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Abstract

In this paper we propose some mathematical models to plan a Next Generation Sequencing experiment to detect rare
mutations in pools of patients. A mathematical optimization problem is formulated for optimal pooling, with respect to
minimization of the experiment cost. Then, two different strategies to replicate patients in pools are proposed, which have
the advantage to decrease the overall costs. Finally, a multi-objective optimization formulation is proposed, where the
trade-off between the probability to detect a mutation and overall costs is taken into account. The proposed solutions are
devised in pursuance of the following advantages: (i) the solution guarantees mutations are detectable in the experimental
setting, and (ii) the cost of the NGS experiment and its biological validation using Sanger sequencing is minimized.
Simulations show replicating pools can decrease overall experimental cost, thus making pooling an interesting option.
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Introduction

In the 1990s it became clear it was not possible to sequence all

or large parts of the human genome using already available

technologies. Indeed, sequencing the 3.6 billions base pairs using

sequences shorter than one thousand base pairs would have been

expensive and time demanding. Therefore, the problem was

solved concurrently, dividing the long DNA sequence in to sub-

sequences, and analyzing them in parallel.

The Next Generation Sequencing (NGS) technologies use this

idea, producing a large number (in the order of ten of millions) of

short reads, each being the result of the sequencing of a DNA

fragment. These fragments are obtained firstly breaking the

original DNA sequence, using ultrasounds or restriction enzymes,

in pieces of a fixed size, and then cloning them in a process known

as amplification. The result of this process is then sequenced,

producing the short reads, whose length, at the moment of writing,

varies between 50 and 500 base pairs, depending on the

technology used by the sequencer. These nucleotide string

sequences are stored in flat files, together with information on

the quality of each base call. Then, each short read is aligned on

the reference genome. The number of reads that aligns on a

specific position is called coverage. The result of the alignment is a

file containing the information about the alignment, such as the

position on the reference genome where the short read has been

mapped and its error probability, and the potential insertions or

deletions needed to obtain the alignment. The data are then

analyzed to detect variations with respect to the reference genome.

An example of mutation is a Single Nucleotide Polymorphism

(SNP), where the mutation consists in a change of a single

nucleotide into another. This can be detected in a certain position,

looking at the nucleotides in each short read that are aligned with

the position of interest. If the SNP is only on one allele

(heterozygous mutation), then a half of the short reads might be

different from the reference. Some of these polymorphisms are due

to the natural variability of organisms, and some might be unique

for a specific individual. Some of those mutations in protein coding

genes can alter the associated protein, whereas some other have no

effect, due for example to the degeneracy of genetic code. In case

of rare genetic disease studies, we are interested in detecting

mutations in the DNA sequence, that are unique for an individual

and causative of the disease. Due to its rarity and complexity of its

treat, these mutations might appear only in one patient in the

population sample under study.

The widespread availability of high-throughput sequencing

technologies makes it possible to analyze large panels of patients

affected by rare genetic diseases, although the time and cost of

such experiments are still a limiting factor. The existing solutions

rely, when possible, in the analysis of pools of patients. This

pooling technique consists in analyzing a mixture of DNA from a

group of individuals, and assigning the discovered causative

mutations to a single patient. The inspiration for the present work

comes from a study conducted on muscular diseases, whose aim is
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to analyze the samples from a thousand patients affected by

muscular diseases. To this extent, the sequencing experiment has

been planned targeting a panel of genes taken from a previous

study, where all known genes related to muscular diseases have

been reviewed [1], and using Agilent HaloPlex Target Enrichment

kit.

Examples of studies using pooled experiments, in various

genetic and genomic applications, can be found in [2–4]. The

limit of such studies is that no evaluation has been done to asses

the group size of the pools, the probability to detect a mutation,

the cost associated with the experiment and its biological

validation.

When dealing with pooled DNA sequencing experiments, there

are various aspects that need to be considered. First, the

contribution of DNA from each patient in a pool is in general

different. This is due to the fact that this operation is usually

manually executed, and even a robot or a skilled professional

biologist might produce a mixture in which the most represented

individual contributes with a quantity of DNA that is double or

more, with respect to the less represented one. Therefore, the

number of short reads produced during sequencing and belonging

to each patient might be very different. Since a certain percentage

of reads is affected by base call and mapping errors, in the worst

case, all mutations of a specific patient might be in reads that are

unusable and therefore discarded from the analysis. For this

reason, a rule of thumb used by biologists dealing with this kind of

experiments is that the number of short reads covering each

position of interest should be at least thirty. Such number should

be multiplied by the number of patients in the pool, thus liming

the maximum number of patients mmax per pool, due to the

limited coverage capability of sequencing methods.

Supposing that the disease has a complex genetic trait and is

rare, we might expect each patient to bring a certain number of

unique mutations, that will be detectable only in the short reads

belonging to that specific patient. Therefore, there will be a certain

number of mutations that will appear in the experiment. If we

want to attribute these mutations to a specific patient, we need to

test all patients for all found mutations, using for example low

throughput Sanger sequencing technology. Although Sanger tests

are orders of magnitude cheaper than the NGS ones, even when

dealing with a low number of expected mutations in a pool of

patients, this might result in a large number of experiments with a

cost comparable with NGS. We will show that in some cases, it

might be convenient to explore some controlling strategies that

replicate patients in pools used in the high throughput experiment,

in such a way that the number of Sanger sequencing experiments

is decreased (or even eliminated), together with the total cost of the

experiments. This will be achieved sequencing each patient twice,

and allocating the patient in two different pools, which we call

main and replicated pools.

In this paper we propose a technique to plan NGS pooled

experiments. The solution takes into account experimental setups

with or without replication of the patients. A combinatorial

organization of pools has been devised with some optimality

characteristics, whose advantages are: (i) the solution guarantees

that the mutation is detectable in the experimental setting, and (ii)

the cost of the experiment and its biological validations using

Sanger sequencing is minimized. Then we use a probabilistic

model to determine the number of patients for each pool, and a

multi-objective optimization formulation of the problem to obtain

optimal grouping of patients with a given probability to detect a

mutation.

Methods

We recall that when patients are organized in pools and

analyzed with NGS technology, the assignment of found

mutations to patients is accomplished using Sanger sequencing

technology. In the following we provide a mathematical formu-

lation of the problem, together with an analysis of results in terms

of costs associated to the optimal allocation of patients in pools.

Pooling without Replica
Suppose there are n patients each of which might bring at most

Nm rare mutations. All n patients can be allocated in p pools

consisting of m1, . . . , mp patients, such as:

Xp

j~1

mj~n: ð1Þ

The size of each pool is restricted by a maximum number mmax

of patients, as explained in the previous section, therefore:

mjƒmmax, j~1, . . . , p: ð2Þ

If c1 and c2 are the costs of NGS and Sanger sequencing,

respectively, then the total cost of the experiment can be calculated

by:

CN~p:c1z
Xp

j~1

c2
:Nm

:m2
j : ð3Þ

The total cost CN of the experiment depends on the cost c1 for

sequencing each of the p of pools, and the cost c2 of the Sanger

validations. Once Nm
:mj mutations have been found in the j-th

pool, they need to be assigned to one of the mj patients, thus

requiring Nm
:m2

j validations.

Pooling with Replica
The validation of a biological experiment is usually obtained

replicating the experiment at least twice. In this section we

investigate two different strategies for pooled experiments. Both

strategies are based on construction of pools so that (i) each patient

is replicated two times in different pools, and (ii) if a mutation is

identified in both main and replicated pool, it refers to at most 1

patient.

Transposition. The first strategy, called Transposition, is

based on the concept of matrix transposition as it is illustrated in

the left and center panels of Figure 1, where the left image

illustrates the set of 15 patients distributed into 5 main pools, and

the middle image represents the replicated pools. Naturally this

approach can be applied if the maximum number of patients

allowed in a single pool is greater than or equal to the number of

main pools (mmax§pm). If the latter requirement is not satisfied

(mmaxvpm), then the number of patients in a control pool would

exceed the maximum number of patients nmax in a pool. Therefore

a larger number of control pools must be constructed using a

similar strategy, as it is shown in the right panel of Figure 1, in

order to correctly fit all patients in replicated pools. In general, the

number of replicated pools (pc) can be chosen by taking into

account the following two constraints:

Optimizing Pooled NGS Experiments for Rare Mutations Detection
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(i) the number of replicated pools cannot be larger than the total

number of patients (pcƒn), in order to have enough patients

to complete all pools;

(ii) the number of replicated pools cannot be smaller than the

number of patients in the largest main pool: pc§m, where

m~ max
1ƒjƒpm

mj : ð4Þ

The second constraint is based on the requirement that all

patients from a single main pool must be allocated in separate

replicated pools, thus ensuring that identification of a SNP in any

two pools would refer to at most 1 patient. Therefore, a SNP,

detected in one main and one replicated pools, can be assigned to

a single patient. Since no Sanger tests are needed, the price of

pooling for this strategy can be expressed as

CT~ pmzpcð Þ:c1, ð5Þ

where pm is the number of main pools, pc is the number of

replicated pools, and c1 the price for NGS for each pool.
OptReplica. The second strategy, called OptReplica, is built

so that for a given number m of patients in the largest pool the

smallest number p of pools is chosen subject to:

pw~
2n

m
, pw~mz1: ð6Þ

The first inequality is based on the requirement to fit all

allocations of n patients repeating each of them twice. The second

inequality is based on the requirement to discriminate the SNPs

belonging to any patient: identification in any two pools of a SNP

must match at most 1 patient. So if m patients are allocated to the

first pool, m other pools are needed with each of these patients

allocated to different pools, so that no two or more patients

belonging to the same main pool are together in any other pool.

In the case of p~mz1, allocation of patients to pools

correspond to 2-combinations of pools. Therefore the maximum

number of patients to allocate is

p

2

� �
~

p(p{1)

2
~

pm

2
: ð7Þ

The algorithm to define allocations can be described as: allocate
each patient in both the first pool that is not yet completely filled, and
in the first pool with the smallest number of allocated patients. The

same strategy can be used when pwmz1. Examples are shown in

Figure 2.

Since no Sanger tests are needed, the price of pooling for this

strategy is

COR~p:c1, ð8Þ

where p stands for the number of pools, and c1 for the price for

NGS of each pool.

Grouping of Patients. Both strategies Transposition and

OptReplica allow identification of an SNP belonging to a single

patient without any Sanger test. Naturally, the total cost of the

experiment depends on the total number of pools, used for the

allocation of the patients, and the lowest price can be obtained

when the number of pools is smallest (see (5) and (8)). However, the

lowest number of pools is restricted by the maximum number of

patients (mmax) allowed in a single pool.

For example, if we use Transposition strategy for allocation of

n~128 patients with mmax~16, it would be optimal to use pm~8
main pools with m~16 patients each. Since the number of

replicated pools pc§m, this would lead to pc~16 replicated pools,

each with m~8 patients, thus resulting in half loaded replicated

pools. The number of these pools can be reduced by aggregating

patients into groups, each of which is considered as a single unit.

For example, if n~128 patients are grouped into 64 groups with 2

patients per group, then an optimal number p~8 of replicated

pools can be used. In this case, when a variation is found in both

the main and replicated pools, the grouping will lead to an

indecision between the two patients belonging to the group present

in both pools, that need to be resolved with a Sanger sequencing.

Figure 1. Illustration of allocation of patients in main pools (left), and in control pools, when mmax§pm (center) and mmaxvpm (right),
using transposition strategy.
doi:10.1371/journal.pone.0104992.g001
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The dependence of the minimum number of pools on the total

number of patients using Transposition strategy is illustrated in

Figure 3, where the horizontal axis corresponds to the total

number of patients, the vertical axis to the number of pools, and

different curves to the different sizes of groups: no grouping and

with groups size equals 2.

On one hand, the grouping of patients can reduce the number

of pools, on the other hand it leads to an identification of a group

of patients instead of a single one. Therefore, Sanger tests must be

additionally used to solve the indecision between patients in an

identified group. The total cost of the experiment with grouping of

patients can be expressed as:

C
g
T~ pmzpcð Þ:c1zc2

:Nm
:ng, ð9Þ

where c1 and c2 stand for the cost of NGS and Sanger tests

respectively, Nm stands for the number of rare mutations per

patients, and ngw1 is the number of patients in a group.

Multi-objective Optimization
The maximum number mmax of patients allowed in a single pool

may be determined with respect to the unity probability p to detect

the mutation. If the number of patients in a pool is lower than or

equal to mmax, then p~1; otherwise, if the number of patients in a

pool exceeds the value of mmax then the probability to detect the

mutation becomes lower than 1, and decreases when the number

of patients in a pool increases. This is due to the fact that for

increasing number of patients, the number of reads representing

DNA strings of a single patients decreases. However, the total cost

of the sequencing can be notably reduced increasing the number

of patients in a single pool. Therefore two conflicting objectives

can be envisaged.

In order to analyze the influence of sequencing errors in the

planning of NGS pooled experiments with respect to the total

price of the experiment, a multi-objective optimization problem

should be formulated by taking into account the following two

objectives:

Figure 2. Illustration of allocation of patients in control pools using strategy OptReplica, when p~mz1 (left) and pwmz1 (right).
doi:10.1371/journal.pone.0104992.g002

Figure 3. Dependence of the minimum number of pools on the total number of patients using Transposition strategy with
mmax~16.
doi:10.1371/journal.pone.0104992.g003
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N minimize the cost C of sequencing, and

N maximize the probability p to detect the mutation.

It is assumed that the probability p~1 if the number (m) of

patients in the largest pool is not greater than the maximum

number allowed (mmax), and p is zero if m is greater than a given

number �mmmax. If the number of patients in the largest pool

increases from mmax to �mmmax, then the probability p decreases

from 1 to 0. The value of probability p can be expressed as

p~

0 if m w �mmmax ;

1 if m ƒ mmax ;

1{
m{mmax

�mmmax{mmax

otherwise:

8>><
>>:

ð10Þ

When objectives are conflicting, usually it is impossible to find a

single solution, which would be the best according to both

objectives. The solution which is the best by one objective can be

worse, or even the worst, by another objective [5]. In such a case it

is usual to find a set of compromising solutions, which are all

optimal in some sense, thus providing to decision maker an

opportunity to make a choice.

In general, two different solutions can be related to each other

by the dominance relation. It is said that solution x dominates

solution y (denoted by x]y) if, and only if [6]

(i) solution x is not worse than solution y according to all

objectives, and

(ii) solution x is strictly better than solution y according to at

least one objective.

If x]y then solution x is called dominator of solution y. A

solution with no dominators is called non-dominated (or Pareto-
optimal), and the set of such solutions is called Pareto set [7]. The

corresponding set in the objective space (values of the objective

functions) is called Pareto front. For more detailed analysis of the

Pareto optimality, reader can refer to [8–10].

Since we deal with two objectives one of which is subject to

minimize (the cost) and another – to maximize (the probability),

the shape of Pareto front of the problem should be similar to one

illustrated in Figure 4. One can see in the figure, the solution

corresponding to the largest probability, corresponds to the largest

cost of the experiment as well. On the other side the solution

corresponding to the cheapest experiment, corresponds to the

lowest probability as well. However it is possible to find a set of

intermediate solutions which are all optimal in Pareto sense, and

decision maker can choose the most appropriate one, taking into

account various considerations, such as the given budget or/and

the desired probability to detect the mutations, in our case.

Results

Experiments on Pooling without Replica
The first experiment is aimed at comparing the cost of NGS

pooled experiments without replica. It is expected to detect Nm~5
rare mutations per patient, considering the cost of NGS

sequencing c1~1000 per pool, and c2~8 the cost of each Sanger

sequencing to check whether a found mutation belongs to a

patient. This ratio between costs is only indicative, and subject to

vary over time. The total number of patients is chosen to be

n [ f32, 64, 96, . . . ,1024g, and the maximum number of patients

in a pool is assumed to be mmax [ f4, 8, 16, 24g. For each value of

mmax the lowest number of pools is selected so that the maximum

number of patients in a pool would not exceed:

pmin~q
n

mmax

r: ð11Þ

It is assumed that pools are composed by patients so that the

difference between the largest and the lowest pools would be

minimal, i.e. not greater than 1; e.g. if n~17 and mmax~4, then 5

pools should be used, where 2 of them consist of 4 patients, and the

remaining 3 of 3 patients. The results, obtained using pmin pools,

are compared with the results, obtained using the optimal number

of pools (popt), which is determined by the complete enumeration

with respect to minimization of the cost:

popt~ arg min CN (p), ð12Þ

where:

q n

mmax
rƒpƒn: ð13Þ

Results of the experiment are presented in Figure 5, where the

horizontal axis corresponds to the number of patients and the

vertical one to the cost of the pooled experiment. Different curves

correspond to the different value of mmax, for which a minimal

number pmin of pools is chosen, except the continuous curve (Opt.

pooling), where the optimal number popt of pools is determined.

The figure shows that the total cost of the sequencing increases

together with the increment of the maximum number of patients

in a pool, when the lowest number of pools (pmin) is used. However

the lowest cost of the sequencing is obtained using the optimal

number (popt) of pools, as it is illustrated by the black curve in

Figure 5. The results, obtained using optimal values of mmax, are

the same as those obtained with mmax~24, except the case of

mmax~4 when the cost of the sequencing is slightly higher. This

can be explained by the numerical results of the experiment,

performed with mmax~24. The optimal numbers popt of pools and

the respective optimal numbers mopt of patients in a pool using

different numbers of patients are presented in Table 1 together

with the number of Sanger tests needed and the total cost of the

sequencing. The table shows that the optimal number of pools

Figure 4. Illustration of Pareto front.
doi:10.1371/journal.pone.0104992.g004
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increases when the total number of patients increases, however the

optimal number of patients in a pool remains almost stable and

very much less than the maximum number of patients in a pool

(mmax~24).

Experiments on Pooling with Replica
The next experiment is aimed at comparing the cost of the

sequencing using two replica strategies, which lead to the

sequencing without any indecision or indecision between a group

of patients. The same values of mmax are used as they were in the

previous computational experiment. The complete enumeration is

used to determine the optimal numbers of main (pm) and control

(pc) pools for Transposition strategy (see (5)), whereas the lowest

number p such as p:(p{1)w2n of pools is chosen for OptReplica

strategy (see (8)). The results are presented in Figure 6, where the

hollow marks stand for the cost obtained using Transposition

strategy and the filled marks for the cost obtained by OptReplica;

different curves correspond to different value of mmax. The line

without marks stands for the cost of the sequencing obtained with

pooling without replica into pools of optimal size.

The figure illustrates that the costs of the sequencing decrease

when the maximum number of patients in a pool increases,

independent whether Transposition or OptReplica strategy is

used. The slight difference in cost between the strategies can be

distinguished when a small number of patients are pooled into

small pools and the OptReplica is then slightly better. It is also

clear from the figure that usage of a replication decreases the cost

of the sequencing.

The impact of grouping of patients to the total cost of the

sequencing using Transposition strategy is illustrated in Table 2,

where the first column is the total number of patients, the second

column is the cost of the sequencing without grouping of patients,

and the last column is the cost of the sequencing, when patients are

grouped into groups of 2. One can see in the table that it is useful

to use the grouping of patients if the number of patients is small (16

and 32).

The comparison of the total cost of the pooled sequencing with

replication using Transposition and OptReplica strategies is

presented in Figure 7. The figure shows the total cost, obtained

using Transposition strategy is higher than the cost, obtained using

OptReplica strategy, however a difference appears when the

number of patients is small. Both curves have refractive points

where curves start rising much faster. These points correspond to

the number of patients whose optimal allocation requires to assign

more patients in a pool than it is allowed by mmax. Therefore, it is

necessary to increase the number of pools, thus increasing the

number of NGS tests.

Solution of the Multi-objective Optimization Problem
The following experiment is aimed at solution of multi-objective

optimization problem, where the probability to find the mutation

using larger pools is simultaneously considered. The computations

are performed for n [ f512, 1024, 2048, 4096g patients, consid-

ering the extreme values mmax~24 and �mmmax~50, which are

determined using previously developed model for the evaluation of

the probability to detect a mutation in pooled experiments, when

the number of patients increases [11]. The fixed error rate

Pe~0:01 is used as it is a realistic approximation of what is found

Figure 5. The cost of the sequencing versus the number of patients when allocating the maximum number mmax of patients per pool
without any replica.
doi:10.1371/journal.pone.0104992.g005

Table 1. Cost of experiments and total number of Sanger
tests needed to detect Nm~5 mutations in each patient,
when using optimal number popt of pools without replica, and
mopt patients in a pool, for a fixed total number n of patients.

n popt mopt

Number of
Sanger tests Cost

128 26 5 3160 51280

256 51 6 6430 102440

512 102 6 12860 204880

1024 205 5 25580 409640

doi:10.1371/journal.pone.0104992.t001

Optimizing Pooled NGS Experiments for Rare Mutations Detection
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in this kind of experiments. Since the number of short reads

affected by error is independent from the number of patients, in

the worst case the signal produced by a SNP can be lost in the

noise produced by the experiment. These values are realistic

approximations, obtained using real data of pooled experiments.

Pareto fronts, obtained by the complete enumeration of values

of pm and pc for Transposition strategy and p for OptReplica, are

illustrated in Figure 8, where the horizontal axis corresponds to

the cost of the sequencing, the vertical one to the probability of

detecting the mutations, and different plots to different number of

patients. One can see from the figure that the Pareto front consists

of a single point using Transposition strategy, and several points

using OptReplica strategy when n~512. It is natural since all 512

patients can be allocated into such a number pm of main pools and

a number pc of control pools so that the cost of NGS test would be

minimal and without violation of the maximum pool size (e.g.

pm~22 and pc~24). Meanwhile the optimal number of pools for

OptReplica strategy is p~33 (33|32§2|512), which corre-

sponds to m~32wmmax. Therefore, a trade off is possible

between increasing the number of pools thus increasing the total

cost, or exceeding mmax, thus decreasing the probability to find the

mutations.

When the number of patients is larger, the size of the Pareto

front increases, although the Pareto fronts obtained using

OptReplica strategy are larger in all cases. Moreover, the cost

obtained using OptReplica strategy is always not greater than the

cost obtained using Transposition strategy considering the fixed

probability. Therefore we can conclude that usage of OptReplica

strategy leads to a better solution of the formulated multi-objective

optimization problem, comparing to Transposition strategy.

Discussion

Since the costs of NGS experiments change over time, we

decided not to use a currency unit, such as dollar or euro, but

rather a ratio of costs between low and high throughput

technologies. We fixed a cost of 1000 for one pooled NGS

experiment and 8 for each Sanger sequencing.

In case of no replica, small pools decrease costs
In case of experiments without replica, all found mutations need

to be assigned to patients present in the pool. As shown in equation

(3), the number of Sanger sequencing increases quadratically with

the number of pooled individuals, and it is proportional to the

number of expected mutations. Therefore, even if the cost of NGS

versus Sanger sequencing is 1000:8, it is better to decrease the size

of each pool, rather than increasing the number of patients in each

Figure 6. Comparison of the cost of NGS pooled experiment using different values of mmax and different strategies of pooling:
Transposition (hollow marks) and OptReplica (filled marks).
doi:10.1371/journal.pone.0104992.g006

Table 2. Impact of grouping of the patients to the total cost
of the sequencing with replication using Transposition
strategy.

n No grouping Grouping by 2

16 8000 7280

32 12000 10560

64 16000 17120

128 23000 26240

doi:10.1371/journal.pone.0104992.t002
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pool. In the present setting, the optimal number of patients per

pool is 5 or 6.

Replication of pools decreases costs
When replicated pools are used, the situation is just the opposite

with respect to unreplicated pooling: the experiments are less

expensive when the number of patients per pool increases. In

Figure 6, the only case in which pooling is more expensive that

Optimal pooling without replica, is when there are only four

patients per pool. Increasing this number, the reduction of costs is

significant, and makes the pooling strategy competitive with

respect to unreplicated pools. In both Figures 5 and 6, we report

the costs of unreplicated experiments with optimal allocation of

patients per pool (Opt. pooling). When comparing the two

strategies, it is evident that replicating pools is always the best

option. Both Transposition and OptReplica achieve similar

results, although in some cases the latter achieves lower costs.

Figure 7. Comparison of cost of sequencing using Transposition and OptReplica strategies with mmax~16.
doi:10.1371/journal.pone.0104992.g007

Figure 8. Illustration of Pareto fronts obtained by the complete enumeration with different values of n.
doi:10.1371/journal.pone.0104992.g008
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Grouping of patients can reduce the number pools, but Sanger

tests must be additionally used to solve the indecision between

patients in an identified group. Threfore, grouping can reduce

costs only when the total number of patients is small.

Trade-off between costs and detection probability
When the total budget for sequencing is limited, multi-objective

optimization might provide useful information regarding the plan

of the experiment. With the proposed model, it is possible to

predict the probability to detect mutations, given the number of

patients and the costs. In some cases, the difference between the

available budget and the required budget might marginally affect

the probability to successfully detect mutations. For example, in

case of n~4096 patients (Figure 8), the total cost of all

experiments is 342000. If the available budget is only 316000,

then the probability to detect mutation is still 0.92, which might be

acceptable.

Conclusions

In this work we propose and study novel strategies for planning

the NGS experiments of a large number of patients. We provide

optimal configurations of the experiments, in terms of sequencing

costs. We develop two different replica strategies, both providing

lower overall costs. Finally, we investigate the solution to this

problem when not only the cost, but also the probability to detect a

mutation, is taken into account.
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