 ha. To ensure that the same

locations within the study sites, including our control sites, were

being sampled on a month-to-month basis, specific plots were

established which ranged from 0.35–3.22 ha (note that flagging

effort was standardized by time). No permits were required for this

work. Permission to work on public lands was given by the

Georgia Department of Natural Resources. Permission to work on

private lands was given by the respective land owners and future

permissions should be addressed to Mike Conner.

To account for differences in land cover and management both

within and immediately surrounding the site, each site was further

categorized as being 1) burned surrounded by burned (BB), 2)

burned surrounded by unburned (BUB), 3) unburned surrounded

by burned (UBB) and 4) unburned surrounded by unburned

(UBUB) (i.e., a control). When classifying prescribed fire status

around a sampled site, surrounding land was defined based on

burn status of land immediately surrounding the site. Because of

the rarity of BUB sites, we classified these sites based upon the

majority of the land immediately surrounding the plot being

unburned. Selection of BUB and UBB was made possible by using

or working adjacent to sites that were either part of a long-term

fire exclusion site or using sites that were not burned due to

logistical difficulties associated with smoke dispersion (e.g., stands

bordered highways creating risk of automobile accident), or

selecting sites associated with forest types that are not typically

burned (e.g., hardwood forest). Common use of prescribed fire on

the study landscape facilitated selection of BB sites. Lack of

prescribed fire use within large tracts of land facilitated selection of

UBUB sites (with tracts ranging from 165–385 ha).

Tick Collections
Each plot was sampled monthly for ticks for 24 months (January

2010-December 2011) using 1 m61 m flags made of flannel cloth.

To standardize conditions, flagging was conducted only when the

temperature was above 7.2uC and after 10AM when vegetation

was dry (no dew or moisture from precipitation). Additionally,

flagging was not conducted during inclement weather (rain, snow,

or excessive wind). Each plot was flagged for a minimum of one

hour per plot per month. If more than 5 ticks were collected

during a one hour effort, sampling would be continued for up to

30 minutes or until the entire plot had been covered. Flags were

checked every 10 minutes and all nymphs and adults were

collected and preserved in 70% ethanol. All larvae were removed

en masse with masking tape with each clutch being kept separate.

Timers were paused during flag checks and removal of ticks.

Tick Identifications
All adult and nymphal Amblyomma spp., adult Dermacentor

variabilis, and adult Ixodes spp. were identified morphologically

utilizing a microscope and published keys [33,34]. Identification of

larvae, Ixodes spp. nymphs, and a subset of adult Ixodes spp. was

conducted through polymerase chain reaction (PCR) and

sequence analysis. DNA was extracted from ticks using a Qiagen

DNeasy blood and tissue kit (Germantown, MD) utilizing the

manufacturer’s protocol. For Amblyomma larvae collected in 2010,

a multiplex real-time PCR was used to differentiate between A.
maculatum and A. americanum as described in Zemtsova et al

[35]. For Amblyomma larvae collected in 2011 and all Ixodes, a

PCR targeting the 16S rRNA gene was conducted using primers

16S-1 (59-CCGGTCTGAACTCAGATCAAGT) and 16S+2 (59-

TTGGGCAAGAAGACCCTATGAA) as described in Black and

Piesman [36]. DNA extraction and PCR reactions were

performed in hoods dedicated strictly for their respective tasks

and waters were included as negative controls during both DNA

extraction and PCR in order to detect contamination. All

amplicons from the 16S protocol were purified using a Qiagen

gel extraction kit (Germantown, MD) and then bi-directionally

sequenced at the Georgia Genomics Facility (Athens, GA).

Host Monitoring
Host occurrence, specifically mesomammals and deer, was

determined through quarterly passive trail camera (Cuddeback

Capture, Green Bay, WI) surveys. No permits or Institutional
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Animal Care and Use Committee approval is required for passive

trail camera surveys and no endangered or protected species were

involved. For each survey, one camera was placed at each plot on

an unbaited, secondary dirt road or trail bordering or within

100 m of the plot. Each plot was surveyed for 76 hours with all

plots being surveyed within an 11-day period (with the exception

of the winter 2011 survey in which all plots were surveyed within

30 days due to logistical constraints). The species, date, and time of

all animals captured were recorded.

Vegetation Surveys
To account for potential differences in vegetation among the

plots, vegetation surveys were performed at all plots. To determine

tree density, a singular point-centered quarter survey utilizing the

equivalent of 20 points per hectare was performed with a quarter

being considered empty if there were no trees within 10 m from

the center point. These points were marked for understory

vegetation surveys.

Understory vegetation and canopy closure were measured using

quarterly surveys. To perform the survey, a 1 m61 m frame was

placed with the previously marked point falling at the center of the

frame and the sides of the frame running directly north to south

and east to west. Percent cover and composition of understory

vegetation and ground litter was estimated [37]. Litter depth was

measured at two random points within the frame. Canopy cover

was measured from the center point using a spherical densiometer

[38].

Microclimate and Weather
At least three microclimatic measurements (humidity, temper-

ature, and median wind speed) were taken at each plot

immediately after each monthly flagging using a Kestrel 3000

Weather Meter (Birmingham, MI). Measurements were taken at

ground level and 1 m above ground. If a particular plot had areas

with and without ticks, measurements were taken where ticks were

collected and two additional measurements were taken at

randomly assigned points where ticks were not detected. If no

ticks were collected at a plot, measurements were taken at

randomly selected points.

Weather data including maximum temperature and precipita-

tion the current sampling day, maximum and minimum temper-

atures the previous day, and precipitation accumulation the

previous 3 days were collected for all plots, each sample date from

the JERC Weather Station (all JERC locations) and the National

Weather Service (all other plots).

Statistical Analyses
A generalized estimating equation (GEE) negative binomial

regression model [39] was used to evaluate the impacts of long-

term prescribed burning, host abundance, vegetation composition,

microclimate, and weather on tick abundance. This modeling

approach is well-suited for repeated measures, accounts for

clustering by plot, and is appropriate for use when there are large

numbers of zeros in the data. Models were created for 1) total tick

Table 1. Locations and burn data for the 21 plots sampled during this study.

Location GPS Coordinates County{ Burn Treatment
Year Burned
(during study)

JERC, BU 1* N 31u 18.967, W 84u 26.495 Baker BB 2010

JERC, BU 5 N 31u 18.422, W 84u 27.177 Baker BB 2011

JERC, BU 7 East N 31u 17.272, W 84u 27.877 Baker BB 2011

JERC, BU 7 West N 31u 17.770, W 84u 28.396 Baker BB 2011

JERC, BU 64 N 31u 25.042, W 84u 48.285 Baker BB 2010

JERC, BU 136 N 31u 11.627, W 84u 27.978 Baker BB 2010

JERC, BU 137 N 31u 11.594, W 84u 27.976 Baker BB 2011

JERC, BU 176 N 31u 14.484, W 84u 22.162 Baker BB 2010

Chickasawhatchee WMA N 31u 29.055, W 84u 26.744 Calhoun BUB 2010

Hannahatchee WMA - plot 1 N 32u 8.850, W 84u 45.241 Stewart BUB 2011

Hannahatchee WMA - plot 2 N 32u 06.559, W 84u 44.600 Stewart BUB 2011

River Creek WMA N 30u 51.023, W 84u 04.347 Thomas BUB 2011

Silver Lake WMA N 30u 47.270, W 84u 45.390 Decatur BUB 2010

Flint River WMA N 32u 08.431, W 84u 00.358 Dooly UBB n/a

JERC, BU 107 N 31u 16.367, W 84u 29.090 Baker UBB n/a

JERC, BU 140 N 31u 10.219, W 84u 28.017 Baker UBB n/a

JERC, BU 15 N 31u 29.066, W 84u 52.242 Baker UBB n/a

Lake Seminole WMA - Little Horseshoe Bend Tract N 30u 50.649, W 84u 39.186 Decatur UBB n/a

Montezuma Bluff Natural Area N 32u 20.235, W 84u 01.743 Macon UBUB n/a

Private Property 1 N 30u 49.578, W 84u 36.951 Decatur UBUB n/a

Private Property 2 N 30u 41.277, W 84u 49.023 Gladsden, Florida UBUB n/a

Prescribed burns took place every 2–4 years during the dormant season on pre-determined schedules.
JERC = Joseph W. Jones Ecological Research Center; BU = burn unit; WMA = wildlife management area; n/a = not applicable; BB = burned, surrounded by burned area;
BUB = burned, surrounded by unburned area; UBB = unburned, surrounded by burned area; UBUB = unburned, surrounded by unburned area.
*JERC plots were distributed throughout this 12,000 ha area.
{Unless noted, all counties are in Georgia.
doi:10.1371/journal.pone.0112174.t001
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counts, 2) A. americanum counts, and 3) I. scapularis counts. We

chose to include all lifestages captured by flagging because this

method of collection acts as a proxy for questing behavior and

ultimately the ability to locate a human host which has direct

implications for pathogen transmission. When applicable, each

larval cluster was counted as a single tick because 1) this would

reduce skew in the data, and 2) larvae do not transmit pathogens

to humans (except for Rickettsia spp.). However, we chose to

include nymphs in our analyses because they are viewed as the

primary lifestage responsible for transmitting pathogens to humans

[40,41]. No other tick species were sufficiently abundant for

further modeling effort.

Because host and vegetation surveys were only conducted

quarterly, all data were evaluated on a quarterly basis (spring,

summer, fall, and winter). Thus, for tick counts, microclimate, and

weather data, we used data that were collected closest to the date

of the vegetation surveys for each quarter. The relationship

between continuous predictors and the outcome was graphically

assessed by categorizing the predictors into quartiles and plotting

the estimated coefficients for the resulting indicator variables

against the category midpoints. Predictors having a non-linear

relationship with the outcome were categorized for the analysis.

Multivariable model selection proceeded from a maximum

model that contained all variables having an association (P,0.2)

with tick counts in the univariate analysis. Non-significant

predictors were removed from the maximum model using a

manual stepwise procedure until only those having P,0.05

remained. Upon reaching a preliminary main-effects model, all

previously excluded variables were added back to the final model

one at a time to re-assess their significance, and all possible two-

way interactions with burning were evaluated. Year and season

were retained regardless of their significance because of their

theoretical importance as predictors of tick abundance. Season

was dichotomized into warm (spring and summer) and cool (fall

and winter) periods because the individual seasons within these

categories were homogeneous with respect to tick counts.

Results

In total, 47,184 ticks were collected with A. americanum being

the most common tick detected followed by I. scapularis, A.
maculatum, D. variabilis, and I. brunneus (Table 2). To account

for varying effort among plots and collection dates, we standard-

ized by evaluating ticks collected/hr. Seasonality trends were

determined using all 21 plots for both 2010 and 2011 (Figure 1). In

2010, A. americanum activity peaked in May for adults, May and

October for nymphs, and July and September for larvae. In 2011,

periods of peak A. americanum activity were similar with adults

peaking in April through June, nymphs in May and September,

and larvae in July and October. Adult A. maculatum activity

peaked June through August 2010 and in August 2011 (Figure 1).

Single A. maculatum nymphs were collected in April 2010 and in

March 2011 and a single A. maculatum larval clutch was collected

in September 2011. I. scapularis adults peaked in November and

March of 2010 and in February 2011. D. variabilis adult activity

peaked in July 2010 and was not caught in enough abundance in

2011 to determine seasonality.

Within burn treatments, 43 ticks were collected in BB plots (one

A. americanum, 37 A. maculatum, and five I. scapularis), 1,756 in

BUB plots (1,687 A. americanum, 32 A. maculatum, 26 I.
scapularis, and 11 D. variabilis), 3,719 in UBB plots (3,568 A.
americanum, six A. maculatum, 135 I. scapularis, one I. brunneus,
and nine D, variabilis), and 41,706 in UBUB plots (a minimum of

41,460 A. americanum, a minimum of four A. maculatum, 186 I.

scapularis, and 18 D. variabilis) (Table 2). Importantly, species-

specific numbers associated with A. americanum and A.
maculatum in UBUB plots cannot be determined because a larvae

cluster was captured that was assumed to consist of a single species;

later PCR testing revealed that it contained both species. Our

modeling efforts suggested that total tick counts were affected by

long-term burning, season, litter cover, and trees density (Table 3).

There was a significant interaction between burning and season.

For plots in which burning occurred, tick counts did not change

significantly by season [RR = 1.1 (95% CI: 0.57, 2.12); P = 0.774],

confirming the trend that ticks were significantly reduced in

burned plots (Figure 2). However, at plots in which there was no

burning, tick counts were 10 times greater in the warm season

than in the cold [Relative Risk (RR) = 10.7 (95% CI: 4.20, 27.18);

P,0.001]. Having higher than 95% litter cover was positively

associated with an approximately two-fold increase in tick counts

and density of trees (.183 per ha) was associated with an

approximately six-fold increase in tick counts.

Interestingly, dominant tick species differed by burn treatment,

with A. americanum being the most prevalent tick in UBUB plots,

A. maculatum being most common in BB plots, I. scapularis
dominating UBB plots, and a more even distribution of the

different tick species at BUB plots (Figure 3). To further investigate

impacts of the measured variables on individual tick species, we

constructed models specifically for A. americanum (Table 4) and I.
scapularis (Table 5). A. americanum counts were best predicted by

burning, season, bobcat presence/absence, and wind at ground

level on day of tick counts. A significant interaction occurred

between burning and season, with A. americanum not being

significantly affected by season in burned plots [RR = 2.4 (95% CI:

0.3, 19.0); P = 0.409]; in other words, no seasonality was observed

because there were so few ticks present in burned plots. However,

at plots in which there was no burning, A. americanum counts

were over 30 times greater in the warm season than in the cold

[RR = 33 (95% CI: 14, 81); P,0.001], indicating what would be

an expected seasonality pattern for A. americanum. Together,

these findings suggest that prescribed burning reduced A.
americanum abundance. The presence of bobcats (Lynx rufus)
was positively associated with A. americanum counts, while an

increase in wind by 1 kilometer per hour resulted in a 69%

decrease in A. americanum detectability. Finally, I. scapularis
counts were best predicted by burning, season, year, tree density,

and precipitation. Long-term prescribed burning reduced I.
scapularis counts by 78%. Furthermore, I. scapularis counts were

reduced by approximately 85% in the warm season relative to the

cold season and counts were 3.7 times greater in 2011 than in

2010. Lastly, I. scapularis counts were 18 times greater in plots

with high tree density (.183 trees per ha) relative to plots with low

tree density and were twice as likely to be collected if precipitation

occurred during the 3 days prior to sampling.

Discussion

To our knowledge, this is one of the most comprehensive studies

examining the effects of long-term operational prescribed burning

while also incorporating other variables that are known to affect

tick abundance. Furthermore, this is the first long-term study of

tick phenology in southwestern Georgia, and provides valuable

insight into seasonality and species composition within common

habitats of the region.

Gaining a better understanding of tick species composition and

seasonality in this rarely studied region provides important

information for public health education and research. Our

findings regarding seasonality of ticks were generally in agreement
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with studies done in other regions of Georgia and northern Florida

[24,27]. One exception was that we detected a bi-modal peak for

A. americanum nymphal activity similar to work conducted by

Cilek and Olson [27] in northern Florida, whereas only a single

peak was noted by Davidson et al. [24] in the Piedmont region of

Georgia (i.e., farther north). This may indicate that nymphal A.
americanum populations south of the fall line in Georgia have bi-

modal peaks, whereas those north of the fall line have a single

peak. Also, to our knowledge, this marks only the second

longitudinal study on A. maculatum seasonality [42], providing

important information on this tick which has gained interest in

recent years due to expanding populations, transmission of

numerous pathogens, and having been identified as a vector of

the causative agent of Rickettsia parkeri rickettsiosis [43].

Past studies suggested that climate (e.g. temperature and

rainfall) affects tick abundance and distribution [24,44] and we

suspect that the differences observed in tick phenology from 2010

to 2011 were a result of climate differences. In 2011 there were

significantly more I. scapularis. Furthermore, the bi-modal peak of

I. scapularis occurred later in 2011 as compared to 2010. These

differences may have been due to an exceptionally dry summer

followed by a wet fall and mild winter (I. scapularis adult peak

activity) in 2011 as compared to 2010.

Long-term prescribed burning significantly reduced tick counts.

Although some previous studies have found either increases in tick

populations or a recovery of tick populations following a burn [19–

28], our results suggest that prior conclusions may be the result of

failure to account for other variables and failure to simulate real-

world management scenarios in which large-scale burns are

regularly applied. Because operational burns typically occur on

larger areas, re-colonization by ticks in these larger areas may take

longer than observed in studies using smaller plots. Furthermore,

repeated burn events occurring over time may deplete source

populations of ticks.

Interestingly, we observed variation in the tick community

composition relative to burn treatment which, to our knowledge,

has never been reported. The most striking difference was related

to greater abundances of A. maculatum in BB plots whereas A.
americanum was most abundant in UBUB plots. In general, A.
americanum are more abundant in hardwood forests [45], and

some have suggested that A. americanum outcompetes other tick

species, such as D. variabilis [46]. Thus, the greater abundances of

A. americanum in UBUB plots which were hardwood dominated

would arguably be expected. The greater question deals with the

absence of A. americanum and dominance of A. maculatum in BB

plots. Burning at BB plots directly altered the physical vegetation

structure and maintained dominance of pines in the overstory.

Thus, BB plots were generally open-canopied pine forests with a

diverse understory and sparse midstory. These vegetation condi-

tions result in a hotter, dryer environment than UBUB plots which

are closed-canopy hardwood forests with dense mid-stories and

sparse, litter-covered understories. We suspect that this plays a key

role in both the long-term reduction of ticks and shift in tick

species composition observed at these plots. Our models support

Figure 1. Seasonality of each tick species and life stage across all study plots for 2010 and 2011.
doi:10.1371/journal.pone.0112174.g001
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this as vegetation structure (tree density and litter cover

specifically) and microclimatic variables which would affect tick

moisture retention were most important in predicting tick counts.

Willis et al. [30] had similar findings in that A. americanum was

found to be associated with litter cover and negatively associated

with pine sapling density. Also in support of this theory, Gleim et

al. [47] reported that A. americanum had significantly lower

survival in experimental enclosures in burned habitats vs.

unburned habitats compared with A. maculatum. Collectively,

these data suggest that different physiologic and/or behavioral

traits of different tick species increase survival success in certain

environments [47,48].

Although host occurrence (specifically mesomammals and deer)

was considered in all models of tick counts, only bobcat presence

was an important predictor of A. americanum counts, suggesting

that those host populations monitored did not generally impact

tick counts. It is important to note, however, that our methodology

(trail camera surveys) did not account for small mammal and bird

Figure 2. Effects of long-term prescribed burning on tick abundance at all study plots. *One clutch of larvae was counted as one tick.
doi:10.1371/journal.pone.0112174.g002

Table 3. Generalized estimating equation negative binomial regression model for the prediction of total tick counts at all 21 plots
in 2010 and 2011.

Variable Coefficient (SE) RR (95% CI) P

Any Burning (vs. No Burning*) 21.5 (0.43) ND 0.001

2011 (vs. 2010* 0.29 (0.24) 1.3 (0.84, 2.2) 0.22

Hot (Spring/Summer) (vs. Cool [Fall/Winter]*) 2.4 (0.48) ND ,0.001

.95% Litter Cover (vs. ,95%*) 0.81 (0.33) 2.2 (1.2, 4.3) 0.014

.183 Trees per Ha(vs. ,183*) 2.3 (0.66) 6.4 (2.6, 35) 0.001

Any Burning X Season 22.3 (0.59) ND ,0.001

Constant 22.0 (0.84) NA 0.016

ln(Hours flagged) 1

SE = Standard error. RR = Relative rate. ND = Not determined; RR is not given because it depends on the interacting variable. NA = Not applicable.
*Indicates the reference category.
doi:10.1371/journal.pone.0112174.t003
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populations which are important hosts for both A. americanum
and A. maculatum larvae and nymphs [49–51]. However, previous

studies have found that small mammals and ground nesting birds

tend to be found in greater abundance in burned areas where

there is dense ground cover as compared to unburned areas in

which ground cover is sparse to non-existent [52,53]. These data

would therefore refute the assertion that the high tick abundances

observed in UBUB were due to larger populations of small

mammals and birds in these areas.

The failure to identify a relationship between host occurrence

and tick counts questions acceptance of the dogma that host

abundance drives tick abundance [54–56]. However, manipulative

and observational studies have been inconclusive regarding a

correlation between host and tick abundance [57,58]. Although

Figure 3. Ticks species composition at all study plots by burn treatment for 2010–2011. *One clutch of larvae was counted as one tick.
doi:10.1371/journal.pone.0112174.g003

Table 4. Generalized estimating equation negative binomial regression model for the prediction of A. americanum counts at all
study 21 plots.

Variable Coefficient (SE) RR (95% CI) P

Any Burning (vs. No Burning*) 22.5 (1.1) ND 0.026

2011 (vs. 2010*) 0.07 (0.34) 1.1 (0.55, 2.1) 0.837

Hot (Spring/Summer) (vs. Cold [Fall/Winter]*) 3.5 (0.45) ND ,0.001

Bobcats Present (vs. Absent) 1.2 (0.31) 3.2 (1.7, 5.8) ,0.001

Wind at Ground (mph) 21.2 (0.34) 0.31 (0.15, 0.59) ,0.001

Any Burning X Season 22.6 (1.1) ND 0.019

Constant 1.3 (0.84) NA 0.717

ln(Hours flagged) 1 (Effort)

SE = Standard error. RR = Relative rate. ND = Not determined; RR is not given because it depends on the interacting variable. NA = Not applicable.
*Indicates the reference category.
doi:10.1371/journal.pone.0112174.t004
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bobcat presence was an informative predictor of A. americanum
counts, we suggest that it is more likely bobcats were associated

with other factors impacting A. americanum counts rather than

actually acting as a causal mechanism affecting A. americanum
counts. We suspect that while host abundance may play a minor

role in tick dynamics, other factors such as burning and

microclimate play larger roles in driving tick dynamics in the

systems we studied.

In conclusion, operational prescribed burning in pine and

mixed pine ecosystems significantly reduces tick populations which

supports several previous studies [20,26]. A number of previous

studies showed that although burning causes tick mortality, they

recolonized the area within a few years [24,25,30]. We suggest

that the repeated burnings associated with operational prescribed

fires and the resulting vegetation and microclimate are ultimately

responsible for the long-term reductions in tick populations

observed in our study. These findings illustrate another benefit

of prescribed fire and have important implications for public

health as it is a time efficient, cost effective method for reducing

tick populations and likely reduces the risk of human tick-borne

diseases.

Future studies should include pathogen testing to gain a more

complete understanding of tick-borne disease risk and dynamics in

areas that utilize prescribed burns. Furthermore, studies examin-

ing the efficacy of prescribed burning in different management

scenarios as well as determining the length of time required to

provide overall reductions in tick populations within previously

unburned areas is warranted.
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