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Abstract

The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an
automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel
segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation,
width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel
trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification,
based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images
from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or
vein. The accuracy of correctly classified major vessel segments was 96.42%.
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Introduction

Several automated techniques have been reported to quantify

the changes in morphology of retinal vessels (width, tortuosity)

indicative of retinal or cardiovascular diseases. Some of the

techniques measure the vessel morphology as an average value

representing the entire vessel network, e.g., average tortuosity [1].

However recently, vessel morphology measurement specific to

arteries or veins was found to be associated with disease. For

example, ‘plus’ disease in retinopathy of prematurity (ROP) may

result in increase in arterial tortuosity relative to that of veins

indicating the need for preventative treatment [2]. Arterial

narrowing, venous dilatation, and resulting decrease in artery-to-

venous width ratio (AVR) may predict the future occurrence of a

stroke event or a myocardial infarct [3]. Unfortunately, the

detection of minute changes in vessel width or tortuosity specific to

arteries or veins may be difficult in a visual evaluation by an

ophthalmologist or by a semi-automated method, which is

laborious in clinical practice. Therefore, an automated identifica-

tion and separation of individual vessel trees and the subsequent

classification into arteries and veins is required for vessel specific

morphology analysis [4].

There is a dearth of methods developed for retinal vessel tree

separation and identification in color fundus images, which is an

important step for a robust AV classification. As per our

knowledge, the only method developed with this objective was

reported by Lau et al., using an optimal forest search on

segmented vessel trees given a set of constraints based on

directional information [5]. The other method for retinal vessel

separation, however not applicable to color fundus images, was

reported by Vickerman et al., that is applicable to fluorescence

angiogram images only where arteries are identified as they are

filled with contrast before veins [4]. The contrast based separation

is then propagated into the entire vessel network using morpho-

logic and connectivity features of retinal vessels. A method

proposed by Aylward et al. for intra-cranial vessel separation

and identification is noteworthy [6], although not directly related

to the proposed retinal vessel analysis. This method is applicable to

three-dimensional computed tomography (CT) and magnetic

resonance angiogram (MRA) volumes, and provides a graphical

representation of a vessel network for identification of individual

vessels known as spatial graphs, based on the analysis of branching

topology and vessel segment paths between two branchings.

Several artery-venous (AV) classification methods have been

proposed based on the analysis of localized vessel structure.

Rothaus et al. proposed a semi-automatic constraint optimization

approach based on artery-venous crossing properties and

anatomic characteristics [7]. The central light reflex of retinal

arteries was used as a distinguishing factor by Tramontan et al.

[8]. Grisan et al. suggested a method based on division of the

fundus into four regions of interest (ROI) and classification of

blood vessels in each region using color properties of the vessels

[9]. Vazquez et al. presented a clustering approach based on the

feature sets obtained from retinal vessels [10]. A method by

Kondermann et al. extracts a feature set from vessel profiles and

local image intensities with respect to the vessel centerlines [11].

This method uses a support vector machine and neural networks

for classification. A supervised classification approach was

demonstrated by Niemeijer et al. in which the algorithm was
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trained on annotated vessel segments for feature extraction and the

trained classifier was used to separate arteries from veins in a test

dataset [3]. However, these automated methods allow AV

classification constrained only to a region around the optic disc

but not to the entire vessel network. [3,9].

We introduce an automated method for structural mapping of

retinal vessels by converting a vessel segmentation into a vessel

segment map and identifying the vessel trees using graph search.

Arterial-venous classification uses color features. We evaluated the

method on a dataset of 50 color fundus images from 50 subjects

and compared the results to manual annotation by an expert

(MDA). An overview of our approach is described in (Fig. 1). Each

of the steps is explained in detail as follows.

Methods

0.1 Vessel segmentation and image preprocessing
Two-field fundus images of the same eye are registered by

mosaicing [12] (Fig. 2(a)). The corresponding green channel image

(Fig. 2(b)) and hue channel image (Fig. 2(c)) are shown. The retinal

vessels are segmented using a previously developed approach that

uses supervised pixel classification with a Gaussian filter set and

classification by a k-nearest neighbor classifier [13]. The resulting

vessel probability image represents the likelihood of each pixel

belonging to a vessel (Fig. 3(a)). The optic disc (OD) region is

masked manually using a standard size mask to reduce ambiguities

from the highly tortuous and intertwined vessel patterns at the OD

region. In order to trace the vessel path and obtain structural

mapping, a connected binary vessel image is required which may

be obtained using a vessel reconnection algorithm based on a

graph search [14].

The binary vessel image (Fig. 3(b)) is generated from the vessel

probability image using Otsu’s thresholding method [15]. The

Otsu threshold minimizes the intra-class variance for the

foreground (vessel) and the background (non-vessel region) classes.

Next, the vessel skeleton is obtained by applying mathematical

morphology reducing the vessel to a centerline of single pixel

width [16].

0.2 Localization of branch points, crossing points and
end points

In order to represent the vessel structure in terms of a graph, the

vessel skeletons have to be converted into vessel segments

separated by interruptions at the branch- and crossing points.

Segment start and end positions are determined as follows. Each of

the centerline pixels on the vessel skeleton is analyzed within its

363 neighborhood, and branch and crossing points are detected

as centerline pixels with more than 2 neighbors. The detection of

vessel end points is required for the graph search and they are

determined as the centerline pixels with only one neighbor. The

Fig. 4(a) (vessel network), and Fig. 4(b) (vessel tree), show the end

points (red), branching points (yellow), and crossing points (blue).

0.3 Graph based description of the retinal vessel network
0.3.1 Graph structure. In order to construct a graph, the

vessel segment map (Fig. 5(a)) is obtained by removing branch and

crossing points on vessels in a binary image (Fig. 3(b)), resulting in

a group of disconnected vessel segments representing a vessel tree.

A vessel consists of a number of smaller vessel segments linked

together [17]. Segment to segment characteristics within a single

vessel, such as orientation, width, and intensity are expected to be

similar [18], in the absence of noise. The inter-segment orientation

angles follow a smooth continuous variation. Adjacent vessel

segments exhibit fine continuous variation in widths, with some

exceptions such as microaneurysms and vessel beading. Similarly,

there is a gradual intensity transition between the neighboring

segments.

A vessel subtree is identified by selecting a group of segments

from the vessel segment map (Fig. 5(a)), based on the similarity

between these segments. Three features are used 1) segment

orientation, 2) segment width, and c) segment intensity (in the

green channel), and these are the costs associated with each

segment: segment orientation cost, segment width cost, and

segment intensity cost. The features are measured at the end

regions of each vessel segment, with skeletal length of 15 pixels

from each end. Specifically, orientation is expressed as the angle

(in radians) the segment end region makes with the positive

direction of X-axis, a measurement between [0,p]. The width (in

pixel) is measured as a median value of 15 measurements of

diametric length between the vessel edges, and passing through the

skeleton pixels of the end region. The intensity is measured as a

median value of green channel pixel intensities at the segment end

region. The median value of the width and that of the intensity

measured for each vessel segment of the vessel tree, are normalized

by the respective maximum values obtained across that vessel tree.

Although each segment is associated with three costs, at any time

Figure 1. Overview of the steps in proposed method.
doi:10.1371/journal.pone.0088061.g001
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during the graph search, only one of the three costs is assigned to

the segment, as described later.

To convert the vessel segment map (Fig. 5(a)) into a connected

graph structure, connecting neighboring vessel segments are

identified using branch and crossing-point information. In the

derived graph structure G(V ,E) (Fig. 5(b)), nodes V represent the

corresponding vessel segments from the vessel segment map, and

each edge E connecting any two nodes, represents the costs with

respect to absolute difference in orientation (EO), absolute

difference in width (EW ), and absolute difference in intensity

(EI ), at the end regions of two vessel segments represented by two

nodes. At any instant during the graph search, only one of the

three difference costs is assigned to the edge, in a hierarchy as

explained in algorithm in Table 1. The graph edges are initialized

with ‘EO’ due to a high robustness in ‘orientation measurement’

irrespective of image resolution and image noise; however, the

edges may later be assigned with EW or EI during a hierarchical

step change (Algorithm: Table 1). The scales for width and

intensity measurement units are matched with that for the

orientation measurement unit, to prevent a scale bias in the graph

search.

In fig. 5(a) three vessel segments are colored in yellow, green,

and red as an example. The end regions connecting the three

segments are marked in blue. The corresponding graph structure

(Fig. 5(b)) shows a seed node ‘s’ in yellow, identified as the node

representing the root vessel segment in a vessel tree (a vessel

segment containing an end point nearest to the circumference of

the circle masking the optic disc; marked yellow in (Fig. 5(a))). Two

other nodes ‘p’ (green), and ‘r’ (red) are marked in respective colors

representing the vessel segments. The edge (marked in blue)

connecting any two nodes (e.g., ‘s’ and ‘r’) represents the three cost

differences associated with two respective vessel segments. For an

illustration, the orientation of yellow segment is more similar to

that of green segment than the red segment (Fig. 5(a)). Therefore,

Figure 2. Image example: a) Two field fundus image after mosaicing b) Green channel image c) Hue channel image.
doi:10.1371/journal.pone.0088061.g002

Figure 3. Image example: a) Vessel probability image b) Binary image.
doi:10.1371/journal.pone.0088061.g003
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the orientation difference cost of the edge between yellow and

green node (EO(s,p) = 3) is lower compared to the orientation

difference cost of the edge between yellow and red node

(EO(s,r) = 8) (Figure not to scale). A retinal vessel or its branches

in a vessel tree do not form a cycle, i.e., do not cross themselves

[7], and thus the vessel segments always follow a unidirectional

vessel course starting at a root segment and ending at the end

point segments, i.e., vessel segments containing the end points

(marked red in (Fig. 4(b))). Therefore, while determining the

orientation difference cost (EO) between two connecting neigh-

boring vessel segments, their orientations with respect to the

positive X-axis as well as their directions of following the vessel

course are taken into consideration.

0.3.2 Dijkstra’s graph search. Dijkstra’s algorithm is

utilized to identify a vessel subtree. Equation 1 explains the

operation of Dijkstra’s algorithm which searches for a minimum

edge cost path ‘dist[t]’ that connects any node ‘t’ with the seed

node ‘s’ by minimizing the sum of edge costs ‘E’ between

intermediate nodes ‘q’ on the path (e.g., E(q,t)).

dist½t�~ min
q[S
½dist½q�zE(q,t)� ð1Þ

0.4 Structural separation of vessel trees
Dijkstra’s algorithm determines the minimum edge cost path

(smallest sum of edge costs on the path) ‘dist[e]’ from seed node ‘s’

to each of the end point nodes ‘e’ representing vessel end point

segments (marked red in (Fig. 4(b))), by selecting the intermediate

nodes ‘q’ which minimize the sum of edge costs on the path (Eqn.

2), i.e., the intermediate vessel segments which minimize the cost

differences along the path. The value of ‘dist[e]’ for each ‘e’ is

normalized by the number of nodes (vessel segments) on the path,

given as ‘distnorm[e]’.

dist½e�~ min
q[S
½dist½q�zE(q,e)� ð2Þ

The theoretical assumption is that the true vessel path is

governed by the lowest edge cost path ‘distnorm[e9]’ among all the

edge cost paths ‘distnorm[e]’ determined for the respective end

point nodes ‘e’ (Eqn. 3). In other words, the path with lowest sum

of edge costs ‘distnorm[e9]’ along the total path length, from seed

node ‘s’ to one of the end point nodes (e’), would be the path with

least cost differences between the vessel segments, i.e., most similar

segments on the path (segments marked in red (Fig. 6(a))),

comprising a true vessel. The pseudocode for the structural

mapping using Dijkstra’s graph search is given in algorithm in

Table 1.

distnorm½e’�~min(distnorm½e�) ð3Þ

Utilizing the branch and crossing point information (Fig. 4(b))

along with the selected true vessel path, the branches and sub-

branches are determined using the same principle, as above. A

true or primary vessel path (marked in red), the branches and the

sub-branches (marked in green) in a vessel tree are mapped as

shown in Figure (Fig. 6(b)). The primary vessel, its branches and

Figure 4. Image example: a) Vessel network b) Vessel tree [Vessel width is enlarged for visualization].
doi:10.1371/journal.pone.0088061.g004

Figure 5. Graph based description: a) Vessel segment map [Width is enlarged for visualization] b) Representative graph structure.
doi:10.1371/journal.pone.0088061.g005
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sub-branches in each vessel tree may be identified by numerical or

color labels as shown in (Fig. 7(b)).

0.5 Identification of artery-venous crossing and color
properties specific to arteries and veins

We propose an automated AV separation algorithm based on

structural mapping, which classifies the vessel trees into arteries

and veins, using vessel color features as well as the anatomic

property of artery-venous (AV) crossings. This property constrains

that in the normal retina, the crossing of two retinal blood vessels

in a two-dimensional fundus image, means that one is an artery

and the other one a vein. In other words, at a vessel crossing, there

is a low probability of both vessels being of the same kind; i.e., both

arteries or both veins. Therefore, as an initial task, the vessel trees

are separated into those with (Fig. 8(b)), and those without

(Fig. 8(c)) arterial-venous crossing. The vessel segments (Fig. 8(a))

are skeletonized to obtain the vessel centerlines. For the centerline

extraction, significantly large vessel width segments in a vessel tree

are selected to avoid the inclusion of smaller, peripheral or single

pixel width segments. It may prevent the effect of noisy centerlines

on color feature extraction. A significantly large vessel width is

defined for a particular vessel tree locally, and is determined as the

width more than 60% of the maximum vessel width obtained in

that vessel tree.

A feature vector consisting of four features, viz., mean (MG) and

standard deviation (SG) of green channel (from RGB color space)

(Fig. 2(b)), and mean (MH ) and standard deviation (SH ) of hue

channel (from HSV color space) (Fig. 2(c)), from the 363

neighborhood (region of interest) of each vessel centerline pixel

is acquired. The choice of particular color features has been shown

to be capable of distinguishing between arteries and veins [3,9].

Arteries appear brighter (higher green channel intensity: MG)

Table 1. Algorithm 1: Structural mapping using Dijkstra’s graph search.

1: Input: Graph ‘G’, with any pair of nodes a and b [ ‘V ’, and edge ‘E’ in form E(a,b) = EO(a,b) or EW (a,b) or EI (a,b)

2: Output: Nodes describing the minimum edge cost path: True vessel

3:

4: for i = each end point node e do

5: S = set of explored nodes in G: Initially S = s, Q = set of unexplored nodes in G

6: For any node u, dist[u] = minimum path cost from s to u, previous[u] = parent node to u

7: while u=i: do

8: u = node in Q with at least one edge to S, and smallest dist[ ]; remove u from Q, add u to S

9: for each neighbor v of u: do

10: Initialize E(u,v) = EO(u,v)

11: for each neighbor v9 (=v) of u: do

12: Comment: Compare width differences, if 2 orientation differences are equal

13: if [E(u,v) = = E(u,v’)] then

14: Initialize E(u,v) = EW (u,v) and E(u,v’) = EW (u,v’)

15: Comment: Compare intensity differences, if 2 width differences are equal

16: if [E(u,v) = = E(u,v’)] then

17: Initialize E(u,v) = EI (u,v) and E(u,v’) = EI (u,v’)

18: if dist[v].dist[u]+E(u,v) then

19: dist[v] : = dist[u]+E(u,v) and previous[v] : = u

20: Store path from i to s = previous[ ] and distnorm[i] = dist[i]/length(previous[ ])

21: distnorm[e9] = min(distnorm[e])

22: True vessel path = previous[ ]; For a path from e’ to s

doi:10.1371/journal.pone.0088061.t001

Figure 6. Image example: a) Vessel segment map showing the true vessel path b) True vessel path with branches.
doi:10.1371/journal.pone.0088061.g006
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than veins because oxygenated hemoglobin is less absorbent than

the de-oxygenated blood between 600–800 nm [19].

0.6 Arterial-Venous classification of retinal vessels based
on fuzzy C-means clustering

The centerline pixels obtained from any two vessel trees are

collected and classified to detect the AV status of respective vessel

trees. Based on the associated feature vector, the algorithm

classifies the centerline pixels obtained from a pair of vessel trees,

into two clusters/classes (with respective centroids) using the fuzzy

C-means clustering algorithm. Each centerline pixel is assigned a

degree of belonging to each of the two clusters (a number between

0–1), based on Euclidean distance measurement between the

cluster centroid and the pixel in feature space. The two degrees

assigned to a centerline pixel always sum to 1. A centerline pixel

with difference between two degrees, higher than 0.2 (e.g., 0.39 vs.

0.61), is assigned to the higher degree cluster. The use of fuzzy C-

means clustering helps eliminate the centerline pixels with

difference between two degrees, of less than 0.2, i.e., having more

or less equal affinity (e.g., 0.45 vs. 0.55) towards both clusters.

These indeterminate pixels are treated as noise and are removed

from further analysis. Fig. 9(a) shows the formation of two clusters

in a three-dimensional view with axes represented by MG, SG,

and MH, and centroids marked with a black star (?) symbol. The

centroid of each of the two clusters is a co-ordinated vector of

average values of 4 feature properties associated with centerline

pixels in that cluster [MGmean, SGmean, MHmean, SHmean]. The

clusters are labeled as arterial or venous, based on the numerical

comparison of averages of mean green channel intensity (MGmean)

of two centroids. Fig. 9(b) shows the projection of clusters in

(Fig. 9(a)) on a two-dimensional plane formed by MG and MH,

Figure 7. Image example: a) Vessel probability image b) Structural mapping of vessel network.
doi:10.1371/journal.pone.0088061.g007

Figure 8. Image example: a) Vessel segment map b) Vessel trees with AV crossing c) Vessel trees without AV crossing.
doi:10.1371/journal.pone.0088061.g008
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with MG represented on Y-axis. The cluster with higher average

value of mean green channel intensity (MGmean) is labeled as

arterial cluster and the other cluster as the venous cluster, since

arteries appear brighter relative to veins.

For a pair of vessel trees with AV crossings (for which we have a

prior knowledge of them being of different types), the vessel tree

with higher proportion of arterial class centerline pixels compared

to the other vessel tree is labeled as an arterial tree, and the other

one is labeled as a venous tree. For the vessel trees with no AV

crossing (unpaired), we use the following method for their

classification. Each of the unpaired vessel trees is designated to a

group if the Euclidean distance between the centroid pixel (center

of mass) of a given unpaired vessel tree and the centroid pixel of at

least one unpaired vessel tree in that group is less than the

predefined threshold, that indicates their spatial nearness. The

threshold is defined empirically based on the image resolution.

Thus, each such group of unpaired vessel trees in a localized

region is analyzed separately which may prevent the non-uniform

illumination effect on localized color feature extraction process, as

shown in (Fig. 8(c)) for groups A, B, and C. The vessel trees in any

one group at a time, are organized in pairs such that the mutual

comparison is possible, e.g., Vessels 1,2,3 and 4 in group A are

compared in pairs such as 1–2,1–3,1–4,2–3,2–4 and 3–4. If a

group consists of only one single vessel (e.g., group B), this vessel is

merged into spatially nearest group of vessels (e.g., group C) for

analysis. For each pair of vessels, the most probable class of

centerline pixels is identified for each vessel; i.e., the class pixels

(arterial or venous) occupying in higher proportion of centerline

pixels on that vessel. As the statuses of both the clusters/classes are

already determined, each vessel in a pair is soft-labeled with the

corresponding high probability class label. This procedure is

followed for all the vessel pairs in a group and each vessel in a

group is soft-labeled number of times depending upon the number

of vessels in that group. A hard label is assigned to each vessel as

the median value of all the soft labels received for that vessel. The

vessels without AV crossing are classified based on the most

probable class of centerline pixels but with mutual comparison

between vessel pairs and a voting procedure (i.e., median of soft

labels). The AV classification results are shown in (Fig. 10(b)), with

arteries marked in red and veins marked in blue.

Materials

We evaluated the dataset of 50 digital color fundus images of 50

subjects selected randomly from EYECHECK database. More

information about the dataset can be found elsewhere [20]. The

dataset consists of standard two-field registered fundus images

(7686512, 450 FOV) from subjects with diabetes with and without

diabetic retinopathy. The images were deidentified before being

accessible to the authors of this study, and thus this study was not

human subjects research. The proposed method was applied to the

dataset and the images used to design and implement the

algorithm were excluded from the evaluation data. The fundus

images were processed to obtain the vessel segmentation and the

vessel segment map as shown in (Fig. 8(a)). In order to validate the

structural mapping and the AV classification produced by the

automated method, the vessel segment map (Fig. 8(a)) was

annotated manually by a trained human grader using color labels

for structural mapping, whereas red (artery) and blue (veins) labels

for AV classification. We used previously validated Java based

Truthseeker desktop application for expert annotation of vessel

trees [21].

Results

A copy of the vessel segment map (as above) was also labeled

using the automated method by preserving the respective color

code followed by the grader. To evaluate the accuracy of the

proposed method, the automated labeling was compared with the

expert annotation in terms of a segment color value. A segment

marked with equal color value by both automated method and

expert annotation was treated as accurately classified segment, and

vice versa.

Two metrics were utilized to quantify the accuracy of the

method. The first metric calculates the mis-classification rate (%)

for vessel segments as a function of vessel segment width, over the

dataset (Fig. 11(a)). The red bar in the histogram shows the total

number of vessel segments (Y-axis) within a particular width

interval (X-axis), whereas the respective blue bar shows the

number of mis-classified vessel segments in the same interval. The

number shown on top of each red bar represents the mis-

classification rate (%) for vessel segments within that width

interval. The mis-classification rates (%) for various vessel segment

sizes were categorized in Table 2. The average mis-classification

Figure 9. Fuzzy C-means clustering: a) Cluster formation b) Comparison of mean green channel intensity.
doi:10.1371/journal.pone.0088061.g009
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rate (%) for vessels with width above 4 pixels was 3.58%. Thus,

given a randomly selected medium sized or major retinal vessel, it

would be classified correctly in 96.42% of cases.

The second metric (Fig. 11(b)) shows the histogram of pixel mis-

classification (%) per image, in the dataset. The Y-axis shows the

number of images for which the pixel mis-classification (%) was

within the interval represented on (X-axis). For each image, the

pixel mis-classification (%) was calculated as the fraction of total

number of vessel pixels which was mis-classified, representing its

impact on the vessel network. The average mis-classification of

8.56% or the accuracy of 91.44% correctly classified vessel pixels

was obtained over the dataset.

The average mis-classification rate (%) for single vessel trees

(without AV crossing) was obtained as 17.07%, whereas the

average mis-classification rate (%) for paired vessel trees (with AV

crossing) was determined as 4.96%. The difference between the

mis-classification rates for single and paired vessel trees was

statistically significant (p-valuev0.05).

The average running time per image starting at the readily

available vessel segmentation to AV classification was 8 minutes

including 7 minutes for structural mapping and 1 minute for

subsequent AV classification, when processed in MatLab envi-

ronment on a standard personal computer with Intel core 2 Duo

processor, running at 3 GHz. The algorithm was not optimized

for speed. The automated structural mapping and AV classifica-

tion of retinal vessel trees is shown in Fig. 12.

Discussion

We developed an automated method for identifying and

separating the retinal vessel trees in color fundus images, which

provides the mapping of primary vessels, and their branches. The

strategy of modeling the vessel segmentation into vessel segments,

characterizing their properties, i.e., orientation, width and

intensity, and minimizing the difference between these properties

to identify a true vessel, may work well for structural mapping.

Furthermore, we described the mapped vessel trees in terms of

arteries and veins.

Our results demonstrate that an automated method is capable

of separating and classifying retinal vessel trees with an accuracy

comparable to that of experts. The first metric reports the average

mis-classification rate below 5% for vessel segments. This mis-

classification rate decreases further to 3.58% if only medium sized

and major vessels are considered, as a clinician may find their

diagnostic importance higher compared to smaller or peripheral

vessels. Therefore, the diagnostically relevant vessels may be

classified correctly 96.42% of the times. The second metric

provides the average accuracy of 91.44% correctly classified vessel

pixels (vessel network area), and enables the determination of the

overall impact of mis-classification on the vessel network. The

results (Fig. 11(b)) show six outliers representing images with more

than one-third of the vessel region classified falsely. The image

with highest mis-classification of 44.26% is shown in (Fig. 13),

Figure 10. Image example: a) Structural mapping b) Artery-Venous Classification.
doi:10.1371/journal.pone.0088061.g010

Figure 11. Metrics: a) Proportion of mis-classified vessel segments, b) Percentage mis-classification per image.
doi:10.1371/journal.pone.0088061.g011
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which was partially contributed by both false structural mapping

and false AV classification, as will be discussed later. On an

average, the proposed method may be capable of classifying at

least 90% of the vessel network accurately.

The structurally separated vessel trees were classified using color

properties that distinguish between an artery and a vein. The

classification based on localized color features along with mutual

comparisons and a voting procedure may have reduced the effect

of intensity variations across the image, and across different

subjects. The artery-venous crossing property determined the

vessel pairs with a high probability of vessels being of different

types, and enhanced the classification performance. It is evident

from the smaller contribution of paired vessel trees (4.96%) in mis-

classification relative to that of single vessels (17.07%), and

statistically significant difference between the mis-classification

rates for both vessel types.

The AV classification methods [3,9] reported previously,

depend upon the color features of vessels to discern between an

artery and a vein. For feature extraction, the vessel segments are

selected from a definite region of interest (ROI), which may

exclude the posterior pole as well as the peripheral retina. The

region selection constraint may reduce the strength of a feature set,

and may limit AV classification only to the vessels inside the ROI,

which restricts the measurement of parameters such as AVR to a

limited region. The propagation of AV classification inside of ROI

to the periphery may be complex due to the factors such as the AV

crossings where artery and vein may run parallel to each other, an

AV crossing superimposed on a vessel branching, ambiguous

vessel connections due to tortuous or small vessels, multiple

wriggling of two vessels upon each other, or multiple AV crossings

between 2 vessels that produce cycles when imaged on a two-

dimensional fundus image. Rothaus et al. [7] discuss variety of

such vascular interactions due to which the propagation of AV

classification to the outside of the ROI becomes complex and

requires a rule-based approach. The methods [3,9] classify vessels

only inside the ROI where the aforementioned complications may

be less severe, but their propagation to the outside of the ROI may

be difficult without the knowledge of structural properties of

vessels. Therefore, it may be imperative to consider vascular

features such as orientation, width, and intensity; and principles of

vascular tree connectivity, branching and tapering; to identify a

true vessel and to propagate AV classification to the periphery, as

described in [4,7,22,23]. The proposed method provides a

structural mapping for vessel tree identification that enables AV

feature extraction without the ROI constraint and AV classifica-

tion over the complete vessel network.

Table 2. Proportion of mis-classified vessel segments.

Vessel size Vessel width (Pixel) Vessel segment mis-classification (%)

Small/Peripheral 1#width,4 4.07

Medium 4#width#6 3.78

Major 6,width#9 0.00

doi:10.1371/journal.pone.0088061.t002

Figure 12. Image example: a) Fundus image b) Vessel probability image c) Structural mapping d) AV Classification.
doi:10.1371/journal.pone.0088061.g012
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The proposed method provides the separation of vessel trees

into arteries and veins as well as into primary vessels, and their

branches, which may reduce the intertwining complexity of the

retinal vessel structure that normally prevents the accurate

measurement of individual vessel properties. This analysis may

enable the automated measurement of morphologic parameters

including branching angle and branching coefficient which change

during the development of diabetic retinopathy [24,25]. An added

advantage may be the inclusion of smaller and peripheral vessels

into the measurement system without following the constraint over

the vessel size as in [26], or the specified ROI of the fundus as in

[27].

As per our knowledge, the only method for retinal vessel

identification and separation was proposed by Lau et al. [5]. This

method, however, is restricted to the analysis of vessels inside a

region of interest (ROI) around the optic disc, where the

complications due to the vascular interactions as discussed in

[7], may be less severe. As explained previously, the identified

vessels therefore cannot be propagated outside the ROI without a

rule-based approach. This limits it’s practical utility for multi-field

images mosaiced together. This method presents a pixel based

accuracy of approximately 98% for clean segmented images [5],

which is comparable to the pixel based accuracy of 91.44% for

vessel identification and AV classification as obtained by our

method (Second metric), recognizing that our results are not

limited only to the clean segmented images or only to the vessels

inside of ROI. Furthermore, the pixel based accuracy may be

biased by the pixel contribution from large sized (width) vessels,

and therefore our results account also for the accuracy by vessel

sizes (First metric). The first metric shows equally comparable

accuracy of 96.42% in identification and classification of

diagnostically important medium and major sized vessels. One

step ahead of the vessel separation and identification, our method

also provides an automated means of classifying separated vessel

trees into arteries and veins, which is currently unavailable in Lau

et al.’s approach. The performance of the method by Lau et al.

may be compromised by the presence of interrupted vessel

segmentation, whereas our method provides a supporting algo-

rithm with a fully automated procedure for reconnection of vessel

interruptions to produce a clean segmentation [14].

The method reported by Aylward et al. identifies and separates

the intra-cranial vessels imaged in three dimensional CT and

MRA images [6]. Although not directly related to the identifica-

tion of retinal vessels, however, unlike to this method, our

proposed method works with vessels imaged in two dimensional

fundus images and utilizes the structural properties of vessel

segments to recover for the unavailability of third dimensional

data. Few other methods developed for retinal vessel tracking in

two dimensions [28,29], may track the vessel without a control

over its individual structural propagation. Therefore, they may not

provide the identification and the separation of individual vessel

trees. To the best of our knowledge, the proposed method for

structural mapping and AV classification of the entire retinal vessel

network imaged in two-dimensional color fundus images is novel.

Some limitations of this method are the following. The method

requires high quality connected vessel segmentation image for the

structural mapping. Therefore, lower quality segmentation

including interrupted vessels may result in errors. We previously

developed a method for identifying and reconnecting the

interrupted vessels using graph search which may be able to

provide a connected vessel structure [14]. The other limitation is

its inability to identify and separate two vessels overlapping (due to

two dimensional imaging) or touching each other in a parallel

course (Fig. 13(b):Yellow arrow), which may be improved using

methods presented elsewhere [30]. The AV classification method

is based on color features of vessels and therefore limited by the

non-uniform illumination effects and low contrast in the fundus

image. These may result into a false classification of arteries and

veins due to the localized illumination effect. Fig. 13(c) shows the

AV classification by a trained grader, and Fig. 13(d) shows the

automated AV classification where artery in a local darker region

is classified as a vein (Green arrow).

A preliminary version of this work appeared in SPIE conference

proceedings [31] and [32]. As presented in the preliminary

research articles, the structural mapping algorithm when applied

individually to the set of 15 fundus images resulted into an

accuracy of vessel separation of 92.87%, whereas the subsequent

Figure 13. Image example: a) Fundus image b) Structural mapping c) Manual AV labeling d) Automated AV Classification.
doi:10.1371/journal.pone.0088061.g013
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application of artery-venous (AV) classification algorithm to the

same set of images resulted into an accuracy of 88.28%. The

manual analysis of these results indicated that the majority of the

total misclassification was introduced due to the limitations in

structural mapping and was supplemented further due to the

limitations in AV classification. The quality of AV classification

depends upon the quality of vessel separation by structural

mapping up to a certain extent. The limitations of structural

mapping method such as in separating the overlapping or parallel

running vessels or in resolving the complications due to vascular

interactions as discussed in [7], result into false vessel identification

and therefore a false AV classification. However, since the AV

classification process depends upon the localized color feature

analysis and the property of AV crossing, it is relatively robust to

the structural mapping errors localized to a certain region and

prevents it’s effect on the classification of rest of the vessel network.

The accuracy of AV classification is dependent upon the accuracy

of the preceding step, i.e. structural mapping, and the error

introduced during the structural mapping process may not be

resolved and/or corrected entirely as a part of the final

classification output. A different vessel separation method with a

higher accuracy, e.g., [4] (applicable to fluorescence angiography

images), introduced as the basis to the AV classification process

may report a superior performance.

In summary, we developed an automated method for identifi-

cation and AV classification of retinal vessel trees in fundus color

images. The properties of a vessel structure, i.e., orientation, width

and intensity, were utilized to identify the vessel tree, and its color

as well as crossing properties classified it as an arterial or a venous

vessel tree. The proposed method was validated on a fundus color

image dataset showing results that match well with the expert

annotations.

Conclusion

The research presents a novel method for identification and AV

classification of retinal vessel trees in color fundus images. A

fundus image and the corresponding vessel segmentation image

are processed to obtain the separation of intertwined vessel trees,

and their description in terms of arteries and veins. The structural

mapping and the AV classification results match well with the

expert annotations. This approach has the potential to impact the

diagnostically important morphologic analysis of individual retinal

vessels.
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