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Abstract

Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the
human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging
noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g.,
upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded
in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals
also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and
low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were
decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes
caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from
ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each
pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector
machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the
similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the
empirical guessing level (51.26%) in all subjects (p,0.05). The present study suggests the similar movement-related spectral
changes in EEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG.
These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies.
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Introduction

Brain-computer interface (BCI) technologies [1,2,3,4] decode

signals from brain activities and translate human intentions into

commands to control external devices or computer applications.

They provide alternative channels for people suffering from severe

motor disabilities to perform necessary motor functions in daily

life, bypassing damaged peripheral nerves and muscles.

Various brain signals have been adopted in BCI, including

electroencephalography (EEG) [5,6], electrocorticography (ECoG)

[7,8], electromyography (EMG) [9,10], functional magnetic

resonance imaging (fMRI) [11,12], magnetoencephalography

(MEG) [13], and near-infrared spectroscopy (NIRS) [14]. Among

them, ECoG and EEG signals are two widely used modalities in

BCI since they both reflect the electrical responses of the human

brain in actions and their recording devices are more portable

than others. ECoG records neuroelectrical signals of the brain

with high quality and spatial resolution, which allow rapid user

training and fast communication rates in BCI [15]. Many studies

have been carried out using ECoG to extract control signals for

BCI [16,17]. However, ECoG is limited due to its invasiveness,

which requires clinical surgery to place electrodes on the surface of

the human brain. On the contrary, EEG records signals generated

by same neuroelectrical activities on the scalp and its noninva-

siveness makes it more practically usable than ECoG in BCI.

Different patterns in brain signals discussed above due to

activations of different functional brain regions have been

identified and extracted as control features for BCI, such as

event-related synchronization and de-synchronization (ERS/

ERD) originated from the motor cortex during real movement

or motor imagery of certain body parts [6,7], P300 component in

evoked potentials from the parietal lobe [18], steady-state visually

evoked potentials (SSVEP) from the occipital lobe [19], etc. In

comparison to other features, control features related to motor

functions are able to provide self-initiated stimulus-free control

paradigm for BCI users, which fit better for applications involving

movement controls. During the past decade, movements of large

body parts have been investigated in EEG-based BCI, including

wrists [20], upper limbs [21], elbows and shoulders [22], legs [23],

and tongue [24]. However, the movements of fine body structures,

such as individual fingers from one hand, have not been well

studied in EEG-based BCI, while they are the most dexterous part

of our body and play an irreplaceable role in our daily activities.

For example, the flexion and extension of individual fingers are of

great importance to compose many complicated movements.
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Some underlying shortcomings of EEG may account for this

laggard. Firstly, EEG has a coarse spatial resolution with sensors

around 10 millimeters apart [25]. Each sensor records EEG

potentials from thousands of neurons or more [26], which are

spatially filtered and superimposed. This limited spatial resolution

imposes difficulties when using EEG to decode individual finger

movements from one hand, which elicit close cortical motor areas.

Secondly, the neuron populations on the motor cortex elicited by

individual finger movements are smaller than those by large body

parts [27]. Because EEG electrodes are placed outside of the scalp

and relatively far from the brain compared to invasive technol-

ogies, recorded signals are greatly damped due to the volume

conductor effect [28]. These facts indicate that EEG signals have

limited signal-to-noise ratio (SNR) and bandwidth and it is thus a

challenging task to decode fine dexterous movements [4,29,30],

such as of individual fingers from one hand, using EEG [31].

Recently, EEG signals have been reported to decode different

imaginary movements of wrists [20], directions of hand move-

ments [32], the difference between wrist and finger movements

[33], and even reconstruct three-dimensional (3D) hand move-

ment paths [5]. All these studies have indicated that there is rich

information in EEGs about fine dexterous movements. The

difficulty is how movement-related information can be reliably

extracted from EEG signals.

Recent ECoG-based BCI studies have shown promising results

in extracting spatio-spectral features for individual finger move-

ments [34–42]. Characteristic spectral changes at high frequency

band (76–100 Hz) in ECoG have been reported during individual

finger movements [34], which discriminate movements performed

by thumb and index fingers in both contralateral and ipsilateral

cases. It has been shown that time courses during finger flexion are

highly correlated with ECoG data [35,36] and can be recon-

structed from ECoG data [37]. Individual finger movements have

also successfully classified from ECoG [38–40] and micro-ECoG

grid recordings [41]. Particularly, one recent ECoG study [42]

suggests a broadband (up to 200 Hz) spectral power increase and

characteristic spectral power decreases in both alpha (8–12 Hz)

and beta (13–30 Hz) bands during individual finger movements

from one hand, in which the broadband phenomenon has been

demonstrated sensitive to movements performed by different

fingers. These ongoing ECoG studies have demonstrated the

feasibility of decoding individual finger movements using electrical

potentials generated by the human brain, inspiring research in

such decoding tasks using noninvasive EEG.

The objective of present study was to broaden the inventory of

control signals for noninvasive BCIs via decoding individual finger

movements from one hand using EEG. The power spectrum

decoupling procedure [42] and principal components analysis

method [43] were applied on EEG data acquired during

individual finger movements to reveal the underlying movement-

related spectral structure in EEG as compared to ECoG. The

extracted features could extend various existing signals employed

in state-of-the-art EEG-based BCI systems. Furthermore, the new

features were applied to decode individual finger movements

pairwise from one hand in order to validate their efficacy in the

decoding task. The successful decoding of individual finger

movements using EEG could facilitate developing noninvasive

BCIs with more controls and complicated movement functions.

Materials and Methods

1. Experimental protocol and data acquisition
Eleven healthy and right-handed subjects (1 female and 10

males, mean age: 26.4 years old, range: 22–32 years old)

participated in this study given their written informed consents.

The study was approved by the Institutional Review Board of the

University of Oklahoma. None of these subjects had prior training

on the experimental procedure in the present study. Due to poor

data quality, data from one subject was excluded from further

analysis.

EEG experiments were carried out in a shielded chamber room.

Subjects were seated in a comfortable armchair, with their arms

supported in a supine position. They were instructed to perform

flexion and extension of individual fingers according to visually

presented cues in a LCD monitor using E-Prime software

(Psychology Software Tools, Inc., Pittsburgh, PA, USA). During

experiments, EEG signals were recorded from a 128-electrode

EEG system (Geodesic EEG System 300, Electrical Geodesic Inc.,

OR, USA), sampled at either 250 Hz (in the first 6 subjects) or

1000 Hz (in the remaining 5 subjects) and referenced to the

channel on the vertex. At the same time, the movements of

individual fingers generated potential differences [44] (Fig. 1(b)),

which were measured by five bipolar electrodes placed on both

sides of each finger [44,45] at the same sampling rate as in EEG.

Real-time videos on the moving hands were recorded, for the

purpose of removing trials from further analysis when subjects

moved wrong fingers.

The experimental protocol was illustrated in Fig. 1(a). At the

beginning of each trial, two-second blank window on the computer

screen allowed subjects to prepare for the coming trial. Subjects

were instructed to relax, blink, and swallow only in this period. A

fixation cross was then presented for another two seconds as a

resting condition, during which subjects were required to look at

the fixation cross without movements. After that, one of the five

words (i.e., thumb, index, middle, ring, little) as a cue was

displayed for two seconds, which instructed subjects to continu-

ously perform full flexion and extension of the cued finger (usually

twice in one trial). There were in total 60 or 80 trials for each

finger in all subjects (table 1).

To evaluate extracted features from EEG and associated

decoding performance, ECoG data from the BCI Competition

IV [16,46] was also analyzed for the purpose of comparison. The

data were recorded from three epileptic patients using implanted

62-, 48- and 64-electrode grids, respectively, when they performed

similar individual finger movements as in the present EEG study.

Briefly, subjects were cued to move one of five fingers from the

hand contralateral to implanted grids, with each cue lasting two

seconds and followed by a two-second resting period. The visual

cues were presented using BCI2000 [47]. During each cue,

subjects typically moved the corresponding finger 3 to 5 times.

ECoG signals were recorded for 10 minutes, digitized at 1000 Hz,

and bandpass filtered (0.15–200 Hz). Kinematic data during

finger movements were simultaneously recorded using a data glove

(Fifth Dimension Technologies, Irvine, CA).

2. Data analysis
2.1. Preprocessing. EEG data were high-pass filtered at

0.3 Hz using an elliptic infinite impulse response (IIR) filter from

the EEGLAB toolbox [48] with both forward and reverse filtering

to avoid phase distortions. Power line noise was removed by a

60 Hz notch filter with the transition band of 0.3 Hz. Independent

component analysis (ICA) method [49] implemented in the

EEGLAB toolbox based on the Infomax algorithm [50] was used

to decompose EEG data into independent components (ICs). ICs

related to common artifacts, such as generic discontinuities,

electrooculogram (EOG), electrocardiogram (ECG), and electro-

myogram (EMG), were detected and rejected using the ADJUST
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toolbox [51]. Usually 10 to 20 ICs were rejected as artifacts in

each subject.

For ECoG data, the 60 Hz power line noise and its harmonic

components were removed using a notch filter with 0.8 Hz

transition band (elliptic IIR filter from EEGLAB). Channels that

contain unusually large values (greater than 105 mV) were rejected

as bad channels, resulting 61, 46 and 63 channels of ECoG data

for each subject, respectively.
2.2. Detection of finger movements. Since subjects usually

performed finger movements twice in each trial, i.e., two seconds,

the potential differences from each pair of bipolar electrodes were

band-pass filtered ranging from 0.5 to 2 Hz to capture major

kinematic information of 1 Hz. It was observed that movement

peaks happened when a finger was fully flexed, and those peaks

were identified using the following criteria. Firstly, the amplitudes

at the prospective peaks were at least 200 microvolt (mV).

Secondly, these movement peaks occurred 400 milliseconds (ms)

after stimulus onsets, since the reaction time from visual stimulus

to movement onset was about 180 ms [52] and the time reaching

the peak from movement onset was usually longer than 200 ms.

Thirdly, movement peaks in the last 500 ms of each trial were not

used because their corresponding EEG data might be contami-

nated by the following trial. Lastly, movement peaks were at least

200 ms apart from each other and, if there were multiple peaks

within 400 ms time window, the peak with the maximal strength

was selected. Trials in which subjects made wrong movements

were removed. Numbers of detected finger movements and their

distributions among individual fingers were listed in table 1. Then,

EEG data centered at corresponding finger movement peaks in all

trials were extracted with the length of one second and categorized

into different fingers. For ECoG data, the similar procedure for

the detection of finger movements was performed. Position data

from the data glove was in the range of [25, 10] (with arbitrary

unit). Finger movement peaks were identified using two criteria:

above the threshold of 2 and peaks at least 200 ms apart and the

one with maximal strength selected if there are multiple peaks

within 400 ms. ECoG data within one second window corre-

sponding to each movement peak was extracted.

2.3. Power spectral analysis. Both EEG and ECoG data

were re-referenced using a common average reference (CAR)

before the following analysis, which could enhance SNR [53]:

Xn tð Þ~X o
n tð Þ{ 1

N

XN

i~1

X o
i tð Þ n~1,2, � � � ,N ð1Þ

where X 0
n (t)and Xn(t) are EEG or ECoG signals on channel n and

at time t before and after CAR, and N is the total number of

channels.

To calculate power spectral densities (PSDs) of EEG/ECoG on

each channel, data from a short-time window T centered at

movement peaks tq and resting conditions were used, where

q~1,2, � � � ,5 refers to time windows for different fingers, and

q~6,7, � � � ,10 refers to time windows of corresponding resting

conditions of different fingers. Resting conditions were defined as

one-second length window centered at the middle of two-second

fixation windows (i.e., 3 s in Fig. 1(a)). PSDs were then calculated

using a windowed Fourier transform [42]:

Figure 1. Experimental protocol and EEG sensor layout. (a) Events in each trial: a two-second blank window, a two-second fixation, and a two-
second cue for finger movements. (b) Illustration of potentials difference during individual finger movements (no data in blank windows). (c)
Illustration of a 128-channel EEG sensor layout with 50 electrodes (in red) as the mostly used channel set for decoding.
doi:10.1371/journal.pone.0085192.g001

Table 1. Numbers of EEG experimental trials, detected finger
movements, and detected individual finger movements in all
subjects.

Trials Movements Thumb Index Middle Ring Little

Subject 1 400 409 93 79 80 78 79

Subject 2 400 485 87 97 117 97 87

Subject 3 300 380 74 59 84 81 82

Subject 4 400 435 83 77 86 80 109

Subject 5 400 396 68 105 88 71 64

Subject 6 400 396 80 79 80 79 78

Subject 7 400 394 79 77 80 79 79

Subject 8 400 394 80 80 79 75 80

Subject 9 400 395 80 80 75 80 80

Subject 10 400 394 80 79 80 75 80

Average 390 407.8 80.4 81.2 84.9 79.5 81.8

doi:10.1371/journal.pone.0085192.t001

Decoding Individual Fingers Using EEG

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e85192



Pn f ,tq

� �
~

1

T

XT2 {1

t~{
T

2

Xn tqzt
� �

:H tð Þ: exp i
2p

T
f {1ð Þt

� �
����������

����������

2
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where Pn f ,tq

� �
is the PSD at frequency f and time tq on channel

n, Nq is the number of movements (including corresponding

resting conditions). The Hanning window H tð Þ~ 1zð
cos 2pt=Tð ÞÞ=2 was used with the window length T of one second.

The upper-bound frequency Nf was 125 Hz in EEG data and

200 Hz in ECoG data.

2.4. Principal component analysis. To evaluate move-

ment-related changes in EEG, the principal component analysis

(PCA) [43] was applied to PSD data from both movement trials

and resting trials in order to identify movement-related spectral

structures. In the present study, difference related to changes in

movement-related spectral structures was evaluated by comparing

a pair of any fingers from one hand. Every time, PSD data from a

pair of conditions (i.e., fingers) to be compared and their

corresponding resting data were grouped for the PCA analysis

using the following procedure, which was repeated for all ten pairs

of conditions from five fingers. Grouped PSD data were firstly

element-wise normalized to the ensemble average spectrum at

each frequency and then the logarithm was taken:

~PPn f ,tq

� �
~ ln Pn f ,tq

� �� �
{ ln

1

Nq

:
XNq

p~1

Pn f ,tp

� � !
ð3Þ

where ~PPn f ,tq

� �
is the log-normalized PSD at frequency f and time

tq on channel n. The purpose of normalization was to evaluate

increased or decreased changes in specific spectral structures that

would be identified with PCA as discussed below. The purpose of

logarithm operation was to treat increased changes (ranging from

zero to infinity after logarithm) and decreased changes (ranging

from negative infinity to zero after logarithm) equally [42].

The PCA method [43] was then applied to seek the most

representative spectral structures in PSD data ~PPn f ,tq

� �
, which

calculates the eigenvalues l and eigenvectors v of the covariance

matrix C f ,~ff
� �

of ~PPn f ,tq

� �
among frequencies

C f ,f ’ð Þ~
X

tq

~PPn(f ,tq):~PPn(f ’,tq) f ,f ’~1,2, � � � ,Nf ð4Þ

where f and f ’ are frequencies and tq are from the pair of fingers

compared. The covariance matrix reveals the correlation between

power spectra of every two frequency bins. Its eigenvectors vk

k~1,2, � � � ,Nf

� �
(principal component, PC) define a set of

spectral structures in PSD data and their contributions to the

variance of PSD data are reflected in corresponding eigenvalues

lk. Rearranging PCs according to eigenvalues in a descending

order, which forms a set of orthogonal basis in the frequency

domain denoted as V (f ,k)~(v1,v2, � � � ,vNf
). The projection of

PSD data from each trial onto the new basis V (f ,k) can then be

calculated as

Wn(k,tq)~VT (f ,k):~PPn(f ,tq) k~1,2, � � � ,Nf ð5Þ

where Wn(k,tq) are the weights of PSD on nth channel from

movement (and resting) data tq projected onto the kth PC.

Projection weights were grouped according to conditions (resting

data were also separated according to finger moved after it) and

compared to illustrate difference of movement-related changes in

spectral structures from different finger movements.

2.5 Feature selection. The feature selection procedure

includes the feature extraction using the spectral PCA described

in the previous section and the selection of EEG channels that are

most discriminative to different fingers. Before these steps, each

dataset was separated into training and testing data according to

five-fold cross validation. The whole dataset was equally divided

into five mutually exclusive subsets, with four subsets (80%) as

training data and the rest (20%) for testing. The process was

repeated five times and every subset was used for testing once.

Thus, EEG features selected for the following classification analysis

were obtained from the training data only.

In the present study, the first five PCs were considered as feature

PCs. Projection weights from each of these PCs and their

combinations were used to decode movement-related changes in

EEG spectral structures when different fingers were moved. To

achieve optimal classification performance, spatial patterns of

projections on spectral structures were further considered. For the

spectral data on each channel, the PCA analysis was performed

and projection weights of the first five PCs were obtained for each

pair of fingers to be compared on the channel. To identify

channels with the large differences in projection weights between

two different fingers, the r2 values were calculated on each channel

[54], which evaluates the proportion of variance between two data

sets accounted by the difference of their means:

r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nz:N{
p

NzzN{

mean(W{){mean(Wz)

std(Wz|W{)
, r2~r:r ð6Þ

where Wz and W{ contain projection weights on PCs (Wn(k,tq)

in equation (5)) from two conditions, and Nzand N{ are the

numbers of samples in each condition. Channels indicating

significant r2 values in comparisons were selected as feature

channels (Fig. 1(c) and see section 2 in Results), and projection

weights on these channels were used as input features for classifiers

(discussed in next section) to decode finger movements.

3. Classifications of finger movements
Using features discussed in previous section, classifications were

performed on 20% testing data to distinguish finger movements in

pairs (e.g., thumb vs. index) to investigate the difference in

movement-related EEG spectral changes from different fingers.

Ten pairs of comparisons were performed, i.e., thumb vs. index,

thumb vs. middle, thumb vs. ring, thumb vs. little, index vs.

middle, index vs. ring, index vs. little, middle vs. ring, middle vs.

little, and ring vs. little. Since the classification of two conditions

was a two-class classification problem, a binary classifier was

applied, i.e., the linear support vector machine (SVM) method

[55,56] with the radial basis kernel function (RBF) from the

LIBSVM package [57]. Briefly, the method maps input feature

data into a high dimensional space and seeks an optimal

separating hyper plane that has maximal margins between two

classes of data samples. The penalty parameter and gamma value

in RBF kernel were determined by a grid-search approach [58].

4. Evaluation of decoding performance
Decoding accuracy (DA) was defined as the number of correctly

classified movements divided by the total number of movements

Decoding Individual Fingers Using EEG
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[59]. To get an unbiased estimation of decoding accuracy, EEG/

ECoG trial data of individual movements were randomly

permuted before going through the five-fold cross validation.

The whole process was repeated twenty times, on which the mean

and variance of decoding accuracies were calculated.

The significance of achieved classification accuracy was also

compared with respect to the empirical guessing level. The

empirical guessing level p for each pair of compared fingers was

calculated using a permutation test. During the test, the class labels

were randomly permuted 500 times and the same classification

procedure was performed on obtained dataset in each permutation

as on the original dataset. The decoding accuracies from all

permutations were then averaged to obtain the empirical guessing

level and Student t-test was used to test the significance between

comparisons. In a two-class classification problem, the probability

(p) and its associated confidence intervals were given as [60]

p+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p: 1{pð Þ

mz4

r
:F

1{
a

2

ð7Þ

where m is the number of total movements from two conditions

compared, F
1{

a

2

is the 1{
a

2
quantile of standard normal

distribution, and a is the significance level, such as 0.05. The

decoding performance of a classifier is considered to be statistically

significant from the guessing level if it is beyond the confidence

intervals of guessing level with a significance level a.

To evaluate the decoding performance using the broadband

feature from PCA as compared to other spectral features in EEG,

spectral powers from individual frequency bands including alpha

(8,12 Hz), beta (13,30 Hz) and gamma (.40 Hz) in EEG data

from each subject were also extracted and applied to evaluate

accuracy using the same classification procedure.

Results

1. Principal components in EEG and ECoG data
Figure 2 illustrates the first and second PCs of EEG and ECoG

data from all comparisons (i.e., ten) in all subjects (i.e., 10 for EEG

and 3 for ECoG) on the axes of frequency. Figure 2(a) shows that,

for EEG, the first PCs are of non-zero value (around 0.1) over the

whole frequency band (up to 125 Hz), which is consistent over all

comparisons of different finger movements, over distributed EEG

channels (see next section), and over all subjects. Moreover, these

first PCs are of the same signs and closer to each other than they

are to zero. The second PCs indicate peaks within the a band (8–

12 Hz) and b band (around 20–25 Hz) while the high frequency

component (.40 Hz) is near zero. These phenomena are similar

to the results obtained from ECoG data (figure 2(b)), in which the

first PCs have the same positively signed magnitudes (around 0.07)

over the whole frequency band (up to 200 Hz) over all

comparisons of finger pairs and all subjects and the second PCs

have elevated deflections away from zero within a/b frequency

bands as well. However, it is worth to note that the first PCs in

EEG present a slightly increasing pattern in the low frequency

range as compared to the ones in ECoG.

As discussed in the ECoG study [42], the first PC with non-zero

magnitudes captures the broadband frequency change during

finger movements, while the second PC reflects the power-

decreasing rhythms in low frequency bands, consistent with event-

related desynchronization (ERD) due to movements [61]. These

results indicate that movement-related spectral structures reported

in previous ECoG studies [42] are also available and can be

identified in EEG data.

2. Spatial patterns of movement-related spectral changes
Since the first PC with non-zero magnitudes observed in EEG is

in concordance with previous ECoG studies, in which the

projection weights on this PC are found specific to different finger

movements [42], projection weights on the first PC from all

channels were studied to understand movement-related spectral

changes spatially. Figure 3 illustrates the topographies of

projection weights of EEG PSDs upon the first PC in two

comparisons (thumb vs. little and index vs. middle). It is observed

that large projection weights from both movement conditions and

resting conditions appear on both left and right fronto-central

areas and gradually decrease toward centro-parietal area around

the midline. By comparing the projection weights of PSD data

from movements and those from their corresponding resting

conditions in each finger (the first two columns of each row in

figures 3(a) and (b)), it indicates small magnitude differences in

both left and right central areas and large difference over the

centro-parietal area that is slightly toward the left side of midline.

These observations are further confirmed in the topographies of r2

values, which are about 0.2 to 0.25 in the central areas and reach

0.5 over the centro-parietal area (the right column of each row in

figures 3(a) and (b)). When spatial patterns of projection weights

from different finger movements are compared (thumb vs. little in

figure 3(a) and index vs. middle in figure 3(b)), the magnitude

differences were observed in the left and right fronto-central and

centro-parietal areas while the general patterns are maintained in

all fingers. Furthermore, the movement-related spectral changes in

the centro-parietal area seem more significant than both left and

right fronto-central areas, which is similar to observations when

PSD data from movements and resting are compared. On the

contrary, spatial patterns of projection weights from resting PSD

data that are corresponding to different finger movements do not

indicate such difference (middle columns of figures 3(a) and (b)),

which suggests that the difference of spatial patterns of projection

weights only exists during movements. Based on these results, 50

electrodes covering areas discussed above (figure 1(c)) were selected

as feature channels to perform decoding in the following analysis.

Other channel sets were also tested to evaluate the effect of

channel locations on decoding accuracy (see section 6 in Results).

3. Decoding accuracy of movements using EEG and ECoG
data

Figure 4 shows the mean decoding accuracies and correspond-

ing standard deviations using EEG and ECoG, respectively,

calculated from 20 permutations and all subjects. It indicates that

DAs from ten comparisons using the broadband feature are all

higher than 70% for EEG, with the lowest DA of 71.43% in index

vs. middle and the highest DA of 82.41% in ring vs. little. The

average DA across all pairs of fingers and subjects is 77.11%.

ECoG produces better decoding performance, with the lowest DA

of 73.64% in ring vs. little and the highest DA of 97.98% in thumb

vs. little. The average DA is 91.28% across all finger pairs and

subjects. Furthermore, DAs using both EEG and ECoG are

significantly higher than the empirical guessing level 51.26% (the

red horizontal dashed line) in one-sample t-test (p,0.05). And the

broadband feature from ECoG yields significantly higher DAs

than it from EEG (p,0.05).

The average DAs achieved by spectral features in the three

frequency bands are 58.55% (alpha), 57.86% (beta), and 65.21%

(gamma), respectively and all reach significant level against the

empirical guessing level (p,0.05). Among these features, gamma
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band yields significantly higher DAs than the other two (p,0.05),

while the difference between alpha and beta band is not significant

(p.0.05). Furthermore, the broadband feature has significantly

higher DAs than the feature from any of these individual

frequency bands (p,0.05).

The significance of decoding performance for each pair of

fingers using EEG data is listed in table 2. With the significance

level a as 0.05, most of decoding accuracies for all subjects and all

finger pairs were above the upper bound of 95% confidence

interval of guessing, except four pairs out of one hundred

(underlined ones in table 2). These results demonstrate that almost

all decoding accuracies of ten finger pairs from all subjects are

significantly better than the guessing level.

4. Decoding using data from resting conditions
To further verify that it was movement-related changes in EEG

data that contributed to the decoding accuracies in figure 4, the

same classification procedure was performed on data from resting

conditions prior to individual finger movements (they were

categorized to different fingers according to movements performed

after). Figure 5 shows that DAs for all pairs of fingers are at the

Figure 2. First and second principal components obtained in both EEG and ECoG data from ten pairs of finger movements in all
subjects. Each curve is the averaged 1st or 2nd principal component across 50 electrodes (figure 1(c)) from one pair of fingers in one subject. (a) EEG
data (1–125 Hz). (b) ECoG data (1–200 Hz).
doi:10.1371/journal.pone.0085192.g002

Figure 3. Topographies of project weights on the 1st PC averaged over all subjects in two representative pairs of fingers: (a) thumb
vs. little (b) index vs. middle. Left column: projection weights from movement data; Middle column: weights from corresponding resting
conditions data prior to movements; Right column: r2 value between projection weights from movement and resting data.
doi:10.1371/journal.pone.0085192.g003
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guessing level, in the range from 47.24% (index vs. little) to

50.55% (middle vs. ring).

5. Decoding accuracies using different principal
components

Figure 6 illustrates the average decoding accuracies in ten pairs

of fingers from EEG signals using projection weights on single

(from first to fifth) or multiple (from first two to first five) PC(s) as

input features for classification. As far as single PC is concerned,

the first PC produces higher DAs than other single PCs, while the

differences are not significant against the second and third PCs

(p = 0.22 and 0.17, respectively). In most cases, the decoding

accuracy of each pair of fingers decreases from the first PC to the

fifth PC, indicating that the spectral structure in the first PC is

more relevant to movements performed by fingers than other PCs.

When multiple PCs are concerned, it suggests higher DAs than

single PCs with the statistical significance (p,0.05). The highest

DA can usually be achieved when projection weights on first three

PCs are used as input features for classification. It further indicates

that three pairs of fingers (thumb vs. little, ring vs. little, and thumb

vs. index) achieve the highest DAs using the first three PCs, and

others have their highest DAs using the first two, four, or five PCs.

None of them gets the highest DA from single PCs.

6. Decoding accuracy of different channel sets
To evaluate the effect of different feature channels on the

decoding performance, four different channel sets (22, 39, 50, and

71 channels) were chosen. Their spatial layouts are illustrated in

figure 7(a). The 22-channel set was chosen to cover the centro-

parietal area, which indicates the largest difference in maps of

projection weights among different movements (figure 3). The 39-

channel set covered the area of 22 channels and left fronto-central

area since all subjects used right hands to perform the tasks. The

71-channel set included more electrodes on the occipital area than

the 50-channel set (figure 1(c)), which covered both left and right

centro-parietal areas. The present results indicate that decoding

accuracies using different channel sets (figure 7(b)) were close to

each other. In the pairwise Student t-test, no significant difference

could be identified in terms of performance using different channel

sets (p.0.05).

Discussion

BCI is an assistive technology, which allows people suffering

from severe motor disabilities to control external devices by

directly decoding brain signals and bypassing impaired peripheral

nerves and muscles [62]. One challenge that impedes the

development of noninvasive BCIs is the limited number of

available control signals. Recent ECoG studies that demonstrated

the feasibility of decoding individual finger movements from one

hand using decoupled movement-related spectral changes [42]

shed lights on using EEGs to decode individual finger movements,

which could greatly increase the degree of freedom of noninvasive

BCIs. The aim of the present study is to investigate whether similar

movement-related spectral changes can be detected in EEG as in

ECoG and its efficacy in discriminate individual finger movements

from one hand. Similar findings as in ECoG [42] were observed in

the present study in EEG. A spectral structure of non-zero

magnitudes with positive signs across the whole frequency band of

EEG was identified similarly as in ECoG (figure 2), which is

Figure 4. Decoding accuracies for ten pairs of fingers from one hand and their average DAs using EEG and ECoG with the
broadband spectral feature from EEG, EEG spectral power in alpha band, EEG spectral power in beta band, EEG spectral power in
gamma band, and broadband spectral feature from ECoG. The red dashed line indicates the empirical guessing level of 51.26% and the
vertical lines indicate standard deviations.
doi:10.1371/journal.pone.0085192.g004
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sensitive to movements performed by individual fingers specifi-

cally on channels over left and right fronto-central and midline

centro-parietal areas in all subjects. A second spectral structure

was also identified with spectral peaks within both alpha and beta

bands and zero magnitudes in the frequency band over 40 Hz,

which resembles the well-known ERD phenomena [61] in low

frequency bands. These results confirmed that EEG signals

contain movement-related information similar to invasive ECoG

signals. These movement-related spectral structures were then

utilized to decode individual finger movements from one hand.

An average decoding accuracy of 77.11% was achieved in

distinguishing movements performed by all pairs of different

fingers from one hand in ten subjects. Decoding performance was

stable across different pairs of fingers (std: 3.72%, figure 4). When

examining decoding accuracies of each pair of fingers across

different subjects, average decoding accuracies were all above the

guessing level with the similar level of variations (Table 2). Resting

data prior to movements do not contain information to accurately

decode movements (figure 5), indicating EEG spectral changes

identified in comparisons between different movements and

between movements and resting are indeed induced by move-

ments. Although the decoding accuracy using EEG is lower than

ECoG (averaged in 91.28% in three epilepsy patients), the DAs of

all finger pairs using EEG are significantly higher than the

guessing level (p,0.05), demonstrating the feasibility of using such

features in discriminating individual finger movements from one

hand. The plausible reason for the reduction in decoding

accuracy is that EEG records neural electrical potentials from

the scalp, where signals are greatly attenuated during the

propagation through tissues, i.e., the brain, skull, and scalp.

One more reason that may also reduce the decoding accuracy of

EEG is the movement frequency (twice in EEG recordings versus

3 to 5 times in ECoG recordings in the time window of two

seconds) and faster movements are expected to elicit stronger

signals, which is worthy of further investigations.

Many studies have been conducted to decode movements of

different hand parts using noninvasive EEG. Studies to distinguish

movements of fingers from wrists and/or hands have been

reported [33,63–65]. For example, left and right wrist movement

imageries using EEG were classified with DA of 89% [63].

Average DAs from real movement and motor imagery of wrist

and finger from same hands using EEG were reported as 71%

[33]. DA for left and right hand movements using EEG was 75%

[64], and DA for motor imagery was 85% by using Hidden

Markov Models as classifier [65]. There are also studies dedicated

to distinguishing fingers movement form both hands [66–70]. To

name a few, single-trial DA for left versus right index finger

movements using EEG was around 80% [66]. DA for left or right

finger tapping using EEG was 78% [67]. Self-paced key press task

of left vs. right index finger was reported with DA of 92.1% [68]

and 85% for data from the BCI competition 2003 [69]. Another

noninvasive study using MEG to decode left and right index

finger movements obtained DA of 80–94% for five subjects [70].

To our knowledge, this is one of the first few studies to decode

individual finger movements from one hand using noninvasive

EEG. Some studies aimed to decode finger movements from the

same hand [71,72]. One of these studies discussed the decoding of

four fingers movements (no ring finger) using MEG and EEG and

suggested the EEG recording was not very robust in part due to its

low spatial resolution [71]. Another one decoded the index finger

against the little finger from the same hand, resulting in decoding

accuracies of 53–81% [72]. The decoding accuracy (77.17% in

average) achieved in the present study is comparable or even

superior to some of those studies, which indicates that robust
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Figure 5. Decoding accuracies using the resting condition EEG data prior to movements in all subjects. Classifications were done using
the first three PCs and 50 EEG channels (figure 1(c)). Ten pairs are displayed in the same sequence as in figure 4. The red dashed line shows the
empirical guessing level of 51.26%.
doi:10.1371/journal.pone.0085192.g005

Figure 6. Decoding accuracies using single and multiple principal component(s) in all subjects. Classifications were done using 50 EEG
channels (figure 1(c)).
doi:10.1371/journal.pone.0085192.g006
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decoding can be achieved using EEG spectral power changes

obtained from the proposed method. Note that this is achieved by

decoding all pairs of fingers from one hand, which is much harder

than decoding specific fingers (such as the index) from both hands,

decoding both hand movements, or decoding fingers from wrists in

same hands, because movements of fingers in one hand activate

close areas in the sensorimotor cortex within same hemispheres

and such activations are much smaller compared to movements of

other large body parts, such as wrists or hands [27]. The decoding

accuracy using ECoG in the present study (91.28% in average) is

also superior to other reported studies using ECoG. For example,

the average decoding accuracy using the same dataset in same

three subjects was 80.8% [39]. In another study, optimal DAs to

distinguish thumb and index movements in one hand were 83.6%

and 90% in two subjects [73]. Although not reaching 90%, the

general acceptable decoding rate by BCI potential users [74], its

improvements to the level for practical uses are expected by

improving signal processing methods in feature extraction,

classification algorithms, optimal control protocols (such as using

a pair of fingers with better and reliable DA), and subject training.

Principal component analysis [43] was performed to decompose

EEG PSD data and extract movement-related spectral structures

that change when different fingers move. It is worth to note that

PCA methods have been applied to study finger and/or hand

movements previously [42,75,76]. In the present study, principal

components in spectral domains were identified by applying PCA

on spectra data. The first spectral PC indicates a close-to-uniform

spectrum over the whole frequency range, including gamma band

(.40 Hz). When comparing with the ones obtained in ECoG, the

first spectral PC from EEG presents a slight increasing profile in

the low frequency range. Movement-related power changes in

high frequency bands, i.e., gamma band, have been found in EEG

data recorded during real and/or imagined motor movements

[32,77,78], and have been applied in BCI problems [63,79].

Studies based on invasive measurement techniques also validated

these spectral power changes [7,80] and utilized them to

discriminate individual finger movements [37]. It has been

suggested that the spectral structure indicated in the first principal

component might be the extension of gamma band activity to the

corresponding low frequency bands [42]. The better decoding

data than other principal components (figure 6) further indicate

that this principle component is sensitive to movements performed

by fingers. The same PC was also similarly detected in ECoG data

with the improved DA (91.28%), which is much higher than the

DA (80.8%) achieved in a previous study [39] on the same ECoG

data with best features from gamma band (65–200 Hz). These

facts suggest that this characteristic spectral structure is universally

available in electrical potential data (including EEG and ECoG). It

is a movement-related spectral feature that is more specific to

finger movements than spectral features in alpha and beta bands

in the second PC that actually have been well studied and widely

used in BCI [6,24,81] and is more complete than spectral features

in gamma bands [42]. Furthermore, decoding accuracy using

features from multiple principal components, e.g., first three PCs,

is higher than the first PC, which indicates the contributions from

other PCs (such as the second PC). However, adding more than

first three PCs does not further increase decoding accuracy

(figure 6), which indicates that the PCs corresponding to small

eigenvalues are more likely related to noise or other spectral

structures rather than movement-related spectral structures.

While it has been suggested that changes on identified

movement-related spectral structure caused by the movement of

each finger can be localized to a single electrode in ECoG [42], it

is not likely in EEG data due to the volume conductor effect

[82,83]. Large differences on the identified movement-related

spectral structure between movements and corresponding resting

conditions were mainly shown in the centro-parietal area centered

on the immediately left side of midline (figure 3). Furthermore,

relatively small differences were observed in both left and right

fronto-central areas (figure 3). These areas include the primary

motor cortex, primary somato-sensory cortex, and fronto-parietal

network that are involved in the control and execution of finger

movements [84]. The focus on the left side of midline is

contralateral to the moving hand (i.e., right hands in all subjects),

which is consistent with physiological evidence in hand represen-

tations on the human cortex. The comparisons between different

finger movements also indicate changes on identified movement-

related spectral structure over the similar areas (figure 3). These

Figure 7. Comparison of decoding accuracies using different numbers of EEG channels. Data were from the optimal principal component
set and averaged over all subjects. (a) Layout of three channel sets: 22 channels (circle), 39 channels (cross), and 71 channels (square). A black dot
indicates one electrode on the scalp. (b) Decoding accuracy of four channels sets at ten pairs of finger movements.
doi:10.1371/journal.pone.0085192.g007
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results are consistent with findings from other studies. For

example, in a recent EEG study [5], the inferior parietal lobe

and the contralateral primary sensorimotor region are found in

encoding hand movement kinematics. Thus, multiple channels

(e.g. 22 channels on the left centro-parietal area) over a wide

surface area instead of individual EEG channels as feature

channels are preferable to decode finger movements in EEG.

The investigations using different numbers of channels and

different spatial coverage of channels did not indicate obvious

difference in decoding performance (figure 7) if they cover areas of

difference as discussed above. More channels (e.g., 71 channels)

did not necessarily lead to better decoding accuracy, due to the

fact that more unrelated information was introduced for classifi-

cation with more channels.

It is noted that the present study focused on testing the

availability of movement-related spectral features in EEG caused

by individual finger movements and its potential applications to

increase the degree of freedom in EEG-based noninvasive BCIs,

which was demonstrated by decoding individual fingers from one

hand pairwise. It will be useful if the binary classification problem

in the present study can be expanded to a multi-class classification

problem, which decodes five individual fingers from one hand

simultaneously. While the decoding accuracy is expected to be

lower than pairwise comparisons and it poses more difficulties to

be used in practical BCI systems as discussed above, such a

research will be meaningful to understand movement related brain

signal changes corresponding individual fingers and thus may

facilitate the design and development of hand prostheses that can

be directly controlled by brain signals. For example, the multi-class

classification can help investigating the co-activation of individual

fingers by examining the confusion matrix of classification

accuracies [85]. Furthermore, the same concept can be used to

directly decode functional units (rather than individual fingers) that

are responsible for performing certain complex hand gestures [86],

which are more efficient in controlling hand prostheses to finish a

real-world task. The evaluation of such decoding tasks under the

current framework is worthy of exploring in the future, which can

extend the application of the identified EEG feature in noninvasive

BCIs to the application of hand prostheses.

Conclusion

The present study investigated the discrimination of individual

fingers from one hand using noninvasive EEG. The experimental

results demonstrated that a movement-related spectral structure

could be decoupled from EEG power spectrum density data using

principal component analysis, similar to findings in ECoG [42].

The movement-related spectral changes in EEG revealed by the

proposed method could be utilized to decode individual finger

movements with an average decoding accuracy of 77.11% for all

pairs of fingers from one hand in all subjects, significantly better

than those from individual frequency bands, such as alpha, beta

and gamma bands. These promising results can significantly

increase the control dimension of EEG-based noninvasive BCI

technologies and potentially facilitate their developments with rich

control signals to drive complex applications.
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