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Abstract

Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from
being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular
fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this,
current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-
scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render
these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for
predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic
network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes
(hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across
species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention
assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and
produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as
what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the
engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer
growth.
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Background

In the data-rich landscape of present-day biology, large-scale

network-based models are being increasingly tapped to make sense

of the deluge of available data. Towards this end, genome-scale

metabolic models (GEMs) have proven highly successful [1].

Incorporating gene-protein-reaction associations and stoichiomet-

ric reaction detail for the majority of known metabolic genes in an

organism, GEMs have achieved high accuracies in predicting

essentiality of gene knockouts (,90%), growth phenotypes on a

variety of substrates (,90%) [2], and growth yields, and are useful

tools in predicting metabolic fluxes [3]. These predictions typically

rely on an assumption that single-celled organisms are optimized

to maximize yield (for example: dry weight of biomass per unit of

glucose consumed), following deep-rooted theories about evolu-

tionary tuning towards optimal fitness [4]. However, as has been

shown previously, maximization of molar yield is by no means a

universal principle [5].

Metabolic phenotypes in GEMs are typically computed by a

linear optimization method termed Flux Balance Analysis (FBA),

in which a biomass objective is optimized while various network-

defined constraints are upheld. Non-biomass objectives have also

been tried, with varying powers of prediction [6,7,8,9], but these

objective functions are common in that they link metabolic models

to growth yield or to a global flux distribution, rather than

predicting growth rate. Recently, several works have incorporated

large-scale data along with metabolic reconstructions into multi-

system models, which include processes such as transcription,

translation, growth rate dependence of the production of biomass

constituents, and often vast numbers of empirical or approximated

parameters [10,11,12,13]. While some of these models are able to

predict cell growth rates, they are all commonly limited in their

reliance on a large amount of empirical data, as well as their

reliance on high quality integrated models that would only be

possible to produce for a select few extremely well studied
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organisms. Most notably, each of these models includes features

that are varied (or tuned) in direct proportion to growth rate based

on empirically measured quantities. The inclusion of these features

means that these models leverage empirically provided rate data,

which makes them impractical for predicting growth rates in

circumstances in which such rate information cannot be system-

atically measured. This is inevitable, as without some rate

information being added, GEMs are typically suited for predicting

not growth rates but growth yields.

Growth yield (units of [g biomass produced]/[g substrate

consumed]) is different from growth rate (units of 1/[hour]),

although they are related by the substrate uptake rates of an

organism growing at steady state (for growth on a single carbon

source, for example, Growth rate = Substrate uptake rate * Yield).

Prediction of yield using GEMs applies most rigorously to highly

defined conditions such as in a chemostat in which one nutrient is

limiting, and it is unclear how broadly applicable the ‘maximiza-

tion of yield’ principle actually is [5]. In many conditions

(including standard laboratory batch growth, growth of cancer

cells displaying the Warburg effect, and competition of organisms

for certain environmental niches), cells do not necessarily

maximize their yield, yet their growth rate cannot be predicted

without empirical data (e.g., substrate uptake rates). There is

currently no framework for predicting cellular growth rates akin to

the GEM-based methods available for predicting growth yields,

which does not require extensive additional kinetic parameters. It

would therefore be of significant value if a predictor of growth rate

could be determined using genome-scale properties of GEMs that

do not necessitate the arduous measurement of substrate uptake

rates [14]. In a large number of conditions, especially in

competitive niches, growth rate is a better measure for fitness

than yield, so the ability to predict growth rates could significantly

increase the utility of GEMs [15,16,17,18].

Results and Discussion

In this study we explore novel large-scale methods to predict

variability in growth rates from GEMs grown on rich or defined

media, and in some cases with gene knockouts. We focus on

environments in which cells are expected to be optimizing their

growth rate, such as maximal listed growth rates for species in rich

media, or careful growth rate measurements of isogenic cultures in

early exponential phase of batch growth. Our approach was

inspired by an article by Vieira-Silva and Rocha [19], which

investigated a number of bioinformatics-based measures for

predicting the maximal growth rate across species. Vieira-Silva

and Rocha collected from the literature the maximal growth rates

in rich medium of over two hundred bacterial species, and then

searched for a genomic measure that correlated best with these

data. The genomic property of codon usage bias yielded their most

promising correlation, but this property is not dependent on the

growth medium, so it will fail when assessing growth rate of a

species across media or other conditions. Furthermore, in cases of

different cells of the same organism, such as human cancer cells,

the cells share the same codons, and thus codon bias cannot be

used to predict specific growth rate. It is possible that codon usage

bias could be extended to predict growth rate under different

conditions if, for example, it is recalculated only for the sets of

genes highly expressed in a given medium. However, such work

has not to our knowledge been done.

Analogously to Vieira Silva and Rocha, we explore a new class of

metabolic objectives, related to maximizing the total metabolic

secretion of a cell, which predict relative growth rate directly from

GEMs. We focus on exchange fluxes because they are the missing

gap between growth yield (which can be calculated relative to

uptake rates by a GEM, e.g., in [2]) and growth rate (as stated

before, Growth rate = Substrate uptake rate * Yield), and because there

is an observed strong positive correlation between cellular surface-

to-volume ratio and growth rate, as well as additional evidence

suggesting that cell surface metabolism exerts most of the control

of a cell over growth rate [20]. The exemplar of predictors we test

is a novel method called ‘‘SUMEX,’’ which predicts growth rates

of cells under different media conditions without requiring

substrate uptake rates, kinetic constants, or any other empirical

parameters. SUMEX is computed by maximizing the total molar

output exchange minus input exchange of metabolites (which,

given the sign convention in GEMs that all exchange reactions

point outwards, is calculated as the ‘maximal SUM of EXchange

fluxes’), while setting a nominal lower bound on biomass

production in order to ensure that some flux runs through

biomass-producing pathways (see Fig. 1). A sensitivity analysis

showed that the nominal bound on biomass (set at 5% of

maximum) is not necessary for the performance of SUMEX in

predicting growth rate, and that the predictiveness of SUMEX is

insensitive to changes in this bound within a large range;

nevertheless, we include it because it enforces biomass producing

pathways must be able to carry flux under non-zero growth

conditions (all of the datasets analyzed in this study are for non-

lethal genetic conditions, so this condition is never relevant for

comparisons of biomass vs. SUMEX done in this study; see Fig. S1

in File S1 and Fig. S2 in File S1).

SUMEX has a clear intuitive linkage to the concept of a cell’s

ability to do catabolism. A high SUMEX value indicates that a cell

is capable of breaking down a small number of moles of its

collective substrates (which include all compounds present in a

medium that an organism is able to uptake) into a much larger

number of moles of product (which include all excreted

compounds), and a low SUMEX value indicates that the capacity

of a cell to break down substrates in this manner is low (see Fig. 1a).

Since SUMEX maximizes the sum of exchange fluxes of all

exchangeable components available in the medium, it is important

that the compounds in the growth medium are known. SUMEX is

therefore a rough measure of the capacity of a cell to perform

catabolism (see Fig. 1a), under a given medium condition.

SUMEX is, in some sense, the simplest accounting of cell

‘catabolic capacity’ that does not take into account prior

knowledge about the substrates or other features only available

through condition-dependent experiments. It can thus be seen as a

medium-dependent heuristic for catabolic capacity, which may

shed potentially new light on the yield/growth rate relationship. In

this sense, we do not necessarily expect that SUMEX will predict

accurate intracellular fluxes, but rather consider it as a measure of

a general network property of catabolism that may be predictive of

growth rate. In this, SUMEX is similar to Biomass, which also is

not generally very predictive of intracellular fluxes unless the

model is subjected to auxiliary expression or flux constraints, or

the condition is one for which the organism and model have been

specifically adapted (e.g., E. coli in glucose minimal medium).

SUMEX represents a simple heuristic to maximizing catabolic

activity of a cell, focusing exclusively on exchange reactions, and

still ensuring a nominal production of biomass (we discuss a

sensitivity analysis of this and other necessary bounds later in the

paper, and in File S1).

Max Sum of Exchanges Predicts Cell Growth Rate
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The SUMEX formulation is:

max
Xn

i~1

Vexchange

Subject to :

SV~0

vj, minƒvj ƒvj max

Vbiomass§Vmin biomass

vj[V

In which v’s correspond to metabolic flux values and S is the

stoichiometric matrix, following GEM conventions. The formula-

tion is explained in greater detail in the methods part of File S1.

To test SUMEX and other methods, we collected two datasets

of measured cellular growth rates from the literature: the

previously mentioned Vieira Silva and Rocha dataset of maximal

growth rates on rich media reported for 66 organisms (ds66) (see

Table S2 in File S2) [19], and growth rates in early exponential

phase of batch growth of 57 Escherichia coli wild type (WT) and

knockout (KO) strains evolved for growth on a number of minimal

media (ds57) [2]. We generated a third dataset in the lab, by

measuring growth rates in vitro in the early exponential phase of

batch cultures of 6 organisms on 3 defined media (ds18) (see

Table S4 in File S1). Using automatically generated models from

SEED [21], we then computed various growth-rate predictors for

each of the models and conditions in these three datasets (ds66,

ds57, and ds18). We compared SUMEX (as the exemplar of

exchange-based metrics we had experimented with) against several

metrics presented in a previous experimental study in E. coli of the

optimal objectives of GEMs for predicting metabolic flux

distributions [9]. Strikingly, SUMEX outperformed every previous

metric in all three datasets in predicting variation in growth rates

between different conditions, with only one exception in one

dataset (codon usage bias from [19] correlated better than

SUMEX with growth rates in ds66, but was non-predictive in

the other datasets as it inherently cannot account for changes in

the medium or gene knockouts). Most of the metrics correlated to

some degree with growth rates on rich media (ds66), but all but

three of them showed no significant correlation with growth rate in

either of the defined datasets. Overall, SUMEX was the only

metric among those tested to significantly correlate with growth

rate across all three datasets, obtaining Spearman correlations of

0.58, 0.53, and 0.80 on ds66, ds57, and ds18 respectively, all with

pvals , 6e-5 (see Fig. 2d; Pearson correlations were also

significant, with rho = 0.60, 0.40, and 0.78, and p = 8.3e-8,

2.0e-3, and 1.2e-4 for the 3 respective datasets).

Notably, the maximization of biomass yield, the aforementioned

fitness metric used in hundreds of GEM studies, failed to

significantly correlate with growth rates in two out of the three

datasets (ds18 and ds57). This is despite previously noted strong

correlations between GEM-predicted biomass yields and growth

rates in ds57 when accounting for experimentally measured

glucose uptake rates [2], which emphasizes the difference between

predicting rate and predicting yield. In contrast, biomass yield was

predictive of growth rate in ds66 (although not as predictive as

SUMEX). This suggests that in rich media and when looking

across a large range of organisms, both the growth rate and yield

depend greatly on the capacity of an organism to take up many

substrates – an observation supported by the relatively strong

correlation between ‘‘count of uptake exchange reactions’’ and

growth rate, as well as by the strong observed correlation between

SUMEX and biomass yield, in ds66 (see Fig. 2a and Fig. S4 in File

S1). Despite this, SUMEX correlates significantly with growth rate

in ds66 even when controlling for biomass yield (r= 0.38,

P = 1.6e-3 in partial Spearman correlation), showing that SUMEX

provides information beyond that obtained from maximizing

biomass. Biomass, on the other hand, does not correlate

significantly with growth rate across ds66 when controlling for

SUMEX (r= 20.18, P = 0.35). Surprisingly, maximization of

ATP hydrolysis correlated poorly with growth rate, even though it

has been previously shown to be predictive of intracellular fluxes in

E. coli [9,22]. These results suggest that while biomass and ATP

hydrolysis are appropriate for measuring growth yield, they are not

necessarily suited to measure growth rate using GEMs. A full

description of metrics we tested is provided in File S1.

As previously mentioned, SUMEX requires no kinetic param-

eters, substrate uptake rates, or other empirical values to predict

Figure 1. Schematic of SUMEX. (A) The summing of molar fluxes
through exchange reactions, i.e., the quantity maximized in SUMEX, is
illustrated. A high sum of exchanges value is achieved by high output
fluxes and low input fluxes. Conceptually, this corresponds to a high
catabolism, i.e., moles of substrates being broken down into multiple
moles of smaller output molecules, and also a large production of
extracellular protons. (B) SUMEX is the maximum possible sum of
exchanges calculated in a particular organism and growth condition.
Two theoretical organisms are compared here to display the observed
correlation between a high SUMEX and a high empirical growth rate.
doi:10.1371/journal.pone.0098372.g001

Max Sum of Exchanges Predicts Cell Growth Rate
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Figure 2. Correlation of different metrics to growth rate. (A–C) Spearman correlations of SUMEX vs. growth rate in three datasets. Colors in (B)
represent media (green triangles, IMMxt; blue diamonds, IMM; red squares, IMM-gt; see Table S5 in File S1 for details). Colors in (C) represent strains. Trend-
lines in (C) are shown for strains that individually show significance (*P#5e-2, **P#5e-3). Correlation values for SUMEX and Biomass vs. growth rate are
listed below. (D) Significant (P-val # 5e-2) Spearman correlations (i.e., r values) across three bacterial datasets for all tested metrics (non-significant
correlations are not shown). Metrics are listed in descending order of the sum of r across the three datasets. Vertical lines denote rhos for SUMEX.
doi:10.1371/journal.pone.0098372.g002

Max Sum of Exchanges Predicts Cell Growth Rate
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relative growth rates. To further benchmark SUMEX, we also

tested it against previous methods for predicting growth rates that

do require empirical parameters. A few such methods, which

include several hundred kinetic constants or molecular crowding

constraints, were introduced in recent years for E. coli [14,23]. We

tested the ability of SUMEX to predict growth rates reported in

[14] for E. coli grown on 24 minimal media (henceforth: ds24),

and achieved equivalent results to the state of the art (for

consistency with the previous analyses, SUMEX was calculated for

this dataset on the manually curated model, iAF1260 [24];

SUMEX and MOMENT, the method described in [14] and

achieving the best previous result, each attained r= 0.47 and

P = 0.02 in 2-sided Spearman tests; see Table S1 in File S1).

Because SUMEX uses only the stoichiometry of metabolic

reactions but no empirical parameters, it has the clear advantage

that it can be easily computed across many species (if their

metabolic models are available), as shown in the analyses of ds66

and ds18.

To understand in more detail the mechanisms linking SUMEX

to growth, we studied the relative contributions to SUMEX of

different exchanged compounds. We did this by analyzing the

effect of either leaving out or of individually optimizing the flux of

each individual exchange metabolite. We found that the

compounds that contribute most to SUMEX (those shown in

Fig. 3) are H+ and several TCA-cycle intermediates, in addition to

CO2. CO2, the main product of cellular catabolism, was

necessarily released from the cell in nearly all conditions when

SUMEX was optimized (Fig. 3C).

Figure 3. Component-wise analysis of SUMEX. (A–B) Spearman correlations of SUMEX versus growth rate (GR) across the 3 bacterial datasets
when different exchange reactions are (A) removed from SUMEX or (B) optimized individually. Horizontal lines and rightmost set of columns show
SUMEX r values. The components presented are all of those whose removal affected SUMEX r by .5% or that came within 5% of the SUMEX rho
when maximized alone, for any of the 3 datasets. (C) The difference between the percent of models (per dataset) that must uptake vs. that must
excrete a component in order to achieve maximal SUMEX.
doi:10.1371/journal.pone.0098372.g003

Max Sum of Exchanges Predicts Cell Growth Rate
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Interestingly, the removal of proton exchange from the

SUMEX objective reduced the correlation of SUMEX with

growth rate more than removal of any other component (it

severely reduced the predictiveness of SUMEX in both ds18 and

ds57 datasets – see Fig. 3A). Additionally, we found that

maximizing the production of protons alone is nearly as predictive

as SUMEX across the three bacterial datasets (see Fig 3B). Protons

are the smallest metabolites in the metabolic models and can be

readily produced from many different sources, and thus can

account for a large portion of the total SUMEX flux (as we

confirmed by flux variability analysis[25]). The strong correlation

between maximal proton production and growth rate led us to

hypothesize that if a cell has abundant resources for producing free

extracellular protons, the strong resulting pH gradient may help

drive ATP synthesis and gradient-driven transport, thus increasing

overall growth rate and thus also contributing to the predictive

Figure 4. Prediction of growth in Respirers vs. Fermenters in ds66. Maximization of (A) SUMEX or (B) H+ production is plotted against growth
rate for ds66 organisms, categorized into obligate fermenters (blue diamonds) and respirers (red circles) with trendlines shown. Rho and pvals are for
2-sided Spearman correlations. (C) Maximization of proton gradient correlates strongly with SUMEX in both respirers and fermenters. (D) SUMEX and
Biomass as calculated on obligate fermenters are plotted vs. GR. Trendlines and Spearman correlations (1-sided) exclude L. plantarum, which can
respire in the presence of heme and menaquinone (L. plantarum is shown on the plot as an orange asterisk (SUMEX) and a green ‘‘X’’ (Biomass)).
doi:10.1371/journal.pone.0098372.g004

Max Sum of Exchanges Predicts Cell Growth Rate
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power of SUMEX. It has been shown in E. coli and other species

that when flux ranges are below saturation, the rate of ATP

synthesis relates approximately linearly to the electrochemical

gradient, which in respiring bacteria is determined primarily by

the proton (i.e., pH) gradient [26,27]. Therefore, we would expect

the proton-related contribution to SUMEX to be more predictive

in respirers than in obligate fermenters, for whom the production

of ATP does not depend on the membrane gradient.

To test the fermenters vs. respirers hypothesis, we categorized

the organisms in ds66 into two groups: 9 obligate fermenters

(ds66f) and 57 organisms that can respire (ds66r). We found that

the correlation of SUMEX with growth rate is stronger among

only the respirers than among all organisms in ds66 (see Fig. 4a),

that SUMEX is not significantly predictive of growth rate for

obligate fermenters (also Fig. 4a), and that these same trends also

apply when we instead compare maximization of proton

production (PMAX) vs. growth rate (Fig. 4b). PMAX correlates

strongly with SUMEX in models of both respiring and obligate

fermenting organisms, despite the observation that neither is

predictive of growth rate for obligate fermenters (see Fig 4c). This

emphasizes the strong interdependency of SUMEX and PMAX.

When we remove a borderline case from the set of obligate

fermenters (Lactobacillus plantarum, which has been shown to respire

if provided heme and menaquinone [28]), both SUMEX and

biomass maximization became predictive of fermenter growth

rates (Fig. 4d). Therefore, a larger dataset of growth rates of

obligate fermenters than currently at our disposal will be needed to

unequivocally determine whether SUMEX can be used to predict

relative growth rates of obligate fermenters. See our continued

analysis in File S1.

Limitations must be set on certain reaction bounds in a GEM in

order to obtain feasible solutions (we used standard flux bounds of

250 for all allowed uptakes in SUMEX), which is a confounding

factor in any attempt to produce parameter-less metrics in GEMs.

Therefore, in order to ensure that the results seen for SUMEX are

not simply due to the particular bounds we chose, we performed a

sensitivity analysis. This test revealed that the correlation of

SUMEX with growth rate is highly robust even up to 50% (or

more) random variations imposed across all uptake (or secretion)

bounds; we furthermore found that biomass is significantly less

robust than SUMEX in 2 of the 3 datasets (see Fig. 5a–b).

The sensitivity of biomass to the bounds prompted us to try a

follow-up analysis, in which we summed (but did not maximize)

the mean allowed values of exchange fluxes given a constraint of

optimal biomass. We did this only for models with randomly

chosen uptake bounds that cause maximum biomass to correlate

significantly with growth rate, which, in the absence of reliable

full-organism exchange flux data, we assumed would be closer to

the true exchange flux values than totally random bounds. This

‘sum of exchange’ (SUMofEX) variant on SUMEX also correlated

significantly with growth rate in nearly every case, indicating that,

if the exchange fluxes are known for an organism, merely

summing them might be able to give an accurate value for growth

rate (see Fig. S3 in File S1 and full description of SUMofEX in the

Supplement).

Conclusions

SUMEX represents a maximization of cellular catabolic activity

as a cellular optimality principle, as outlined at the start of this

paper. Notably, albeit its simplicity, SUMEX predictions correlate

significantly with growth rate on every suitable dataset we were

able to find in literature, as well as a set of growth rate data we

measured ourselves. Our focus on developing a metric to predict

relative growth rates given minimal empirical input stands in sharp

contrast to recent trends in the GEM field, which have

increasingly favored inclusion of large-scale datasets from multiple

high-throughput sources and development of sophisticated models

that are heavily tuned by empirical parameters (e.g.,

[10,11,12,13]). This trend is justified for areas in which such data

can be easily produced, but there is yet significant need for

predictive, non empirically-tuned heuristics in areas where

detailed measurements are infeasible or impractical. For example,

SUMEX may be used to determine dynamics of microorganism-

dominated ecosystems, in which most organisms may be very

poorly understood, and their growth conditions may change over

time. Building simple yet predictive models which require minimal

empirical input is thus an important accompaniment to the data-

driven models being developed. It will be interesting, additionally,

to use data-driven models such as the ME model of E. coli [12] to

analyze the proton gradient and the contribution of catabolic

capacity, in order to better understand how exactly these

capabilities contribute to growth rate.

SUMEX is clearly only a first step and a guiding concept for

developing more predictive methods and insight, and likely forms

only one piece of a larger emerging conceptual picture. A more

sophisticated method utilizing the insights of SUMEX might

incorporate the strengths of codon usage bias, SUMEX, and

biomass yield maximization, and fit within a framework that

incorporates all of them. We hope that this exploration of a

promising alternate objective for predicting cell growth rate will

stimulate future research in this area, and lead to better predictive

models in the future.

Materials and Methods

Models
Unless otherwise noted, analyses were done on genome-scale

metabolic reconstructions (GEMs) as obtained from SEED [21], at

http://seed-viewer.theseed.org/. The 66 organisms in ds66 were

chosen because (1) their GEMs were available from SEED and

published in [21], and (2) their optimal doubling times were

available from [19]. For analysis of ds24, the iJR904 E. coli model

was used [29], and for analysis of E. coli expression, the E. coli

SEED model was used. Table S2 in File S2 lists the names of the

ds66 models and organisms. The non growth associated mainte-

Figure 5. Sensitivity analysis of GEM bounds. (A) The Spearman’s rhos (2-tailed) of growth rate versus both SUMEX (x-axis) and max Biomass (y-
axis) are shown for 3 bacterial datasets (ds18, ds66, and ds57), when uptake bounds of all open metabolites (i.e., metabolites that are allowed to be
taken up in a given medium) are randomly varied by 610% (1st column) or 650% (2nd column) of the standard bound (which is 250 for all allowed
uptakes), and when secretion bounds of all exchanged metabolites are randomly varied by 10% (3rd column) or 50% (4th column) of the standard
secretion bound (+1000). Sumex displays significant robustness to changes in bounds. The green line in each plot has a slope of 1. (B) Summary
statistics from (A). The top four rows show the Relative Standard Deviation, RSD = abs((std(rho)/mean(rho)))*100, of SUMEX or Biomass versus GR
across random variations in model uptake bounds or variations in secretion bounds (as labeled). Cases in which RSD is less than 10% of the variation
in bounds are highlighted grey. The bottom row shows the significance (p-val) of an F-test that the correlation of SUMEX versus growth rate varies
less across 50% variations in model bounds than the correlation of Biomass versus growth rate. The F-test shows high significance for uptake bounds
in ds18 and ds57, and secretion bounds in ds57.
doi:10.1371/journal.pone.0098372.g005

Max Sum of Exchanges Predicts Cell Growth Rate
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nance constraint was set to 0 for these analyses, in order to avoid

artificially scaling model fluxes to a measured rate (since the non

growth associated maintenance lower bound is usually set based

on measured rate data from a chemostat).

Implementation of growth rate predictors
Optimizations were run in in silico environments consistent with

the known media, in which all exchange metabolites for a given

species were available at a fixed rate of 250.0 (with output bounds

of 1000). A sensitivity analysis was done to determine if these

bounds affected the performance of SUMEX, and SUMEX was

found to be robust to random changes in the bounds (and

significantly more robust than biomass yield optimization; see

Fig. 5a–b). In the case of ds66, the environment was ‘rich’, so we

allowed uptake flux in all exchange reactions present in each

organisms.

By convention, exchange fluxes denoting entrance of a

metabolite into the cell (uptake) are negative valued, while

exchanges denoting exit of a metabolite from the cell (output/

secretion) are positive valued. Therefore, maximizing the total

exchange flux (i.e. the SUMEX metric) would denote maximizing

the output at the expense of the input (output exchanges – input

exchanges). A full mathematical description of SUMEX is

provided in File S1. The inclusion of a nonzero constraint on

biomass yield (set at 5% unless otherwise mentioned) ensures that

some flux is able to pass through biomass-required pathways; in

cases where this constraint could not be met (i.e., because of the

knockout of a lethal gene), the value of SUMEX was considered to

be zero.

For simulation of maximal proton production (PMAX) (e.g., in

Fig. 4), we increased the upper bound on proton production to +
inf in order to avoid capping total protons produced. Manipulating

this bound while running SUMEX did not significantly affect

SUMEX results (data not shown). More details of the model

constraints are provided in File S1.

Technical implementation
Optimizations were done using the cplex tomlab optimization

tool in a matlab environment. The free Gnu solver (GLPK) was

checked in a few cases and returned identical results to the cplex

solver, and could thus be easily exchanged. Most of the analyses

were run using a standard desktop computer; a few were run in a

computing cluster or on a high-powered linux machine. Sample

Matlab code to run SUMEX is provided in Materials S1.

Growth experiments of 6 organisms on 3 defined IMM
media (ds18)

To validate SUMEX, we performed in vitro experiments to

measure the growth rates of a number of organisms (listed in Table

S3 in File S1) in multiple environments. Growth experiments were

conducted in 96-well plates at 30uC, with continuous shaking,

using a Biotek ELX808IU-PC microplate reader, on variants of

IMM medium, as detailed in Tables S3 and S4. Optical density

was measured every 15 minutes at a wavelength of 595 nm.

Growth rates were determined during early to mid exponential

growth phase by taking the slope of a linear fit through the natural

log of the data.

Supporting Information

File S1 Supplementary information, contains supplementary

results and methods.

(DOCX)

File S2 Supplementary raw data files, and Table S2 (containing

details on organisms in ds66).

(XLSX)

Materials S1 Zipped file containing matlab code to run

SUMEX (read README.txt after unzipping).

(ZIP)
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