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Abstract

Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of
the spinal muscular atrophy (SMA) disease gene, Gemins 2–8 and Unrip. The best-characterised function of this
macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles
and each SMN complex member has a key role during this process. So far, however, only little is known about the function
of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-
function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We
show that ectopic overexpression of the dead helicase Gem3DN mutant or knockdown of Gemin3 result in similar motor
phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3DN overexpression
mimics a loss-of-function. Based on the localisation pattern of Gem3DN, we predict that the nucleus is the primary site of the
antimorphic or dominant-negative mechanism of Gem3DN-mediated interference. Interestingly, phenotypes induced by
human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3DN. Through
enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour,
including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on
adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one
member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor
function in vivo.
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Introduction

Spinal muscular atrophy (SMA) counts among an expanding

ensemble of motor neuron degenerative disorders resulting from

mutations in genes that encode proteins with crucial roles in RNA

metabolism. The correct handling and processing of RNA from its

transcription to eventual translation is emerging as key to the

function and survival of the motor unit, relative to other tissues, for

reasons as yet unclear [1,2,3,4]. A common genetic cause of infant

death, SMA is recessively inherited and is characterised by loss of

lower motor neurons as well as progressive muscle weakness and

wasting [5]. In the majority of cases, this devastating disorder is the

result of low levels of the ubiquitously-expressed survival motor

neuron (SMN) protein [6]. SMN forms oligomers [7,8,9] that

associate with a core group of proteins including Gemin2-Gemin8

[10,11,12,13,14,15,16,17,18] and Unrip [19,20] to form the large

macromolecular SMN complex (reviewed in [21]).

Across metazoa, the SMN complex is particularly concentrated

in several prominent cellular bodies, called gems within the

nucleus [22,23] or U bodies if they dot the perinuclear periphery

in the cytoplasm [24,25]. The exact function of these organelles is

not yet known though they share several characteristics (reviewed

in [21]), including crosstalk with other compartment-specific

organelles [22,26,27] and response to metabolic changes in the

cell [22,28]. The best-characterised function of the SMN complex

revolves around the biogenesis of uridine-rich small nuclear

ribonucleoproteins (snRNPs) which are the central elements of the

spliceosome and, hence, crucial for yielding mature spliced

mRNAs [6,21,29]. All SMN complex members bar Unrip are

indispensable for the uploading of a heptameric ring of Sm

proteins onto small nuclear RNAs (snRNAs) to form the core

structure of Sm-class snRNPs [16,20,30,31,32].

Details about the role of each member of the SMN complex in

the assembly process are scant. Sm proteins are thought to be

recognised by Gemin2, which wraps itself around a pentamer

formed of Sm D1/D2/E/F/G to contact all five Sm proteins.

Importantly, the N-terminal tail of Gemin2 reaches into the

snRNA-binding pocket on the Sm pentamer to occlude RNA

binding, presumably until the delivery of bona fide RNA

substrates, snRNAs [33]. Gemin5 is the factor that identifies

snRNAs through the stringent recognition of a code formed of

sequences as well as structural motifs [34]. Newly exported

snRNAs are captured by SMN complex-independent Gemin5 via

its N-terminal WD-repeat domain [35], which then docks into the

SMN complex, most probably proximate to Gemin2, to deliver its

load for Sm core assembly [36]. Gemin3 is a functional DEAD-

box RNA helicase [37], and might be necessary for chaperoning

RNA and, eventually, RNP complexes during the assembly
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reaction with the intimately-associated Gemin4, possibly acting as

a co-factor for such activities. Regarding SMN and considering its

oligomeric nature within the cellular milieu, it is highly probable

that SMN, aided by other SMN complex components, acts as a

scaffold on which more than one assembly reaction are occurring

simultaneously.

Whether a decreased capacity to assemble snRNPs and,

consequently, defective splicing, accounts for the selective neuro-

muscular phenotype in SMA is still a passionately debatable topic

in the field. An alternative view proposes that SMN has a motor

neuron-specific function that is secondary to its housekeeping

activities, and it is loss of this critical function in the context of

sufficient snRNP assembly that might explain the profound tissue-

specificity observed in SMA patients [6,38]. However, it is still an

open question whether all or select members of the SMN complex

participate in such a non-canonical function if at all present. In

part allured by the presence of a functional minimalistic complex

composed of only SMN, Gemin2, Gemin3 and Gemin5

[21,25,39,40,41], we have exploited Drosophila as a genetic systems

model to investigate the workings of the SMN complex in vivo and,

hence, shed light on these conundrums. Recently, we reported that

Gemin3 null larval mutants exhibit phenotypes that were strikingly

similar to those observed for Smn mutants including a decline in

mobility and defects at the neuromuscular junction [40,42].

Interestingly, overexpression of a truncated Gemin3 mutant

lacking the helicase core (Gem3DN) or Gemin3 knockdown, in

muscle but not neuronal tissue, both have a drastic impact on

adult viability. Remarkably, when pan-muscular overexpression is

milder, Gem3DN confers flight defects and flight muscle atrophy, a

phenotype reminiscent of that observed in a hypomorphic Smn

mutant (SmnE33) reported to have low SMN protein levels in adult

flight muscles [40,43].

In the present study, we first sought to investigate the dominant-

negative or antimorphic mechanism responsible for the overex-

pression phenotype of Gem3DN. We show that loss-of-function

through knockdown of Gemin3 in muscle tissue gives rise to

similar motor phenotypes including climbing defects and loss of

flight. Notably, Gemin3 knockdown and overexpression of

Gem3DN, in combination but not singularly, within either muscle

or neuronal tissue of the same organism is lethal. These findings

indicate that Gem3DN mimics a loss-of-function by presumably

interfering at some level with the activity of the Gemin3 protein or

its complex. Tagging Gem3DN with GFP allowed us to delve into

the sub-cellular location of such interference, which we predict to

be predominantly nuclear and similar in certain aspects to that of

human SMN, which was also previously reported to be

antimorphic [44]. Through an enhanced knockdown screen in

diverse spatial and temporal patterns, we also show that Gemin3 is

essential for viability and flight not only in muscle but also in the

brain. Intriguingly, we uncover a similar requirement for Gemin5,

hence its enhanced knockdown in either brain or muscle tissue

gives rise to viability and flight defects. We finally tackle the

function of Gemin2, which we also find to be important in the

motor unit for motor behaviour including flight. Placed within the

context of previous studies, our results lead us to hypothesise about

the presence of a common nucleocentric pathway or process for

SMN and its Gemin associates that is critical for motor function

in vivo.

Results

Gemin3 Knockdown in Muscle Tissue Results in Adult
Age-progressive Climbing Defects
According to Muller’s 1932 classical classification of mutations,

an antimorph is defined as a mutant allele that antagonises its co-

expressed wild-type gene product, thereby reducing its functional

activity [45,46]. In an era where the molecular basis of Muller’s

antimorphs could be comprehended, Herskowitz [47] coined the

term dominant-negative which has been used synonymously with

antimorph ever since. Helicase-inactivating mutations can exert a

spectrum of dominant-negative phenotypes [48]. DEAD-box

RNA helicase Gemin3 is present in all metazoans and high levels

of amino acid conservation are observed within the N-terminal

helicase motifs [40,49]. We recently reported on the generation of

a truncated version of Gemin3 lacking the helicase domains,

Gem3DN (FIG S1A). Whereas expression of this catalytically

inactive mutant fails to rescue the lethality associated with a

Gemin3 null background, its ubiquitous or pan-muscular-specific

overexpression in wild-type organisms, is lethal ( [40] and data not

shown). A milder pan-muscular overexpression is however

associated with a flightless phenotype [40].

We attempted to investigate the mechanism through which

overexpression of the Gem3DN mutant confers a dominant-

negative or antimorphic phenotype. First, we asked whether loss

of Gemin3 function through RNA interference (RNAi)-mediated

knockdown gives rise to an identical phenotype. To this end,

making use of the versatile GAL4/upstream activation sequence

(UAS) system (reviewed in [50]), we expressed an inducible RNAi

transgene targeting Gemin3 (Gem3-IRmun; FIG S1A) in muscle

tissues using the pan-muscular Mef2-GAL4 driver. The specificity

of this transgene was demonstrated previously [40], and co-

expression of Dicer-2 (Dcr-2) was also performed in order to

enhance knockdown efficiency [51]. Flies were then subjected to a

climbing assay at 5, 15, 25 and 35 days post-eclosion. The first

parameter measured was the time taken for the first fly in the

sampled population to climb a height of 8 cm. At all days

measured, the first fly in the Mef2-GAL4.Dcr-2+Gem3-IRmun fly

population took, on average, significantly longer to reach the

target height compared to controls (FIG. 1A). To better reflect the

climbing ability of all flies in a sampled population, we counted the

number of flies that reached a height of 8 cm by 10 seconds to

determine the second parameter, namely the climbing success rate.

Similar to the data on the time for first fly, flies with reduced levels

of Gemin3 had a significantly lower average success rate at all time

points when compared to controls (FIG. 1A). Furthermore, their

success rate showed an age-dependent progressive decline in

climbing ability; hence, the worst result was obtained on the last

time point measured, namely, day 35 post-eclosion. Notably, these

results are similar to those obtained by flies with a GAL4/UAS-

mediated pan-muscular overexpression of Gem3DN. Indeed,

compared to controls, top performers in the Mef2-GAL4.Gem3DN

population took progressively longer, on average, to reach the

target height in contrast to controls. The average climbing success

rate in this population was also significantly lower than that of

controls, and showed an age-dependent deterioration (FIG. 1B).
Therefore, Gemin3 attenuation in muscle leads to mobility deficits

that are similar to those resulting from ectopic Gem3DN

overexpression in the same tissue.

Gemin3 Knockdown in Muscle Tissue Leads to Age-
dependent Flight Defects
Metazoans invest substantially in muscles that power movement

and this is especially true in insects where flight muscles alone can

A Motor Function for the Gemin Associates of SMN
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make up as much as 65% of the total body mass [52]. Some insects

including Drosophila evolved a remarkable muscle that is capable of

generating high power at high frequency, hence generating

sufficient force to offset gravity [53]. At the same time, there

remains substantial conservation from insects to mammals in the

basic cell and developmental biology of muscles [54,55]. In

addition to a powerful yet lightweight engine supplied by flight

muscles, an animal capable of active flight must also possess wings

that are capable of generating sufficient aerodynamic forces as well

as a control system, in which motor neurons are pivotal, to keep

the organism from plummeting to the ground [53]. Deficiency of a

protein with an indispensible function in either or all three

elements – muscles, wings and sensory-motor circuit – is predicted

to have a negative impact on flight.

In this context, besides climbing ability, we wanted to determine

the flight performance in a sampled population of flies. To this

end, we developed the Droso-Drome, a device that enables

systematic quantification of flight defects based on the sensitive

‘cylinder drop assay’ described previously [56]. Basically, the

height a fly falls determines its flight capability, with fliers able to

hold onto the walls of upper sectors whereas flight defective

organisms fall to the lower sectors. We observe that when

subjected to this assay, as we previously reported [40], the majority

of flies with pan-muscular overexpression of Gem3DN are flightless

on day 5 post-eclosion, the earliest time point measured, and,

hence, 66% of the flies fall straight to sector 1, the lowest sector

(FIG. 1C). At day 5 and 15 post-eclosion, compared to driver-

(Mef2-GAL4.Dcr-2) and transgene-only (Gem3-IRmun/+) controls,

Figure 1. Pan-muscular Gemin3 knockdown or Gem3DN overexpression gives rise to identical motor phenotypes. (A) Compared to
controls (Mef2-GAL4.Dcr-2 and Gem3-IRmun/+), the time taken for the first fly to climb 8 cm increases progressively over the course of 35 days in
sample populations having reduced levels of Gemin3 in muscles (Mef2-GAL4.Dcr-2+Gem3-IRmun). The latter genotype also exhibits an age-
dependent progressive decline in the total percentage of flies that successfully reached the 8 cm mark within 10 seconds when compared to the
same controls. (B) An identical progressive change in climbing behaviour is observed between flies with pan-muscular Gem3DN overexpression (Mef2-
GAL4.Gem3DN) and the uncombined driver (Mef2-GAL4/+) or transgene (Gem3DN/+) controls. The day 25 and day 35 time points were excluded from
the chart due to a lack of difference with the driver control (Mef2-GAL4/+). (C) Flight behaviour was determined using the Droso-Drome, in which the
height a fly falls determines its flight performance. Fliers tend to stick to the upper sectors whereas non-fliers drop to sector 1, the lowest sector. On
day 5 and day 15 post-eclosion, the percentage of flight-impaired organisms in the Gemin3 knockdown population (Mef2-GAL4.Dcr-2+Gem3-IRmun)
is not significantly different to that of controls. This situation changes on the day 25 and day 35 time points whereby a significant difference is
obvious. At day 35, the percentage of flightless flies in the Mef2-GAL4.Dcr-2+Gem3-IRmun population are in the majority such that significant
differences with flies overexpressing Gem3DN (Mef2-GAL4.Gem3DN) do not persist at this time point. Data presented are the mean 6 S.E.M. and
statistical significance was determined for differences between the Mef2-GAL4.Dcr-2+Gem3-IRmun (A, C) or Mef2-GAL4.Gem3DN (B) genotype and
other genotypes, which are indicated by the respective colour. For all data, ns = not significant, *p,0.05, **p,0.01, and ***p,0.001.
doi:10.1371/journal.pone.0083878.g001
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we did not observe large differences in the fly population induced

to have pan-muscular knockdown of Gemin3 (Mef2-GAL4.Dcr-

2+Gem3-IRmun). Furthermore, at these time points, such flies

behave differently from the Mef2-GAL4.Gem3DN fly population

indicating that they fly well. Although the latter difference

remained, we started to notice differences in the percentage of

non-fliers between Gemin3 knockdown flies (31%) and controls

(Mef2-GAL4.Dcr-2, 11% and Gem3-IRmun/+, 7%) on the day 25

time point. However, a dramatic difference was observed on day

35 post-eclosion whereby the distribution of Mef2-GAL4.Dcr-

2+Gem3-IRmun flies was significantly different to that exhibited by

the control populations and similar to that of Mef2-GAL4.Gem3DN

flies. In this regard, at this time point, flight-defective organisms

that tumbled straight to sector 1 are in the majority within the

Mef2-GAL4.Dcr-2+Gem3-IRmun (57%) and Mef2-GAL4.Gem3DN

(80%) populations (FIG. 1C). This indicates that similar to

Gem3DN overexpression, Gemin3 knockdown leads to a flight

defective phenotype, albeit age-dependent.

Gemin3 knockdown And Gem3DN Overexpression, in
Combination, Lead to Lethality
If Gem3DN overexpression mimics a loss-of-function, we

predicted that Gem3DN overexpression in combination with

Gemin3 knockdown within the same organism would lead to a

phenotype that is more severe than that resulting when both

genetic manipulations are applied singularly. To test this

hypothesis, we generated organisms with an Mef2-GAL4-driven

Gemin3 knockdown and Gem3DN overexpression. Remarkably, in

combination within muscle, both genetic manipulations result in

lethality or total loss of adult viability (FIG. 2A). This phenotype
contrasts heavily with that observed by both elements, distinctive-

ly. In this regard, pan-muscular Gem3DN overexpression alone has

no effect on adult viability though flight is impaired (FIG. 2A and

above). Furthermore, RNAi-induced depletion of Gemin3 levels in

muscle, by itself, is not lethal, and only results in an age-dependent

progressive decline in adult survival (day 5, 100%; day 15, 75%;

day 25, 66%; and day 35, 62%) as well as flight ability (FIG. 2A
and above).

Although overexpression of full-length Gemin3 in muscle of

wild-type flies has no effect on adult viability or flight ability,

transgene levels were adequate to rescue the flight defects

associated with RNAi-mediated Gemin3 knockdown or Gem3DN

overexpression. Furthermore, when Gemin3 was added back to a

background having both genetic manipulations, transgenic protein

levels were capable of rescuing lethality but they were not enough

to revert flight performance to normal (FIG. 2A). Finally, we show
that overexpression of SMN in a Gem3DN background does not

rescue the associated flight defects indicating that these do not

arise due to downstream events that result in deficient SMN

function. Taken together, these findings first confirm that Gem3DN

overexpression mimics a strong loss of Gemin3 function. Second, a

drastic reduction in Gemin3 function within muscle results in

lethality whereas low levels are not enough to sustain normal

motor behaviour. Third, Gemin3 has an indispensable motor

function that cannot be adequately fulfilled by a simple expansion

in the functional capacity of SMN.

Gem3DN Localises Primarily to the Nucleus
Epitope tagging or the fusion of a known epitope to a

recombinant protein has revolutionised the characterisation of

proteins and their mutant versions, especially those with low

immunogenicity [57]. Taking advantage of this technique, we

engineered a GFP-tagged Gem3DN fusion protein with the goal of

determining the sub-cellular location where the mutant dead

helicase protein antagonises or interferes with the function of the

endogenous Gemin3 protein. We note that overexpression of the

GFP.Gem3DN fusion protein in muscle induces the same flightless

phenotype observed by its tag-free counterpart, hence, indicating

that the insertion of the epitope tag did not alter the antagonistic

effects of Gem3DN (data not shown). Importantly, on staining for

GFP, we observed that although GFP.Gem3DN is ubiquitously

present throughout muscles, its localisation pattern is predomi-

nantly nuclear (FIG. 2B). In contrast to full-length wild-type

Gemin3, which localises to several intensely-stained foci (gems) in

the nucleus [23], Gem3DN gives a diffuse nuclear staining pattern.

Phenotypes Resulting from Ectopic Human SMN
Overexpression are Similar to those Resulting from
Gem3DN-mediated Interference
Ectopic overexpression of the human SMN (hSMN) protein in

wild-type flies has been reported to antagonise endogenous

Drosophila SMN (dSMN) function. The presumed mechanism

responsible for the resulting dominant-negative phenotype has

been ascribed to the binding of hSMN to endogenous dSMN,

eventually sequestering the latter into non-functional hSMN/

dSMN hetero-oligomers [44]. Ubiquitous expression of hSMN but

not dSMN in an Smn null background (SmnX7/SmnX7) fails to

rescue the lethality associated with this genetic background (data

not shown), most probably the result of its divergence from dSMN.

To shed further light on the mechanism of action of Gem3DN, we

probed into the similarities and differences between the down-

stream events resulting from hSMN or Gem3DN overexpression.

To this end, we noted that similar to that previously reported for

Gem3DN [40], pan-muscular but not pan-neuronal overexpression

of hSMN induces lethality or reduced adult viability (FIG. 3A).
Furthermore, similar to those with Gem3DN overexpression (see

above), flies with hSMN overexpression in muscle exhibited

climbing defects (FIG. 3B). Despite these observations, and in

contrast to Gem3DN, we did not identify any large differences in

the flight behaviour between flies with pan-muscular hSMN

overexpression and their respective controls (FIG S2). However,

overexpression of Gem3DN or hSMN both resulted in an increase

in puparial axial ratios (FIG. 4A), a phenotype described

previously in Gemin3 null mutants [40], and on modulation of

Drosophila SMN protein levels [58,59]. Interestingly, hSMN was

detected in intensely-stained nuclear and, at times, cytoplasmic

puncta within muscle tissue. Inside the nucleus, hSMN concen-

trates in multiple spherical puncta of different sizes, which are

restricted to the nucleolus, which is devoid of Hoechst-labelled

chromatin (FIG. 4B).

Gemin3 is Required for Viability and Normal Motor
Behaviour also in Neurons
Previously we demonstrated that a global reduction of Gemin3

function elicits a lethal phenotype, which can be recapitulated if

Gemin3 is reduced solely in muscle but not neuronal lineages [40].

The conclusion we therefore reached was that in contrast to SMN

which is essential in either tissue [42,60], Gemin3 is required

exclusively within muscle for survival and normal motor function.

However, we did not exclude the possibility that the pan-neuronal

GAL4 drivers used to induced RNAi-mediated Gemin3 knock-

down were less potent and/or their expression started late during

development in contrast to the GAL4 drivers with a pan-muscular

expression pattern. Furthermore, RNAi might be less efficient in

neurons compared to muscle. In this context, we could not rule out

a neuronal function for Gemin3, and to this end, we devised

several strategies aimed at providing a definitive answer.

A Motor Function for the Gemin Associates of SMN
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Figure 2. Gem3DN in combination with Gemin3 knockdown is lethal and its localisation pattern is predominantly nuclear. (A)
Perturbation of endogenous Gemin3 in wild-type muscle and its consequences on adult viability and flight behaviour. Bottom to Top. Overexpression

A Motor Function for the Gemin Associates of SMN
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We first noticed that similar to that observed when restricted to

muscle (above), Gem3DN overexpression in combination with

Gemin3 knockdown exclusively within neuronal tissues (via the

pan-neuronal elav-GAL4 driver at an incubation temperature of

25uC) also induces lethality. This remarkable observation hinted at

a critical role for Gemin3 in the central nervous system (CNS),

which only becomes apparent following a severe reduction in

function. To confirm this finding, we attempted at markedly

attenuating the level of Gemin3 by increasing the dose of hairpin

RNAs and, eventually, short interfering RNAs (siRNAs) targeting

Gemin3. To this end, expression of two RNAi transgenic

constructs (Gem3-IRmun+Gem3-IRdwe) in muscle had a similar or a

worse effect to that reported previously using a single transgenic

construct (FIG. 5A) [40]. Furthermore, we show that the RNAi

phenotype is not due to off-target effects since we observe rescue

on co-expression of a full-length Gemin3 transgene. The possibility

that this result is due to GAL4 dilution effects arising from multiple

UAS-constructs in the background can be excluded since no

rescue was observed when a truncated Gemin3 transgene (Gem3DC)

was utilised. Interestingly, we observed that although expression of

the two RNAi transgenic constructs in the brain via the pan-

neuronal elav-GAL4 or n-syb-GAL4 drivers had negligible effects

on adult viability when development was restricted to a

temperature of 25uC, a significant reduction (close to 50%) in

adult viability was achieved when flies were cultured at a

temperature of 29uC to allow for maximal GAL4 activity

(FIG. 5A). Furthermore, we show that when the efficiency of

knockdown was intensified further by increasing Dicer-2 levels, we

achieved a dramatic reduction in adult viability or total lethality

(FIG. 5A). Interestingly, we could repeat this result when Gemin3

knockdown is restricted exclusively to motor neurons via the OK6-

GAL4 driver (FIG. 5A), a result that indicates a requirement of

Gemin3 for viability specifically in motor neurons. Importantly,

we show that similar to that observed when restricted to muscle

(above), enhanced Gemin3 knockdown explicitly within the CNS

leads to age-dependent progressive flight defects (FIG. 5B) and
loss of adult viability (day 5, 100%; day 15, 100%; day 25, 72%;

and, day 35, 26%) at an incubation temperature of 25uC. This
finding indicates that in addition to muscle, sufficient Gemin3

levels in neurons are paramount for normal motor behaviour.

Adequate Muscle and Neuronal Levels of Gemin5 are
Required for Viability
We recently showed that as a member of the SMN complex, the

Drosophila orthologue of Gemin5 (previously named Rigor mortis

[61]) localises to U bodies within the ovarian cytoplasm [25].

Whilst our findings are indicative of a role for Gemin5 in an SMN

complex-related activity, Kroiss et al. [39] argued otherwise based

on a phylogenetic analysis revealing that Drosophila Gemin5 is

evolving significantly faster compared to its orthologues in other

organisms as well as a study reporting a function of the then Rigor

mortis in ecdysone signalling [61]. In this context, we wished to

further clarify the function of Gemin5 and hypothesised that if it is

functionally associated with the SMN complex, its loss of function

would mimic the key phenotypic outcomes resulting from loss of

Gemin3, which itself is an integral SMN complex member. We

first noticed that overexpression of a GFP-tagged Gemin5 fusion

protein gave a similar sub-cellular localisation pattern to that we

previously reported for Gemin3 [23]. Indeed, Gemin5 forms

multiple nuclear foci of variable size within the nucleus and several

smaller counterparts in the cytoplasm (FIG. 6A). Depending on

their cellular location, these structures are most likely gems or U

bodies if present in the nucleus or cytoplasm, respectively. We next

attempted at addressing the relative requirement of Gemin5 in the

two most important elements of the motor unit and asked whether

Gemin5 is required in both muscle and neuron in a similar

manner to Gemin3.

Enhanced Gemin5 knockdown through the expression of two

RNAi transgenes (Gem5-IRnan+Gem5-IRsac) targeting the first exon

of the Gemin5 mRNA transcript (FIG S1B) confirmed a previous

report demonstrating that a global reduction of Gemin5 function

is lethal [61] (FIG. 6A). We provide evidence for the specificity of

the RNAi-based knockdown by showing that co-expression of a

full-length Gemin5 transgene (Gem5) but not a version lacking the

WD domain-rich N-terminus (Gem5DN) rescues the lethality

associated with loss of Gemin5 function (FIG. 6A; FIG S1B).
The entire WD repeat domain was found to be both necessary and

sufficient for sequence-specific, high-affinity binding of Gemin5 to

snRNAs [35]. Interestingly, the lethality associated with ubiquitous

Gemin5 knockdown can be recapped when knockdown is

restricted to muscle lineages via the pan-muscular how-GAL4 or

C179-GAL4 drivers. Furthermore, a dramatic reduction in adult

viability was observed at culture temperatures associated with

maximal GAL4 activity (29uC) when RNAi is driven by the pan-

muscular Mef2-GAL4 and boosted by elevated Dicer-2 levels

(FIG. 6B). Reduction of Gemin5 only in larval somatic muscles

via the G7-GAL4 also resulted in a significant decrease in adult

viability at an incubation temperature of 29uC. Intriguingly, we
show that a pan-neuronal Gemin5 reduction via the elav-GAL4

driver together with an increase in Dicer-2 levels translates in

lethality when flies are cultured at 29uC, and, remarkably, this

phenotype can be repeated when knockdown is restricted to only

motor neurons via the OK6-GAL4 driver. In summary, these

studies underscore that similar to Gemin3, SMN complex member

Gemin5 forms nuclear as well as cytoplasmic foci and is required

in adequate levels within muscle and neurons for viability.

Loss of Gemin5 Function in Either Muscle or Neurons
Impairs Normal Motor Behaviour
Our findings indicating a requirement of Gemin5 for viability in

the major constituents of the motor unit posed the question of

whether loss of Gemin5 function in either muscle or neurons leads

of full-length Gemin3 has no repercussions. Reduced levels of Gemin3 induced through the expression of Gem3-IRmun is however associated with a
progressive age-dependent decline in flight and adult viability, which can be rescued by overexpression of full-length Gemin3. Overexpression of
Gem3DN has no effect on adult viability but has a drastic impact on flight straight after eclosion, which again can be rescued by overexpression of full-
length Gemin3. Gemin3 knockdown in combination with Gem3DN overexpression results in lethality. Overexpression of full-length Gemin3 in this
background rescues the associated lethality but not the flight defects. SMN overexpression in a Gem3DN background has no influence on the
anomalous flight behaviour (assessment at day 5 post-eclosion) associated with this genotype. Co-expression of an unrelated transgene (generic)
with Gem3DN still results in a flightless phenotype thereby excluding the possibility of a GAL4 dilution effect resulting from multiple UAS-constructs in
the same organism. Pan-muscular expression was driven by Mef2-GAL4 and experiments were performed at 25uC. Protein levels of transgenic Gemin3
are indicated by bar strength. (B) Subcellular localisation of GFP.Gem3DN in Drosophila larval muscles (delineated by a dashed white outline). In flies
overexpressing GFP.Gem3DN, the GFP signal is ubiquitous but predominantly nuclear as it co-localises with Hoechst-stained nuclei. This subcellular
expression pattern was not visible in the driver control (da-GAL4/+), hence, excluding the possibility that the result is due to the non-specific reactivity
of the primary and/or secondary antibodies used to detect GFP.
doi:10.1371/journal.pone.0083878.g002
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to defects in motor behaviour in a similar manner to Gemin3. In

this regard, we first assessed the climbing ability of flies with an

enhanced Gemin5 knockdown in the CNS, which are viable if

their development is restricted to a permissive temperature (25uC).

When we sampled flies with this genotype (elav-GAL4.Dcr-

2+Gem5-IRnan+Gem5-IRsac), we noticed that the first fly that was

capable of reaching the target height took, on average, signifi-

cantly longer to do so compared to controls as early as day 5 post-

Figure 3. Ectopic overexpression of hSMN in wild-type organisms affects viability and motor behaviour when restricted to muscle.
(A) Ubiquitous overexpression of hSMN in wild-type flies via a-Tub-GAL4 or da-GAL4 is lethal. Restricting hSMN overexpression to mesoderm and
larval muscles (via how-GAL4, C179-GAL4 or Mef2-GAL4) or larval muscles alone (via G7-GAL4, C57-GAL4 and G14-GAL4), leads to lethality or a drastic
reduction in viability. Fly viability remains unaffected when hSMN is overexpressed in all CNS neurons (via elav-GAL4, 1407-GAL4, nrv2-GAL4 or n-syb-
GAL4) or when it is restricted only to motor neurons (via D42-GAL4 or OK6-GAL4) or eye (GMR-GAL4). Bar chart (right panel) show adult fly viability
assayed at 25uC and 29uC, the latter resulting in enhanced GAL4 activity. Individual bars represent the mean viability 6 S.E.M. of at least 4
independent experiments. Left panel shows the tissue expression pattern of all GAL4 drivers utilised. Abbreviations: pan-ms, pan-muscular; mes,
mesoderm; ms, larval muscles; mn, motor neurons; n, all CNS neurons except motor neurons. (B) The climbing behaviour of flies with pan-muscular
hSMN overexpression (Mef2-GAL4.hSMN) is significantly altered by day 15 post-eclosion compared to the control sample populations (Mef2-GAL4/+
or hSMN/+). Data presented are the mean6 S.E.M. and statistical significance (*p,0.05, and ***p,0.001) was determined for differences between the
Mef2-GAL4.hSMN genotype and control genotypes, which are denoted by the respective colour.
doi:10.1371/journal.pone.0083878.g003

Figure 4. Overexpression of hSMN in wild-type organisms interferes with the normal puparial axial ratio in a similar manner to
Gem3DN, and induces the formation of spherical aggregates. (A) Top, Puparia of flies with ubiquitous overexpression of hSMN (da-
GAL4.hSMN), pan-muscular overexpression of hSMN (how-GAL4.hSMN) or Gem3DN (how-GAL4.Gem3DN), and their respective GAL4 driver controls
(da-GAL4/+ or how-GAL4/+). Bottom, Chart displaying the axial ratios for puparia of the indicated genotype. Ubiquitous or pan-muscular
overexpression of hSMN results in significantly larger puparial axial ratios. Although ubiquitous overexpression of Gem3DN results in lethality prior to
puparium formation, its pan-muscular overexpression results in puparia with a significantly large axial ratio. The mean is marked by a horizontal line
running through the data points and error bars are 6 S.E.M. (***p,0.001). (B) Larval muscles (delineated by dashed white outline) showing the
formation of hSMN-positive spherical aggregates of variable size in the cytoplasm and nucleus of flies with a ubiquitous ectopic overexpression of
hSMN. Within the nucleus, these foci localise to the nucleolus, which is the region with low Hoechst reactivity (insert, scale bar = 5 mm). Aggregates
were not visible in control (da-GAL4/+) tissues subjected to the same immunostaining reaction, thereby excluding the possibility of non-specific
reactivity.
doi:10.1371/journal.pone.0083878.g004

A Motor Function for the Gemin Associates of SMN

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e83878



Figure 5. Enhanced Gemin3 knockdown in neuronal lineages leads to loss of adult viability and flight defects. (A) Enhanced Gemin3
knockdown involved the simultaneous application of two RNAi transgenes (Gem3-IRmun+Gem3-IRdwe) targeting Gemin3. Culture at a temperature of
29uC to allow for maximal GAL4 activity and/or Dicer-2 overexpression resulted in a further increase in RNAi potency. Gemin3 knockdown in all tissues
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eclosion. In the same vein, at this time point, brain-specific

Gemin5 knockdown depressed markedly the climbing success rate

or the average number of flies that successfully climbed beyond a

target height of 8 cm by 10 seconds (FIG. 7A). Furthermore, we

did not fail to observe that a small percentage of flies (36%) in this

population had curved instead of normal straight wing blades and,

less frequently (9%), the wings were crumpled and unopened

(FIG. 7B).

The above results spurred us to investigate whether a drastic

reduction of Gemin5 within the CNS has an adverse effect on

flight performance. To this end, we subjected these flies to several

Droso-Drome trials and compared the resulting mean to that of

controls. Remarkably, the majority of flies with a pan-neuronal

Gemin5 knockdown (elav-GAL4.Dcr-2+Gem5-IRnan+Gem5-IRsac,

73%) were flightless by day 5 post-eclosion, a result that is

significantly different from that obtained by wild-type (y w, 10%),

RNAi transgenes-only (Gem5-IRnan/+; Gem5-IRsac/+, 21%) or

driver-only (elav-GAL4.Dcr-2, 26%) controls. However, the

resulting phenotype did not differ from that of flies with a curly

wing phenotype (In[2LR]Gla/CyO, 57%), which are known to have

an impaired flight ability (FIG. 7C). We next asked whether

restricting Gemin5 knockdown to muscle has a similar effect on

motor behaviour. Although, a Dicer-boosted reduction in Gemin5

levels via the pan-muscular Mef2-GAL4 driver had no negative

impact on climbing behaviour (data not shown), we demonstrate a

striking progressive decline in flight ability throughout adulthood

(FIG. 7D). Indeed, it is only on the final recorded time point (day

35 post-eclosion) that we get a majority of non-fliers (Mef2-

GAL4.Dcr-2+Gem5-IRnan+Gem5-IRsac, 77%) in contrast to wild-

type (y w, 30%), transgenic responder-only (Gem5-IRnan/+; Gem5-
IRsac/+, 21%), or driver-only (Mef2-GAL4.Dcr-2, 28%) controls,

and similar to the curly-positive flies (In[2LR]Gla/CyO, 74%).

Overall, these findings indicate that loss of Gemin5 function in

either muscle or neurons impairs normal motor behaviour, albeit

with a different impact.

Gemin2 is Required in Muscle for Viability and Normal
Motor Behaviour
Gemin2 is the only SMN complex component with the most

phylogenetically conserved sequence and domain structure [21,33]

(FIG S4). Its pivotal role in snRNP assembly has only recently

been revealed through an elegant structural study [33]. It is

however unclear whether this key SMN complex member is

required for normal motor function. In this regard, double

heterozygous Gemin2 and SMN knockout mice develop an

enhanced motor neurodegenerative phenotype, which correlated

with disturbed snRNP assembly [62]. However, in zebrafish

embryos, knockdown of Gemin2 was reported to have conflicting

effects on motor axon outgrowth [63,64], which is typically

defective on depletion of SMN [65]. We sought to clarify this issue

in Drosophila by targeting Gemin2 levels via the expression of an

RNAi transgene (Gem2-IRgau) directed at exon 1 and part of exon 2

(FIG S1C). We note that similar to previous studies in other

organisms [62,64,65,66], global depletion of Gemin2 driven by the

ubiquitous da-GAL4 driver results in lethality at culture temper-

atures that induce the highest GAL4 activity (FIG. 8A). Impor-

tantly, this phenotype is reversed on co-expression of a full-length

Gemin2 transgene thereby demonstrating RNAi specificity.

Furthermore, the lack of rescue by an unrelated truncated

transgene (Gem3DC) eliminates the possibility that rescue is the

result of GAL4 dilution effects induced by multiple UAS-

constructs in the background. Although Gemin2 knockdown was

not maximal considering that we were limited by the use of a

single RNAi transgene, we observed that on restricting its effect in

various tissues, we could achieve a drastic reduction in adult

viability through the use of the pan-muscular C179-GAL4 or how-

GAL4 drivers (FIG. 8A).

Following up these observations, we asked whether Gemin2

knockdown in the motor unit has a negative impact on motor

behaviour similar to that observed on depletion of either Gemin3

or Gemin5 (above). Interestingly, we show that when confined to

muscle, Gemin2 reduction enhanced by high Dicer-2 levels

interferes with mobility. In this respect, the time taken for the

initial fly within the sampled population to cross a target height of

8 cm was significantly longer than that taken by controls at day 5

and day 15 post-eclosion. Furthermore, the climbing success rate is

depressed as early as day 5 post-eclosion and remains at the same

level throughout the course of adulthood (FIG. 8B). Notably, we

demonstrate a progressive age-dependent decline in flight perfor-

mance within the population of flies having a pan-muscular

Gemin2 knockdown (Mef2-GAL4.Dcr-2+Gem2-IRgau) (FIG. 8C).
In this regard, by day 15, half of the flies with this genotype were

on average non-fliers (50%), a portion that was significantly

different from that of the RNAi transgene-only (Gem2-IRgau/+, 6%)

or driver-only (Mef2-GAL4.Dcr-2, 18%) controls. On the follow-

ing two recorded time points, the fly population with a muscle-

specific Gemin2 depletion, registered a further increase in the

percentage of flies that are flightless. Indeed, the majority of flies

(Mef2-GAL4.Dcr-2+Gem2-IRgau: day 25, 69%; day 35, 88%) drop

straight to the lowest sector of the Droso-Drome in contrast to

controls consisting of only the responder RNAi transgene (Gem2-

IRgau/+: day 25, 14%; day 35, 15%) or driver (Mef2-GAL4.Dcr-2:

day 25, 11%; day 35, 28%) and similar to the phenotypic outcome

of flies homozygous for the hypomorphic SmnE33 allele (FIG. 8C).

via the da-GAL4, a-Tub-GAL4 or 1032-GAL4 drivers results in lethality, which can be rescued on co-expression of a full-length (Gem3) but not a C-
terminal truncated (Gem3DC) Gemin3 transgene, hence demonstrating RNAi specificity. When Gemin3 knockdown is restricted either to all muscle
lineages (how-GAL4, C179-GAL4 or Mef2-GAL4) or only to the somatic musculature (G7-GAL4), loss of adult viability or complete lethality was
observed, a phenotype that is similar or worse to that previously reported with a dose of one RNAi transgene [40]. Remarkably, we note that on pan-
neuronal Gemin3 knockdown (via n-syb-GAL4 or elav-GAL4), we could also achieve a significant decrease in adult viability when culture temperature
was raised to 29uC and, eventually, complete lethality on concomitant overexpression of Dicer-2. Knockdown exclusively in motor neurons was
sufficient to markedly impact adult viability or cause lethality at an incubation temperature of 25uC and 29uC, respectively, with or without enhanced
Dicer-2 levels. Compared to controls, enhanced knockdown of Gemin3 in the eyes via the GMR-GAL4 driver does not lead to a rough eye phenotype
(data not shown). Note that, as expected, not all drivers with a similar tissue expression pattern (left panel) give an analogous result with one reason
being that they might not drive strong GAL4 levels comparable to their effective counterparts. Bar chart (right panel) shows adult fly viability assayed
at 25uC and 29uC. Individual bars represent the mean viability 6 S.E.M. of at least 4 independent experiments. Abbreviations: pan-ms, pan-muscular;
mes, mesoderm; ms, larval muscles;mn, motor neurons; n, all CNS neurons except motor neurons. (B) Flight behaviour of the population with a brain-
restricted enhanced Gemin3 knockdown (elav-GAL4.Dcr-2+Gem3-IRdwe+Gem3-IRmun) is significantly different from that of controls starting at day 15
post-eclosion. In this regard, the number of non-fliers that drop straight to the lowest sector (sector 1) exhibits a progressive age-dependent increase
that is not obvious in driver-only (elav-GAL4.Dcr-2) or responder-only (Gem3-IRdwe/+ or Gem3-IRmun/+) control populations. Data presented are the
mean 6 S.E.M. and statistical significance was determined for differences between the elav-GAL4.Dcr-2+Gem3-IRdwe+Gem3-IRmun genotype and the
control genotypes, which are indicated by the respective colour. For all data, ns = not significant, *p,0.05, **p,0.01, and ***p,0.001.
doi:10.1371/journal.pone.0083878.g005
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Flies with a muscle-confined Gemin2 knockdown also experience a

progressive decline in viability with age (day 5, 100%; day 15,

100%; day 25, 62%; and day 35, 47%). However, we did not

detect significant motor defects when knockdown was restricted to

the CNS (data not shown) but this outcome most likely reflects the

fact that knockdown was not severe enough. In summary, these

findings emphasise that similar to its counterparts within the SMN

complex, Gemin2 is required in the motor unit for viability and

normal motor function.

Discussion

Our study sheds light on the antimorphic mechanism of the

Gem3DN overexpression phenotype, and importantly unravels a

requirement of all the Gemin associates of SMN in viability and

motor function in vivo.

Mechanism of the Gem3DN Overexpression Phenotype
We demonstrate that the loss-of-function phenotype of Gemin3

is similar to that resulting from Gem3DN overexpression. In this

regard, either Gemin3 knockdown or Gem3DN overexpression in

muscle disrupt normal motor performance. Because overexpres-

sion mimics a loss of function, Gem3DN presumably interferes at

some level with the function of Gemin3, its complex or its RNA

substrate, acting as a dominant-negative mutant or a Muller’s

antimorph. It is fair to say that in the case of flight ability,

phenotypes are not completely identical since those resulting from

Gemin3 knockdown only develop late in adulthood. This

observation highlights the fact that in contrast to RNAi-based

methods, the use of inhibitory mutants that act at the protein level

generate more severe phenotypes in view of them being more

direct.

Several models can explain how overexpression of a catalytically

inactive helicase protein antagonises the endogenous wild-type

protein to exert a dominant-negative or antimorphic phenotype

[46,48]. Overexpression of a mutant RNA helicase protein that

has defective ATPase or RNA unwinding activity but retains its

ability to stably bind RNA may form a static protein-RNA

complex that prevents RNA substrates from taking part in

downstream reactions. This model is highly unlikely in our case

considering that the Gem3DN protein lacks its entire helicase core

and, thereby, it most probably is unable to bind RNA, let alone

engage in ATPase-dependent RNA chaperoning activities. Alter-

natively, a mutant dead helicase protein might have retained its

ability to interact with its wild-type counterpart and the mutant/

wild-type helicase dimer or multimer could be defective in its

catalytic activity. Again, this model is highly improbable consid-

ering that to our knowledge the biochemical evidence to date

supports an ability of SMN, Gemin2 and Gemin8 but not Gemin3

to self-associate [8,9,11,31,67]. This model is however the most

probable in explaining the antimorphic mechanism of the hSMN

overexpression phenotype ( [44] and present study). The resulting

high hSMN levels are thought to titre dSMN into oligomers that

might be unable to support the addition of the Gemin members of

the SMN complex and, thereby, incapable of forming functional

SMN complexes. Our demonstration of hSMN aggregates

corroborates this mechanism though further work is needed to

explore their toxic effect on cellular processes especially those

confined to the nucleolus. In line with a previous study [60],

muscle is more susceptible to attenuation of SMN activity, which

in our case was induced by ectopic hSMN overexpression.

In another model, Gem3DN may still be capable of binding to its

partner and in high concentrations it competes that partner from

the wild-type endogenous protein. This model is the most likely

scenario in our case whereby the Gem3DN protein, having retained

its SMN-binding domain, hijacks SMN and its associates from the

endogenous wild-type Gemin3, hence, forming a ‘poisonous’ or

non-functional SMN complex (FIG. 9A,B). In this regard,

although the SMN complex could still bind to target RNAs, it

most probably is incapable of processing them due to loss of

Gemin3 ATPase activity. This competition-based mechanism is

supported by our observation that the Gem3DN dominant-negative

phenotype can be reversed by co-overexpression of the target

protein, Gemin3, or aggravated in a background with reduced

levels of Gemin3. Furthermore, the localisation pattern of the

fluorescently-tagged version of Gem3DN encourages us to

hypothesise that its antagonistic action is primarily nuclear. It is

possible that Gem3DN causes mislocalisation of its associated

complex from the cytoplasm to the nucleus, thereby displacing it

away from its site of action. Nevertheless, it is still plausible that the

smaller amount of Gem3DN found in the cytoplasm could be

sufficient to inhibit a cytoplasmic function. Interestingly, Almstead

and Sarnow [68] reported that poliovirus-encoded proteinase

2Apro specifically cleaves human Gemin3 between Tyr462 and

Gly463 to generate a cleavage product that lacks its helicase core

and, hence, is more or less identical to Gem3DN. Notably,

poliovirus is the causative agent of poliomyelitis, which is

characterised by destruction of motor neurons, a phenotype

surprisingly similar to that observed in SMA. Future studies that

focus on the interaction profile of Gem3DN via biochemical

approaches will help us in further understanding the molecular

mode of action of this dead helicase mutant.

Composition of the Drosophila SMN Complex
Throughout evolution, the SMN complex has experienced an

increase in membership through the addition of a set of Gemin

Figure 6. Gemin5 concentrates in predominantly nuclear foci and adequate levels in muscle as well as neurons are required for
viability. (A) Larval muscles (delineated by dashed white outline) of flies ubiquitously expressing a GFP-tagged Gemin5 functional fusion protein.
Gemin5 concentrates in puncta of variable size that are predominantly nuclear (insert, scale bar = 5 mm). For reasons as yet unclear, GFP is also
detected within the tracheal system that supplies the muscles with oxygen. (B) A severe Gemin5 knockdown through the concomitant expression of
two RNAi transgenes (Gem5-IRnan+Gem5-IRsac) targeting Gemin5 mRNA transcripts causes lethality when their expression is driven ubiquitously via
the 1032-GAL4, da-GAL4 or Act5c-GAL4 drivers. RNAi is specific since the co-expression of a full-length Gemin5 transgene (Gem5) but not a truncated
version lacking its N-terminus (Gem5DN) restores viability. Ubiquitous-associated lethality can be replicated if Gemin5 depletion is restricted to muscle
lineages via the C179-GAL4 or how-GAL4 driver. A drastic reduction in viability can be observed when RNAi is driven via the pan-muscular Mef2-GAL4
driver at a temperature of 29uC and in the presence of enhanced Dicer-2 levels, both strategies employed to heighten the knockdown effect.
Reduced levels of Gemin5 within the somatic musculature via the G7-GAL4 driver also had a marked negative impact on adult viability. A lethal
outcome could also be obtained when RNAi is constrained to all CNS neurons (elav-GAL4) or exclusively to motor neurons (OK6-GAL4) at a
temperature of 29uC and on upregulation of Dicer-2. Compared to controls, enhanced knockdown of Gemin5 in the eyes via the GMR-GAL4 driver
does not lead to a rough eye phenotype (data not shown). Note that, as expected, not all drivers with a similar tissue expression pattern (left panel)
give an analogous result with one reason being that they might not drive strong GAL4 levels comparable to their effective counterparts. Bar chart
(right panel) shows adult fly viability assayed at 25uC and 29uC. Individual bars represent the mean viability 6 S.E.M. of at least 4 independent
experiments. Abbreviations: pan-ms, pan-muscular; mes, mesoderm;ms, larval muscles;mn, motor neurons; n, all CNS neurons except motor neurons.
doi:10.1371/journal.pone.0083878.g006

A Motor Function for the Gemin Associates of SMN

PLOS ONE | www.plosone.org 12 December 2013 | Volume 8 | Issue 12 | e83878



proteins onto an ancestral core complex formed of SMN and

Gemin2 [21]. Focusing on Drosophila, Kroiss et al. [39] used a

biochemical approach to successfully isolate an assembly-active

SMN complex that surprisingly consisted of SMN and Gemin2 as

the only stoichiometric components despite bioinformatic data

that predicted the presence of Gemin3 and Gemin5 orthologues in

this model organism. Later, we and others presented biochemical

evidence showing interaction between Gemin3 and SMN

[40,49,69]. In addition, the function of Gemin3 in snRNP

assembly is conserved in Drosophila since, similar to that observed

for SMN, depletion of Gemin3 significantly reduced Sm core

assembly in an in vitro assay [49]. Such findings indicate that the

Drosophila SMN complex is more intricate than that present in S.

pombe and plants [21]. Taking into account in vivo work making use

of genetic and cell biology approaches, we provide further support

in this direction. The present study in combination with previous

work on Gemin3 and SMN [40,42,43,49,60], unequivocally shows

that remarkably similar phenotypes arise from loss of function of

Figure 7. Loss of Gemin5 function in either neurons or muscle impedes normal motor behaviour. (A) Flies with a pan-neuronal Gemin5
knockdown (elav-GAL4.Dcr-2+Gem5-IRnan+Gem5-IRsac) have a significantly impaired climbing ability compared to wild-type (y w), RNAi transgenes-
only (Gem5-IRnan/+; Gem5-IRsac/+) or driver-only (elav-GAL4.Dcr-2) controls, starting as early as day 5 post-eclosion. In this respect, the top performer
in the population that had depleted levels of Gemin5 took significantly longer to climb beyond the 8 cm mark and on a population-level, the number
of flies that successful reached a target height within the required timeframe was, on average, significantly lower compared to controls. (B)
Compared to wild-type controls, close to half of the flies, with a CNS-restricted Gemin5 knockdown, had abnormal wing blades with defects ranging
from a curved to a crumpled and unopened wing phenotype (arrow). (C) Flies with a brain-specific Gemin5 (elav-GAL4.Dcr-2+Gem5-IRnan+Gem5-
IRsac) knockdown had on average a different distribution within the Droso-Drome compared to controls starting at day 5 post-eclosion. In this regard,
the majority of flies drop straight to sector 1 indicating that they are flightless, a phenotypic outcome that differs significantly from that of controls
but is similar to that of flies with curly wings (In[2LR]Gla/CyO), which are known to be weak fliers. (D) Pan-muscular Gemin5 knockdown leads to an
age-dependent progressive decline in flight ability with the worse phenotype observed on day 35 post-eclosion. On this time-point, the majority of
flies with muscle-specific depleted levels of Gemin5 are non-fliers and, thereby, fall straight to sector 1 in contrast to controls and similar to curly-
positive flies. Data presented are the mean 6 S.E.M. and statistical significance was determined for differences between the elav-GAL4.Dcr-2+Gem5-
IRnan+Gem5-IRsac (A, C) or the Mef2-GAL4.Dcr-2+Gem5-IRnan+Gem5-IRsac (D) genotype and other genotypes, which are indicated by the respective
colour. For all data, ns = not significant, *p,0.05, **p,0.01, and ***p,0.001.
doi:10.1371/journal.pone.0083878.g007
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SMN and all the Gemin components including the less conserved

Gemin3 and Gemin5 (FIG S3 and FIG. 9A,C–F). This in itself is

highly indicative of a common role for all the Gemins within the

Drosophila SMN complex. Notably, our evidence is supported by a

recent study in which we show that Gemins 2, 3 and 5 co-localise

with SMN and snRNPs in cytoplasmic U bodies within the

Drosophila egg chamber [25]. Furthermore, on overexpression of

Gemin3 in Drosophila, we could induce the formation of SMN-

enriched nuclear gems that interact with Cajal bodies in a similar

manner to that described for their vertebrate counterparts [22,23].

Interestingly, in this study we reported that gems could also be

triggered by upregulation of Gemin5 protein levels. Although we

cannot exclude the possibility of secondary SMN complex-

independent activities, overall, the data captured so far, favours

a Drosophila SMN complex formed of SMN, Gemin2, Gemin3 and

Gemin5, all of which are essential for its correct functioning in vivo.

Hence, we hypothesise that absence of any one member is

sufficient to ‘rob’ the SMN-Gemins complex of its function

(FIG. 9A,C-F). We are presently attempting genetic interaction

studies to better understand the relationship between complex

members in vivo and to strengthen our conviction that disruption of

the SMN-Gemins complex is at the heart of the reported motor

defects.

A common Process that is key for Normal Motor Function
In this study we report that, depending on strength, loss of

function of Gemin2, Gemin3 or Gemin5 in the motor unit impairs

adult viability as well as normal motor behaviour including

climbing ability and flight performance. In particular, flight is a

highly demanding motor activity in flies and in addition to wings

capable of generating enough aerodynamic lift, it depends on a

motor-sensory circuit that allows exquisite control, and a high-

power high-frequency muscle [53]. It is interesting to note that

with the exception of Gemin2, which is required only in muscle, all

Gemins seem to be required in both key compartments of the

motor unit for survival and, importantly, motor function. In this

regard, whether restricted to muscle or neurons, we showed that a

strong loss of function of either Gemin3 or Gemin5 has a

significant impact on adult viability whereas on milder knock-

down, we could detect defects in motor function. A similar tissue-

selective trend has been reported for SMN in various studies

[42,59,60]. We also show that in corroboration with a previous

study [49], forced expression of normal SMN in a Gem3DN

Figure 8. Gemin2 is essential for viability and normal motor function. (A) Gemin2 knockdown through the expression of a single RNAi
transgene (Gem2-IRgau) causes a drastic reduction in adult viability (25uC) or complete lethality (29uC) if driven in all tissues via the da-GAL4 driver.
Expression of transgenic Gemin2 within this genetic background restores viability. No significant rescue is however observed on co-expression of an
unrelated transgene (Gem3DC). A marked reduction in adult viability can also be observed if Gemin2 is depleted specifically within muscle lineages
(C179-GAL4 or how-GAL4). Note that, as expected, not all drivers with a similar tissue expression pattern (left panel) give an analogous result with one
reason being that they might not drive strong GAL4 levels comparable to their effective counterparts. Bar chart (right panel) shows adult fly viability
assayed at 25uC and 29uC, with the latter temperature inducing maximal GAL4 activity. Abbreviations: pan-ms, pan-muscular; mes, mesoderm; ms,
larval muscles; mn, motor neurons; n, all CNS neurons except motor neurons. (B) Pan-muscular Gemin2 knockdown boosted by enhanced Dicer-2
levels leads to impaired climbing behaviour. In this respect, the time taken for the first fly within the sampled population to reach a target height of
8 cm is significantly increased on both day 5 and day 15 post-eclosion. In a similar vein, the climbing success rate or the percentage of flies that reach
beyond 8 cm within 10 seconds, was dramatically decreased at all the recorded time points. (C) Flies with muscle-specific Gemin2 depletion exhibit a
progressive age-dependent decline in flight performance. In this regard, the portion of flightless flies is significantly different from controls on day 15
post-eclosion and increases with age until reaching a maximal level on day 35 of adulthood. On the latter time point, the behaviour is similar to that
of flies with reduced levels of SMN in muscle (SmnE33), which are 100% non-fliers. For all data, individual bars represent the mean 6 S.E.M. and
statistical significance was determined for differences between the Mef2-GAL4.Dcr-2+Gem2-IRgau genotype and control genotypes, which are
indicated by the respective colour (B, C). For all data, ns = not significant, *p,0.05, **p,0.01, and ***p,0.001.
doi:10.1371/journal.pone.0083878.g008
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mutant background does not rescue the associated motor defects,

thereby indicating that SMN does not function downstream of

Gemin3 but most probably in parallel to Gemin3. Congruent with

this, Gemins are not amongst the genetic modifiers of Smn-

dependent phenotypes ([60,70] and data not shown). Although a

requirement of Gemin2 in neurons is as yet not obvious, we

predict that, in a similar way to Gemin 3 and 5, such a role will be

exposed only on significant knockdown. Hence, we are presently

developing strategies aimed at increasing the impact of Gemin2

loss of function in neuronal tissues to test this hypothesis.

Key Gemin members of the SMN-Gemins complex have been

reported to form part of additional multiprotein complexes in

which they function independently of the SMN complex [21,71].

For instance, Gemin3 and Gemin4 form a less abundant complex

that co-sediments with polyribosomes and contains Argonaute2

(AGO2) as well as numerous microRNAs (miRNAs) [72,73,74]. In

a following report, Gemin3 could be detected with AGO2, fragile

X mental retardation protein (FMRP) and p100 in the murine

peripheral axons of the sciatic nerve and all these proteins were

reported to engage in the formation of an RNA-induced silencing

complex (RISC) [75]. These studies implicate Gemin3 in RNA

silencing, whereby aided by co-factors such as Gemin4, it may be

responsible for RNA unwinding or RNP restructuring events

during miRNA maturation and/or downstream events that

include target RNA recognition. Furthermore, the association of

Gemin3 with a multitude of transcription factors is well-

documented [reviewed in 21], hence an additional role in

transcriptional regulation cannot be excluded. An SMN com-

plex-independent inclination was also reported for Gemin5,

whereby it forms part of two distinct complexes, a specific internal

ribosome entry site (IRES)-ribonucleoprotein complex and an

IRES-independent complex containing eIF4E [76,77], hence

establishing a link between Gemin5 and modulation of mRNA

translation. Turning to Gemin2, we note that there is evidence

pointing towards the existence of an SMN-Gemin2 subcomplex

that functions in DNA double-strand break repair through

homologous recombination [78,79]. This body of evidence seems

to suggest alternative functions for some Gemin components, at

least in vertebrates. However, based on our present work and that

of others demonstrating a similar phenotype on loss of function of

all members of the Drosophila SMN-Gemins complex

[26,27,40,42,43,49,58,60,64], it is tempting to speculate that they

engage in a common pathway or process in vivo.

Figure 9. A working model for the evaluation of the motor phenotypes resulting from perturbation of individual members of the
Drosophila SMN-Gemins complex. (A) The interaction map of the Drosophila SMN-Gemins complex is unclear and, here, it is modelled on that
drafted for the human version (reviewed in [21]). In this regard, SMN associates to Gemin2 and Gemin3. Gemin2, in turn, interacts with Gemin5. All
components of the SMN complex are individually required for viability and, importantly, motor behaviour. In particular, they are key for normal flight
performance, which is a highly demanding motor activity that relies on correct function of the motor unit. The process or pathway linking the SMN
complex to motor behaviour is as yet unclear (indicated by ‘?’) though we speculate that it is predominantly nuclear and, hence, might revolve
around snRNP biogenesis and/or recycling. (B) The dead helicase Gem3DN mutant lacks its helicase core but retains the SMN-binding domain. We
hypothesise that it hijacks SMN and its associates from the endogenous wild-type Gemin3, hence, forming a non-functional or inactive SMN complex.
Gem3DN overexpression mimics the flightless phenotype associated with the loss of Gemin3 function though the phenotype is stronger. (C–E)
Reduced Gemin3, Gemin5 or Gemin2 levels through RNAi-mediated knockdown also results in a flightless phenotype. These observations
demonstrate that either of these factors performs a critical role that cannot be compensated by the presence of the remaining components. (D)
Similar to its Gemin associates, SMN is required in adequate levels for normal flight behaviour as reported in the hypomorphic SmnE33 fly mutant [43].
doi:10.1371/journal.pone.0083878.g009
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The most-extensively studied pathway that unifies all members

of the SMN complex is snRNP biogenesis. It is however still

unclear how defects in this pathway are linked to impaired motor

function. Recent studies on SMA animal models uncovered an

negative impact on splicing and expression levels of U12 intron-

containing genes that are essential for motor-sensory circuit

function [80,81] due to preferential reduction in the snRNPs that

constitute the minor spliceosome [82,83]. In this respect, an early

study showed that the motor axon defects observed after silencing

SMN and Gemin2 in zebrafish embryos could be rescued on

injection of purified snRNPs [64] and recent work by Workman

et al. [84] showed that restoring normal snRNP levels has a

significant phenotypic rescuing effect on a severe SMA mouse

model. The link between snRNP assembly and selective neuro-

muscular degeneration is however refuted by studies demonstrat-

ing that the role of SMN in snRNP assembly can be uncoupled

from axonal defects in zebrafish [85] or organismal viability and

locomotor defects in Drosophila [86]. Furthermore, there is

evidence suggesting that splicing defects in SMA mice are likely

a secondary consequence of severe SMN loss [83,87]. Against this

backdrop, the SMN complex has been implicated in two key non-

canonical functions. In neuronal processes, the SMN complex is

present in large stationary and small actively-transported granules

devoid of Sm proteins [88,89,90,91,92]. On the postsynaptic side,

the Drosophila SMN complex has been reported to localise to the

sarcomeric Z-disc [43,93]. In both compartments, the SMN

complex might be involved in mRNA trafficking, a process

required for the function and maintenance of neuromuscular

junctions or myofibrils [21,38]. Based on our evidence showing

that localisation of the Gem3DN mutant is predominantly nuclear

coupled with the induction of nuclear gems following upregulation

of Gemin3 or Gemin5, we find it tempting to speculate that the

SMN-Gemins complex participates in a nucleocentric process or

pathway that is key for normal motor function in vivo. We

hypothesise that snRNP assembly and/or recycling are at the

heart of this pathway, and studies that further our understanding

of its components, its workings, and its manipulation through

genetic and pharmacological means can potentially open up new

avenues for SMA therapeutics.

Materials and Methods

Fly Stocks
Fly stocks were maintained at 25uC on standard molasses/

maizemeal and agar medium in plastic vials. Except where

indicated, the wild-type strains were y w or Oregon R. The

In(2LR)Gla/CyO line was obtained from the Drosophila Genetic

Resource Center (DGRC) at the Kyoto Institute of Technology,

Kyoto, Japan. The SmnE33 hypomorphic allele and SmnX7

microdeletion were generous gifts from Greg Matera (University

of North Carolina, Chapel Hill, North Carolina, USA) and Spyros

Artavanis-Tsakonas (Harvard Medical School, Boston, Massachu-

setts, USA), respectively. The UAS.SMN-YFP and UAS.hSMN lines

were kindly provided by Ji-Long Liu (MRC Functional Genomics

Unit, University of Oxford, Oxford, UK). The UAS.Gem3DN

transgenic construct as well as the RNAi transgenic constructs,

UAS.Gem3-IRdwejra and UAS.Gem3-IRmunxar, were characterised

previously [40]. The RNAi transgenic constructs, UAS.Gem2-

IRgaulos (10419R-1), UAS.Gem5-IRnanni (11171R-2), and UAS.Gem5-

IRsacher (11171R-1), were obtained from the National Institute of

Genetics Fly Stock Center, Japan.

GAL4 lines used in this work to drive expression of UAS-linked

transgenes included 1032-GAL4, da-GAL4, a-Tub-GAL4

(DGRC), elav-GAL4 (gift from Aaron Voigt, University Medical

Center, RWTH Aachen, Germany), elav-GAL4;UAS.Dcr-2 (Bloo-

mington Drosophila Stock Centre [BDSC] at Indiana University,

USA), 1407-GAL4 (BDSC), nrv2-GAL4 (gift from Paul Salvaterra,

City of Hope National Medical Center, Duarte, California, USA),

n-syb-GAL4 (gift from Brian McCabe, Columbia University, NY,

USA), GMR-GAL4 (DGRC), D42-GAL4 (BDSC), OK6-GAL4 (gift

from Cahir O’Kane, University of Cambridge, Cambridge, UK),

C179-GAL4 (BDSC), how-GAL4 (BDSC), Mef2-GAL4 (gift from

Barry Dickson, Research Institute of Molecular Pathology,

Vienna, Austria), UAS.Dcr-2;Mef2-GAL4 (BDSC), G7-GAL4 (gift

from Aaron DiAntonio, Washington University, St. Louis,

Missouri, USA), C57-GAL4 (gift from Vivian Budnik, University

of Massachusetts, Worcester, Massachusetts, USA), and MHC82-

GAL4 (gift from Cahir O’Kane). The spatial and temporal

expression patterns are described in the Results section.

The generation of UAS.Dcr-2;OK6-GAL4, UAS.Gem3-IRd-

we;UAS.Gem3-IRmun, UAS.Gem5-IRnan;UAS.Gem5-IRsac double trans-

genic stocks was carried out according to standard genetic crossing

schemes.

Transgenic Constructs
The generation of the UAS.GFP.Gem3DN transgenic construct

involved PCR-amplification of the C-terminus of Gemin3 and

ligation, at the N-terminus, to the enhanced cyan fluorescent

protein (eCFP) coding portion derived from the pECFP-C1 (BD

Biosciences Clontech, Palo Alto, California, USA) vector. The NotI

and XbaI restriction sites were then used to insert the fusion

construct into the pUAST vector. For the UAS.Gem3DC transgenic

construct, the N-terminus of Gemin3 was PCR-amplified and

ligated into the KpnI and XbaI restriction sites of the pUAST

vector. The UAS.Gem2 transgenic construct involved PCR-

amplification of the full-length coding sequence of Gemin2 followed

by insertion into the pUAST vector utilising the NotI and KpnI

restriction sites. PCR-amplification of the full-length coding

sequence of Gemin5 or its C-terminus, followed by insertion into

the EcoRI and KpnI restriction sites of the pUAST vector, was

carried out to generate the respective UAS.Gem5.GFP and

UAS.Gem5DN transgenic constructs, with the former involving

ligation of an eCFP tag at the C-terminus.

cDNA clones for Gemin2 (LD47479), Gemin3 (LD05563) and

Gemin5 (SD03652) were obtained from the Drosophila Genomics

Resource Centre (Indiana University, USA). In all cases, the

ligation products were used to transform NEB 5-alpha competent

E. coli cells (New England Biolabs, Hitchin, UK) using standard

protocols. Correct transformants were further propagated, their

harbouring plasmids purified and sequenced prior to microinjec-

tion in w1118 embryos.

Puparial Axial Ratios
Puparial axial ratios were calculated by dividing the length by

the width of the puparia, both of which were measured from still

images.

Adult Viability Studies
Adult viability assays were conducted by crossing GAL4 driver

stocks to lines harbouring single or a combination of transgenes.

Culture temperature was either 25uC or 29uC. Following eclosion,
adult flies were screened and counted at regular intervals. Adult

viability was calculated as the percentage of the number of adult

flies with the appropriate genotype divided by the expected

number for the cross.
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Flight Assay
Based on that originally designed by the behavioural genetics

mastermind, Seymour Benzer [56], we developed the Droso-

Drome, a simple device to systematically measure the flying ability

of flies. The Droso-Drome consisted of a 1L glass bottle divided

into 4 sectors, of 5 cm each, spanning a total height of 20 cm.

Before each assay, the internal walls of the Droso-Drome were

coated with an alcohol-based sticky fluid. Flies were introduced

into the top of the device through a funnel and the number of flies

stuck in each sector were counted, divided by the total number of

flies assayed and multiplied by 100 to generate the percentage

number of flies per sector. The flight capability determines the

height or sector flies stick in the Droso-Drome.

Climbing Assay
The climbing apparatus consisted of two empty polystyrene

vials that are vertically joined by tape facing each other. For the

lower vial, a vertical distance of 8 cm above the bottom surface

was measured and marked by drawing a circle around the entire

circumference of the vial. For the climbing assay, a group of 10-15

flies were transferred into the lower vial and allowed to acclimatize

to the new setting for 1 minute. The climbing assay involved gently

tapping the flies down to the bottom of the vial and measuring (1)

the number of flies per group, that can climb above the 8 cm mark

by 10 seconds after the tap, recorded as the percentage success

rate, and (2) the time for the first fly within a group to cross the

8 cm mark. Three trials were performed for each group and a

minimum of three groups were assayed for each genotype.

Experiments were performed during daylight to minimize

potential effects of circadian oscillation.

Immunohistochemistry
Larvae were dissected in 16 PBS, fixed in 4% paraformalde-

hyde in PBS and then washed in 16 PBS +0.1% TritonH X-100

(PBT). The tissues were next subjected to overnight staining at

room temperature by mouse anti-GFP (1:1000; Roche Diagnostics

Ltd.) and mouse anti-hSMN 11F3 (1:20; generous gift from Glenn

Morris, Wolfson Centre for Inherited Neuromuscular Disease,

RJAH Orthopaedic Hospital, Oswestry, UK) [94] antibodies. The

next day, tissues were washed in PBT and stained overnight at

room temperature with anti-mouse Alexa Fluor 546-conjugated

secondary goat antibodies (1:50) and nuclear-staining Hoechst

33342 (1:500). Following a final wash in PBT, the samples were

mounted in 90% glycerol with anti-fade. Epifluorescent pictures

were acquired with an Optika B-600TiFL microscope (206 or

406 objectives).

Statistical methods
Significance was tested by the unpaired t-test.

Supporting Information

Figure S1 Features of the transgenic constructs utilised
in the study. (A) Gemin3 is a 4 Kbp two-exon gene with a set of

nine DEAD-box helicase motifs present on its N-terminus and an

SMN-binding region located in the middle. The Gem3DN construct

is devoid of the N-terminal region, which hosts the helicase core

but it still has the SMN-binding [11,49] region. On the other

hand, the Gem3DC is devoid of the C-terminal region, hence,

consisting only of the helicase core. The inducible RNAi

constructs targeting Gemin3 (Gem3-IRmun and Gem3-IRdwe) both

have a short fragment (highlighted in lavender) derived from

exon1 and exon2 as an inverted repeat (IR), which is attached to

10 copies of UAS sites to enhance RNAi efficiency [51]. (B) Gemin5

is a 6.8 Kbp nine-exon gene with thirteen WD repeat domains

located at its N-terminus. The Gem5DN construct lacks the N-

terminus and, hence, the region harbouring the snRNA-binding

[35] WD-repeat domains. Gemin5 mRNA transcripts were targeted

by two inducible RNAi constructs (Gem5-IRnan and Gem5-IRsac),

each consisting of an inverted repeat of a small fragment present in

exon1 (highlighted in lavender). A Ret oncogene fragment (exon 5

to 7 including intron) is present between the IR fragments, thereby

enhancing RNAi efficiency. (C) Gemin2 is a 1.2 Kbp two-exon

gene, which is highly conserved but lacks computationally

identifiable domains. Both N- and C-terminus contain SMN-

and self (G2)-binding domains [31]. Furthermore, crystal studies

showed that SmF/E and SmD1/D1 make contact with Gemin2’s

N-terminal and C-terminal domains, respectively [33]. Knock-

down of Gemin2 was achieved through the expression of an

inducible RNAi construct (Gem2-IRgau) consisting of the entire

exon1 as well as part of exon2 in an inverted repeat that is also

separated by a Ret oncogene fragment to boost RNAi efficiency.

(TIFF)

Figure S2 Pan-muscular overexpression of hSMN has
no effect on flight behaviour. The distribution of organisms

with a pan-muscular overexpression of hSMN (Mef2-

GAL4.hSMN) was not significantly different from that of control

populations (Mef2-GAL4/+ or hSMN/+) over the course of 35 days

post-eclosion. Note that on the final time point (day 35), the

performance of the test genotype is significantly different from that

of the driver-only control (Mef2-GAL4/+) but not the responder-

only (hSMN/+) control. Data presented are the mean 6 S.E.M.

and statistical significance was determined for the differences, at

sector 1, between the Mef2-GAL4.hSMN genotype and control

genotypes, which are indicated by the respective colour. For all

data, ns = not significant, *p,0.05, **p,0.01, and ***p,0.001.

(TIFF)

Figure S3 Multiple protein sequence alignment of
Gemin5 orthologues. The protein sequence alignment was

generated with the ClustalW at EMBL-EBI [95,96] and displayed

using GeneDoc (http://www.nrbsc.org/gfx/genedoc/). Human,

Homo sapiens (Ensembl Protein ID: ENST00000285873); Mouse,

Mus musculus (ENSMUST00000172035); Zebrafish, Danio rerio

(ENSDART00000137309); Fly, Drosophila melanogaster

(FBtr0086252). Conservation of sequence is represented based

on the Gonnet Protein Weight Matrix, whereby conserved

residues are shown in light grey (weakly conserved) to black

(highly conserved). The N-terminus hosts the WD repeats

(highlighted in red) and a coiled-coil motif (highlighted in blue)

is present in the C-terminus.

(TIFF)

Figure S4 Multiple protein sequence alignment of
Gemin2 orthologues. The protein sequence alignment was

generated with the ClustalW at EMBL-EBI [95,96] and displayed

using GeneDoc (http://www.nrbsc.org/gfx/genedoc/). Human,

Homo sapiens (Ensembl Protein ID: ENST00000308317); Mouse,

Mus musculus (ENSMUST00000021379); Zebrafish, Danio rerio

(ENSDART00000149779); Fly, Drosophila melanogaster

(FBtr0075032). Conservation of sequence is represented based

on the Gonnet Protein Weight Matrix, whereby conserved

residues are shown in light grey (weakly conserved) to black

(highly conserved).

(TIFF)
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