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Abstract

Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their
parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of
experimental data. This poses the question how reliable predictions made using such models are. Sensitivity analysis is
commonly used to measure the impact of each model parameter on its variables. However, the results of such analyses can
be dependent on an exact set of parameter values due to nonlinearity. To mitigate this problem, global sensitivity analysis
techniques are used to calculate parameter sensitivities in a wider parameter space. We applied global sensitivity analysis to
a selection of five signalling and metabolic models, several of which incorporate experimentally well-determined
parameters. Assuming these models represent physiological reality, we explored how the results could change under
increasing amounts of parameter uncertainty. Our results show that parameter sensitivities calculated with the physiological
parameter values are not necessarily the most frequently observed under random sampling, even in a small interval around
the physiological values. Often multimodal distributions were observed. Unsurprisingly, the range of possible sensitivity
coefficient values increased with the level of parameter uncertainty, though the amount of parameter uncertainty at which
the pattern of control was able to change differed among the models analysed. We suggest that this level of uncertainty can
be used as a global measure of model robustness. Finally a comparison of different global sensitivity analysis techniques
shows that, if high-throughput computing resources are available, then random sampling may actually be the most suitable
technique.
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Introduction

By far the most frequently-used method for modelling biological

systems is to describe their reaction networks through ordinary

differential equations (ODEs) [1]. Rate equations are constructed

to describe the time-dependent change of the value of model

variables as a function of each other. Such rate equations can be

used to describe various types of enzyme-catalysed biochemical

reactions, such as metabolic, signalling and gene networks, among

others. These models require the use of specific parameters that

represent physical interactions and processes such as rate

constants, Michaelis constants, and binding affinities.

A general issue in mathematical modelling is the choice of

parameter values, which should reflect the properties of the real

system. Unfortunately it is frequently impossible to determine or

estimate what those values should be, and thus the accuracy of

many parameter values is often questionable. Parameter values are

obtained from a variety of different sources, including in vitro and in

vivo experimental data. In vitro experiments do not necessarily

match the conditions in vivo, while parameter fitting often results in

ambiguous parameter sets, i.e. where groups of parameters have

strong correlations and the individual values are not identifiable

[2]. Sometimes models include parameter values that were

estimated from experiments with different biological systems than

the target one. Values may also be adopted based only on high-

level constraints (like considering a rate constant to be limited by

diffusion, or an equilibrium constant limited by thermodynamic

constraints). All of these constitute sources of uncertainty about

parameter values, and some models may be dominated by such

issues. It is therefore important that models be carefully studied to

expose how much the parameter values actually affect the

modelling results. One should be cautious with strong conclusions

that are based on model properties that depend strongly on

parameters with high uncertainty.

To deal with such uncertainty, the related fields of uncertainty

and sensitivity analysis have developed. Uncertainty analysis is

used to quantify the uncertainty in the output of a model that is

generated by uncertainty in the inputs, while sensitivity analysis is

used to assess the relative importance of the inputs of a model on

the output [3].

A common method for performing sensitivity analysis is to

calculate sensitivity coefficients, which measure the impact of
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parameters on the variables of the model (state properties). These

are mathematically equal to the partial derivatives of the state

properties by each parameter:

S
j
i~

dvi

dpj

ð1Þ

where vi is the variable and pj the parameter. When it is useful to

remove scale from sensitivity coefficients, a scaled version of the

partial derivative is used instead:

S
j
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vi
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A specialised form of sensitivity analysis that is quite widely used is

metabolic control analysis (MCA) [4,5] which assesses how much

systems-level properties, such as a steady-state concentrations or

fluxes, depend on the velocity of individual reactions. MCA expresses

these sensitivities through so-called control coefficients [6], which are

scaled sensitivity coefficients taken on parameters that affect the rate

of reaction linearly (such as a kcat or Vmax, but not a Km). In MCA

terminology [6], generic sensitivity coefficients taken on arbitrary

model parameters are known as response coefficients (control

coefficients are therefore special cases of response coefficients).

Sensitivity analysis can be also used as a way to assess the

robustness of a model. Given the fact that most parameters depend

on some properties of the environment, which is subject to

stochastic variations (e.g. local fluctuations in temperature), a

robust system will be resilient to relatively small perturbations in

parameter values. This will be reflected in low-magnitude

sensitivity coefficients [7,8]. Conversely, a sensitive system will

have high-magnitude sensitivity coefficients, indicating that for

those parameters, relatively small perturbations will have a large

effect on the system (this is the case in some sensory systems, such

as retina cells that are extremely sensitive to light [9]).

Typically sensitivity analysis is applied to a specific operating

point of the model, i.e. around a specific value of each parameter.

This follows the definitions in Eqs. 1 and 2 which are based on the

concept of infinitesimal changes of calculus. Thus each parameter

is perturbed by a small magnitude while holding all other

parameters constant. In this case we refer to local sensitivity

analysis to emphasise the fact that the sensitivity coefficients

depend on the specific set of parameter values used. Because all

but the most trivial of kinetic models are nonlinear, the values of

sensitivity coefficients are different at different operating points of

a model. Therefore there is the possibility that, for a certain model,

some parameters may be deemed unimportant by this type of local

sensitivity analysis which may have a strong effect (large control) in

other regions of parameter space. For example, after changing the

expression of a particular enzyme, the distribution of control (the

spectrum of sensitivity coefficients) may be completely different

from the original one. Given the uncertainty surrounding many

parameter values as discussed above, it is clear that the insights

gained from local sensitivity analysis should be considered with a

great deal of caution. After all, if the real value of some parameter

is considerably different from what was assigned in the model, the

entire set of sensitivity coefficients of the model will have little

resemblance to those of the real system.

Global sensitivity analysis techniques attempt to avoid this

weakness by calculating sensitivity coefficient values in broader

regions of parameter space either surrounding the fixed initial

values defined in the model or simply by selecting appropriate

ranges. Therefore, while a local sensitivity analysis will generate a

single sensitivity coefficient for each perturbed parameter, a global

sensitivity analysis will yield a range of possible values, depending

on the parameter set used. The range of potential sensitivities for a

particular parameter may span several orders of magnitude,

suggesting that an accurate parameter set is vital to determine

whether or not the parameter has high control. If the range of

potential sensitivities for a parameter contains only high-magni-

tude values, we can infer that the parameter has high control

irrespective of the exact physiological parameter set, while only

low-magnitude values would suggest that that the parameter can

only exert low control. Finally, the potential sensitivities for a

parameter can span both positive and negative values, indicating

that the parameter could potentially exert positive or negative

control on the system, depending on the parameter set used.

A common way of performing a global sensitivity analysis is to

carry out a Monte Carlo simulation where derivative-based

sensitivities are sampled at random [10–13]. For each sampled

parameter set, a sensitivity analysis is performed, and the

sensitivity coefficients are recorded. After taking enough random

samples, plots showing the distribution of sensitivity coefficients

within the parameter space can be produced. This method is

relatively simple to implement, and can be performed in software

such as COPASI [14]. The downside is that large numbers of

samples must be taken, particularly for models with large numbers

of parameters, since the parameter space grows exponentially with

the number of parameters. Therefore, sampling enough parameter

sets can require vast amounts of computing power. When

analysing the distributions of sampled sensitivity coefficient values,

it is tempting to assume that the sensitivities of the real

physiological system are located around the centre of the

distribution; indeed, methods based on this assumption have been

previously proposed [15,16].

An alternative method for global sensitivity analysis is to use

optimisations to find the boundaries of the sensitivity values [17].

As with the sampling-based technique, a parameter space must

first be defined. However, rather than sampling the entire

parameter space, a numerical optimisation algorithm is used to

find the upper and lower bounds on the values each sensitivity

coefficient can take. For each sensitivity coefficient to be

calculated, two optimisations must be run — one to maximise

the sensitivity coefficient value, and another to minimise it. This

technique can be much more computationally efficient than

random sampling if one uses efficient global optimisation

algorithms. While it is impossible to determine if the optimisation

algorithm has reached a true global maximum or minimum, in

practice methods such as particle swarm [18] or evolutionary

algorithms are able to approximate those values fairly efficiently.

Because of their efficiency in searching optima, these algorithms

do not characterise the distributions of sensitivity coefficients,

though. This method is not yet widely used, and its performance

compared to traditional sampling-based techniques is untested.

Other popular global sensitivity analysis techniques are the

sampling-based Sobol [19] and Morris [20] methods (reviewed in

[10]), the variance-based extended Fourier amplitude sensitivity

test (eFAST) [21] and partial rank correlation coefficients

(reviewed in [3]). These techniques are able to rank the inputs

of a model based on importance, though do not give a complete

picture of the behaviour of each sensitivity coefficient in the chosen

parameter space. In addition, previous studies have shown that the

results of these methods can be quite different [22–24], though the

reasons for this are not well understood [12].

What Can We Learn from Global Sensitivity Analysis
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For this study, we performed global sensitivity analysis using the

derivative-based sampling and optimisation-based techniques.

These methods were chosen since they provide a rich picture of

the behaviour of the sensitivity coefficients of the system in a given

parameter space (particularly the derivative-based sampling

technique), they provide outputs which can be directly compared

with a local sensitivity analysis, and they are amenable to running

in parallel with little effort, giving the opportunity to vastly reduce

computation times.

Global sensitivity analysis was applied to a selection of five

models. These models were selected on the basis that they

represent well-studied systems and most contain a large number of

experimentally determined parameters. We evaluated how robust

these models were to growing intervals of uncertainty in parameter

values, and what kind of insights can be gained by analysing

distributions of sensitivities. We also analysed how the assumed

real or physiological sensitivities (published with the models) are

situated within the sampled distributions. Finally, for several of the

models, we compared the performance of the random sampling

and optimisation-based global sensitivity analysis approaches.

Results

Models of biochemical networks cover a wide range of

stoichiometric structures and dynamics. The behaviours displayed

by these models can be quite diverse due to many different factors,

and accordingly it is expected that they also display different

properties with respect to parameter sensitivities. Therefore, this

study covers a range of models attempting to expose different

scenarios regarding global parameter sensitivities. Models were

chosen based on their stoichiometric structure (metabolic/signal-

ling) and dynamics (stationary/periodic). An emphasis was also put

on models which have a solid experimental basis, assuming that

their parameter values are close to their physiological value. The

models chosen were of stationary MAPK signalling [25],

oscillatory NFkB signalling [26], oscillatory eukaryotic cell cycle

[27],and metabolic models of the glycolytic pathway in Saccharo-

myces cerevisiae [28] and Trypanosoma brucei [29].

The behaviour of each of the models was explored using

sampling-based global sensitivity analysis. In addition, we carried

out analyses using the optimisation-based approach [17] on the

three signalling models in order to compare the performance of

the two techniques. The results for each model are summarised

below, with the full output of each analysis presented in the

Supporting Information.

MAPK Model
The first model analysed is a model of MAPK signalling

published by Huang et al. [25]. This model includes 22

components of a ‘‘canonical’’ MAPK signalling pathway amount-

ing to 30 parameters. With the published parameter values, the

model runs to a stable steady state. We calculated sensitivities for

each parameter in the model on the steady-state concentration of

doubly-phosphorylated MAPK (MAPK-PP). MAPK-PP is the

final link of the signal transduction cascade, and its concentration

can be considered the output of the model. If the sensitivity of any

parameter on this concentration is large, it could mean that the

signal would be susceptible to environmental noise (through that

parameter); it would also mean that an accurate determination of

the values of this parameter would be very important.

Local sensitivity analysis of the original parameters shows that

no single parameter has a large effect on the variable. The blue

lines in Figure 1 depict these local sensitivity coefficients in the

reference parameter set.

We carried out random sampling (uniform) of parameter values

to assess the sensitivities of the parameters in a more global way.

For each sensitivity coefficient, a histogram was produced showing

the distribution of sampled sensitivity coefficient values. On these

histograms the ‘local’ sensitivity value obtained with the reference

parameter set is shown as a dotted blue line, and zero is shown as a

dashed purple line. In addition, for each distribution, we

calculated the normalised height of the peak (frequency/total

number of samples), the sensitivity value at which the peak is

located, and performed a Shapiro-Wilk Normality test. Results for

selected parameters are displayed in Figure 1, and the full results

are presented in Table S1 in File S1. We summarise the results

below.

Expanding the parameter space by only +5% around the

original parameter set shows — in contrast to the parameter set

studied by Huang et al. [25] — that a number of parameters may

be able to gain a high degree of control over [MAPK-PP]

(Figure 2), with sensitivity coefficients ranging between {182 and

Figure 1. Selected global sensitivity analysis results for the
MAPK model [25]. Shown are the results for parameter 2 (MAPKKK
activation.k1) (A), parameter 5 (binding MAPK—Pase and P-MAPK.k1) (B),
and parameter 7 (binding MAPK—Pase and PP—MAPK.k1) (C) in the
parameter space of the reference values +5%. The distributions show
the results of the sampling-based technique, with the sampling
frequency normalised such that area under the curve is always unity.
The bounds found by the optimisation technique are displayed as
dashed green lines, and the local sensitivity value is shown as a dashed
blue line. The full results for all parameters are shown in Table S1 in File
S1.
doi:10.1371/journal.pone.0079244.g001

What Can We Learn from Global Sensitivity Analysis
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218. In many cases, large-magnitude sensitivity coefficients are

found on one direction only (for example parameter 5 which can

only gain high-magnitude positive control). In some cases,

parameters could gain high-magnitude positive and negative

control (for example parameter 2), while other parameters could

only gain low-magnitude control close to the local sensitivity value

(for example parameter 7). It should be emphasized that a +5%
variation is a tiny variation considering natural fluctuation within

every biological system, and also relative to the typical level of

precision of measurements.

The distributions obtained by random sampling were Gaussian-

like for some parameters (such as parameters 7 and 25), but the

majority were sharp and narrow.

Larger domains of variation for parameter values were also

considered. Parameter values were sampled +10% and +30%
around their reference values. In both cases, the sampling method

was able to find large-magnitude positive and negative sensitivity

coefficients for every parameter (Figure 2), implying all parameters

can, in principle, exert extremely large positive or negative control

over [MAPK-PP]. It should be noted that, even though high-

Figure 2. Summary of model robustness. As a benchmark for model robustness, we calculated the percentage of parameters with a potential
sensitivity coefficient of magnitude DSi Dw0:9. Parameter sensitivities were calculated with respect to (A) the concentration of PP-MAPK, (B) the period
of cell division, (C) the period of oscillation of nuclear-NFkB, and (D, E) the flux through the hexokinase reactions. For (A–E), local and sampling-based
global sensitivity analysis was performed, and for (A–C) optimisation-based global sensitivity analysis was also performed.
doi:10.1371/journal.pone.0079244.g002

What Can We Learn from Global Sensitivity Analysis
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magnitude sensitivity coefficients occur at the edges of the

distribution, the narrow distribution peaks show that, in the vast

majority of cases, the sampled sensitivity coefficient values are

close to that of the reference model.

Another way to study sensitivity analysis in a more global way is

to ask the question of how large and how small can a sensitivity

coefficient be given any possible value for the parameters (inside a

certain domain) [17]. We applied this strategy using the particle

swarm optimisation algorithm (see Methods). The results of the

optimisations, showing the upper and lower bounds on the values

a sensitivity coefficient can take, are displayed in Figure 1 as

dashed green lines, superimposed on the distributions obtained by

sampling.

In the case of +5% and +10% parameter variations, the

optimisations performed poorly, frequently finding only low-

magnitude control for parameters which the sampling technique

was able to find high-magnitude control (Figure 1). This is most

likely due to the optimisations having not converged to the global

optimum. The optimisation method performed better than the

random sampling method in the case of the +30% variation, often

finding sensitivity coefficients several orders of magnitude larger

than the sampling method (for example parameter 2, where

sampling found a minimum control of approximately 6:11|104

versus 3:07|106 found by the optimisation). However, in these

cases, both values are so large as to make little difference.

In summary, the MAPK model of Huang et al. [25] shows that if

the parameter values had only 5% or more uncertainty, the model

behaviour, and therefore any conclusions from it, could be

considerably different. Full results for this model are given in

Table S1 in File S1.

NFkB Model
The second model represents NFkB signalling in mouse

embryonic fibroblast cells, published by Ashall et al. [26]. The

model contains 14 variables and 27 parameters. With the

published parameter values, this model exhibits stable oscillations,

the period and amplitude of which are thought to play a role in

regulating gene expression. Therefore, a relevant sensitivity is that

relating the effect of parameter values on the period of the

oscillations of nuclear NFkB.

Global sensitivity analysis was performed using the sampling

and optimisation techniques under parameter variations of +5%–

+50% of the original values. The full results are available in Table

S2 in File S1, with selected examples shown in Figure 3.

The original parameter set of [26] results in a distribution of

control where no single parameter dominates. These results are

presented in Table S2 in File S1 and Figure 3, where the values of

these ‘local’ sensitivity coefficients are shown as dashed blue lines.

The results of both the sampling-based and optimisation-based

analyses show that as the parameter space was widened to a

domain that covers +5% around the original parameter values,

the difference in maximum and minimum control for most

parameters remained small. Some parameters became able to

exert both positive or negative control — this means that

depending on the values of the other parameters, these particular

ones could either have a positive or negative effect on the period of

the oscillations. This phenomenon was verified both using the

sampling and optimisation approaches. The distributions obtained

by sampling appear to be Gaussian or skewed-Gaussian for many

parameters; a high Shapiro-Wilk score confirms this. As can be

seen in the examples displayed in Figure 3A, the peaks of the

distributions do not necessarily correspond with the local

sensitivity values. This means that the physiological state does

not correspond to the most commonly found value that could be

determined by a global sensitivity analysis (assuming the model

[26] does reflect the physiological conditions).

Further exploration of this model’s behaviour, by expanding the

parameter space to a domain +10% around the original

parameter values, shows more parameters able to exert both

positive and negative control, yet the degree of control exerted by

each one remains relatively small. The distributions obtained by

random sampling still appear to be Gaussian, though the peaks of

the distributions now correspond to the local sensitivity coefficient

values for most parameters.

Allowing parameter variation to be +20% around the reference

state, we observe that the oscillation period can now be extremely

sensitive to a number of parameters (with sensitivities w1000),

with half of all parameters able to obtain a sensitivity coefficient of

magnitude w0:9 (see Figure 2). More than half of all parameters

are now also able to exert both positive and negative control. The

distributions of sensitivity values, as shown in Figure 3, remain

mostly Gaussian-like (confirmed by high Shapiro-Wilk statistics),

though sometimes appear sharp and narrow due to a large

difference between the maximum and minimum values as found

by the optimisation technique (for example, parameter 20).

Parameter variations of the reference state +30% or more

result in a situation where oscillatory behaviour is no longer

guaranteed, and therefore the sensitivity coefficient is no longer

Figure 3. Selected global sensitivity analysis results for the
NFkB model [26]. Shown are the results for parameter 2 (R11 IkBa Nuc
Cyto.k1) in the parameter spaces +5% (A), +10% (B) and +20% (C) of
the reference values. For a description of the distributions refer to the
description in Figure 1. Full results for all parameters are shown in Table
S2 in File S1.
doi:10.1371/journal.pone.0079244.g003

What Can We Learn from Global Sensitivity Analysis
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defined. Full results for the NFkB model are given in Table S2 in

File S1.

In all of the above cases, the two methods for global sensitivity

produced similar results for parameter variations of +5% and

+10%, though with parameter variations of +20%, the

optimisation method often found much higher-magnitude sensi-

tivity coefficients than the sampling method.

In summary, this model was more robust with regard to the

selected parameter sensitivities than the MAPK model described

above. However, moderate variations of the parameter values can

still drastically change the influence of individual parameters on

the model output.

Cell Cycle Model
The model of yeast cell cycle by Chen et al. [27] represents the

mechanisms of regulation of cell division. Similarly to the previous

model this one also oscillates, though in this case this happens

through switching in a hysteretic cycle, rather than a stable

oscillation (limit cycle). Nevertheless, the period of the resulting

oscillation (cell cycle) is one of the most important variables of this

system. Thus we studied the sensitivity of the 142 parameters of

the model towards the period of the entire cell cycle (i.e. time

between cell divisions). Global sensitivity analyses using the

sampling and optimisation methods were performed under

parameter variations of +5% and +10%. The full results are

available in Table S3 in File S1, with selected examples shown in

Figure 4.

Local sensitivity analysis of the parameter set published by Chen

et al. [27] showed the control to be relatively well distributed

among most parameters (with the exception of a few parameters

that have very low or zero control over the period).

In contrast to the previous model, variation of parameter values

within +5% is already enough to change the distribution of

control completely. In this range all parameters that have non-zero

control in the reference state are now able to cause both positive

and negative effects on the cell cycle period, though few are able to

exert control with magnitude w0:1. As depicted in Figure 4 and

Table S3 in File S1, the distributions of sensitivity values are

already sharp for all parameters, with the peaks of the distributions

remaining close to the local sensitivity values.

When varying the parameters by +10% a number of

sensitivities reach high-magnitude negative or positive values

(v{10 or w10), but the distribution peaks remain close to zero.

Once more, the distributions are sharp and narrow for all

parameters. When the variation reaches +20% (not shown),the

periodicity may be abolished completely, and the sensitivity

coefficient is no longer defined.

With this model, when comparing the two global sensitivity

methods, we observe that random sampling tends to find higher-

magnitude coefficients than optimisation, again this is likely due to

lack of convergence.

Glycolysis models
We examined two different models of glycolysis as examples of

metabolic models: one in Saccharomyces cerevisiae [28] and another in

Trypanosoma brucei [29]. They differ in that the latter has a unique

compartment, the glycosome, which results in separate pools of

ATP between upper and lower glycolysis. Both models, in their

original parameter values, exhibit stable steady state behaviour.

Since the two models display very similar behaviour in terms of

sensitivity analysis, their results are reported together. For each

model we calculated concentration- and flux-control coefficients.

These are the same as the sensitivity coefficients of those variables

with respect to the limiting rate parameters (V, which have a linear

effect on the rates of reaction). Due to the particularities of the

sensitivity distributions, the parameter variation was investigated

in higher resolution than the previous examples. Domains of

variation of parameter values were defined around their original

parameter values by +5%, +10%, +20%, +30%, +40%,

+50%, and by 0:1–10|. The full results of these analyses are

included in Tables S4–S17 in File S2 and in Tables S18–S31 in

File S3. Below is a summary of the main points.

In all cases, the shapes of the distributions changed for all

sensitivity coefficients as the parameter variation was increased. As

the shapes changed, a number of trends were observed. When the

parameter variation was confined to +5%, most of the sensitivity

distributions have a single peak at, or near, the value of the

sensitivity of the reference state (indicated as a dashed blue line in

the examples displayed in Figures 5A and 6A). As the parameter

variation is allowed to increase, a second peak appears in several

distributions. Initially, this second peak is smaller than the peak at

the reference value, but as the parameter variation is expanded

further, the second peak becomes dominant. A typical example is

the concentration control coefficient of adpg (the concentration of

ADP in the glycosome) by the glucose transporter in the

Trypanosoma model (Figure 5). In this case, at +5% variation of

parameter values, the distribution of the values of this control

coefficient have a peak at the same value as the reference model

[29]. When the parameter variation is increased to +20%, the

distribution shifts slightly to the left. With +30% variation, a

second, smaller, peak appears around zero. When the parameter

variation is expanded to +40%, the new peak at zero already has

higher frequency than the original peak, and when the variation

Figure 4. Selected global sensitivity analysis results for the cell
cycle model [27]. Shown are the results for parameter 6 (Va-
lues[J20ppx]) under parameter variations of +5% (A) and +10% (B) of
the reference values. For a description of the distributions refer to the
description in Figure 1. Full results for all parameters are shown in Table
S1 in File S1.
doi:10.1371/journal.pone.0079244.g004

What Can We Learn from Global Sensitivity Analysis
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reaches +50%, the new peak at zero is clearly dominant. Thus, it

appears that, depending on the variability of the parameter values,

there are two main types of models: one where glucose transport

exerts high control over the concentration of adpg, and another

where that metabolic step has no control over that concentration.

Other bimodal distributions of control are also observed, where

the values at the peaks of the distributions are finite values (i.e. both

are different from zero). An example is the concentration control

coefficient of glycerol kinase over the concentration of glycerol,

also in the Trypanosoma model. In this case, with only +5%
parameter variation, there is a single peak at the local sensitivity

value (circa 0.65). As the parameter variation is expanded, a new

peak appears at around 0.95. This new type of behaviour has a

higher control of glycerol concentration by glycerol kinase than in

the original model [29].

In other cases no new peaks are observed even at high

parameter variation, but the sensitivity values at the peaks of the

distributions shift away from their reference values. For example,

the concentration-control coefficient of alcohol dehydrogenase on

the concentration of acetaldehyde in the S. cerevisiae model

(Figure 6). As the parameter variation expands, the peak shifts

from is original position of {1:66 to the right, becoming closer to

zero. This means that when all parameters are allowed to vary

widely, there will be very few combinations of values that result in

alcohol dehydrogenase having high control over acetealdehyde.

Therefore this model [28] is positioned on a type of behaviour that

would not be easy to generate with parameter values sampled at

random — this implies that evolution has pushed the model to a

statistically unlikely configuration.

Finally, in some cases, the distributions change little as the range

of parameter variation is expanded. For example, the concentra-

tion control coefficient of glycerol transport over the concentration

of glycerol in the Trypanosoma model (Figure 7) remains at the same

value as in the reference model (0.99) even as the parameter

variation is expanded. This means that this particular reaction

would exert a high control in most conditions. This is a strong

conclusion because it is essentially independent of parameter

values.

It should be noted that in the largest parameter value domain

— when parameters are allowed to vary between 0:1–10| their

original value — the distributions all appear to be very narrow,

with long flat tails extending to one or both sides. In these cases,

the bounds of the distributions are widely distant from the peak of

the distribution.

As already mentioned, both models behave in very similar ways,

which is likely due to their similar stoichiometric structure (they

Figure 5. Control on concentration of adpg exerted by the glucose transport reaction in the Trypanosoma brucei model [29]. Panels A–
F correspond to parameter variations of +5% (A), +10% (B), +20% (C), +30% (D), +40% (E), and +50% (F) of the reference parameter values. For a
full description of the distributions, refer to Figure 1.
doi:10.1371/journal.pone.0079244.g005
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represent the same pathway). However, there are distinct

differences, for example the distribution of control on the flux

through the upper part of glycolysis (hexokinase reaction). With

the original parameter values, the control of the flux is almost

exclusively in the hexokinase reaction in the Saccharomyces cerevisiae

model, and in the glucose transport reaction in the Trypanosoma

model. Both models are robust to variations of parameter values of

up to +20%, with no other reactions able to exert a high control

on the flux in these cases. Parameter variations of between +30%
and +50% allow a number of other reactions to potentially gain a

high control (notably phosphofruktokinase is able to gain control

in both models), though the distribution peaks remain very close to

the local sensitivity values in all cases, implying that for the

distribution of control to change requires an unlikely configuration

of parameters.

Discussion

Global sensitivity analysis of several published models was

carried out in order to investigate how informative the values of

local sensitivities are in terms of the global behaviour of a model.

Global sensitivity analysis through random parameter sampling

reveals details of model behaviour in a more general sense. An

alternative method for global sensitivity analysis using optimisation

was compared with the sampling approach. Several interesting

observations arose from this study, which are worthwhile

discussing here.

One of the most popular ways to carry out global sensitivity

analysis is to sample values of the model parameters from

(uniform) random distributions and characterise each sample

through local sensitivity analysis. The resulting data are then

aggregated in the context of a distribution of values of the

sensitivity coefficients and best visualised as histograms of their

frequencies. One may be tempted to interpret these results by

assuming that the most frequently observed value of the sensitivity

would be what the model supports best [15]. The results presented

here, however, indicate that such interpretation is not warranted.

If the above hypothesis would be true, then the observed values of

sensitivity coefficients in biological systems would be close to the

peaks of the distributions obtained by parameter sampling. But in

the five biological systems investigated here, this was not the case.

Are these models good representations of their systems?

The MAPK model was originally defined [25] for an

exploratory study and so it did not attempt to match any

particular experimental results. As such this model is not relevant

to the present argument.

Figure 6. Control on the concentration of Acetaldehyde exerted by the Alcohol dehydrogenase reaction in the S. cerevisiae model
[28]. Panels A–F correspond to parameter variations of +5% (A), +10% (B), +20% (C), +30% (D), +40% (E), and +50% (F) of the reference
parameter values. For a full description of the distributions, refer to Figure 1.
doi:10.1371/journal.pone.0079244.g006
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The NFkB [26] and the cell cycle models [27] have parameter

values with a considerable degree of uncertainty. While the models

do indeed mimic a number of properties of their corresponding

biological systems, one cannot make definitive statements whether

most of their parameter values are close to reality.

But in the case of the two glycolytic models, the majority of their

parameter values were determined experimentally with reasonable

accuracy. Most of them are enzyme kinetic parameters derived

from in vitro experiments with purified enzymes. Thus one can

reasonably assume that the parameter values in those two models

are close to reality. We shall therefore use them to examine the

hypothesis that the observed sensitivity values coincide with the

mode of the distributions.

When the sampling is carried out in the narrow vicinity of the

published parameter values the original sensitivity coefficients are

indeed very close to the peaks of the distributions. As the domain

of sampling becomes wider, the peaks of most distributions shift

away from those reference sensitivity coefficient values. In some

cases the distributions even become bimodal, which make the

concept of ‘‘most probable value’’ even more tenuous.

Examine the case of the control coefficient for the glucose

transport reaction on the concentration of adpg in the Trypanosoma

glycolysis model [29] (Figure 5). In the published model this has a

high control, as its value is 7.1. Sampling parameter values within

+20% around the original values, the peak of the distribution

remains close to the value of the published model. But as the

parameter sampling domain expands to +30%, a second peak

appears at a low value, indicating that for many parameter

combinations the concentration of adpg has a low sensitivity to

glucose transport. With a sampling domain of +40%, there is

again only one peak, but now it is for a smaller sensitivity –

{0:585. Thus, the most frequent sensitivity that is encountered at

random is {0:585 (if parameters are allowed to vary at least

+40%), yet the physiological relevant value is 7.1! Similar

scenarios can be shown for most parameter sensitivities of the

two glycolytic models. Indeed, similar scenarios exist for the other

three models, even if we cannot state that their reference values

are ‘‘physiological’’.

The importance of this observation is that one must not

interpret the distributions of sensitivity coefficients delineated in

global sensitivity analysis as leading to any form of likelihood with

biological significance. What do the peaks of these distributions

then mean? Simply that if one was to draw parameters entirely at

random the most likely value of the sensitivity would be that one.

But biology does not evolve entirely at random — natural selection

guides evolution. If a certain phenotype (spectrum of sensitivity

parameters) endows the organism with superior fitness, that

phenotype will be selected. The fact that such phenotype is not the

most frequent one bears no weight in its survival or otherwise.

Even if some phenotype is frequently obtained with random sets of

parameter values, there is no reason to believe that it would be

particularly successful either. Therefore the peaks of the distribu-

tions are not necessarily of biological relevance and one should

interpret these distributions with much care. What we do learn

from them is the lower and upper bounds for the sensitivities of the

respective system with given parameter ranges. This is an

argument in favour of the optimisation method, which should be

more efficient at finding these extrema, though other important

considerations will be also be at play (see the section on method

comparison below).

Figure 7. Control of upper glycolytic flux in Trypanosoma brucei model [29] exerted by the glucose transport reaction. Panels A–D
represent the parameter variations of +20% (A), +30% (B), +40% (C), and +50% (D) of the reference parameter values. For a full description of the
distributions, refer to Figure 1.
doi:10.1371/journal.pone.0079244.g007
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Robustness
Robustness is a widely-discussed topic in systems biology [30–

35]. It is usually defined as a property of systems which remains

largely unchanged under changes in the environment. This is

usually translated into a property (a variable of the models) which

remains mostly unchanged in the presence of large environmental

perturbations. This concept of robustness is then essentially the

opposite of sensitivity as the latter measures how much a variable

is affected by a parameter perturbation — thus a quantitative

measure of robustness could be the inverse of the corresponding

sensitivity coefficient [7,8].

Note that the concept of robustness applies to specific properties

of a system (variables of a model) and not necessarily for the entire

system. Indeed some have suggested that there is some form of

conservation of robustness; when some variable becomes very

robust to perturbations, others become more fragile (sensitive)

[30]. This also agrees with the concept that robustness is the

inverse of sensitivity; it is well known that there is conservation of

sensitivity in biological systems, expressed in the form of

summation theorems in metabolic control analysis [4].

Measurements of single sensitivity coefficients in a small area

around an operating point are not necessarily very expressive

about the true robustness of a model. That can only be achieved

with global sensitivity analysis, such as studied here.

As a case in point, Ihekwaba et al. [36] studied the robustness of

sensitivity coefficients under large parameter perturbations on a

similar NFk model. Parameters were individually perturbed up to

+50%. Under this parameter variation, 9 parameters were found

to be able to exert control with magnitude greater than 1, with

sensitivity coefficient values ranging between 220 and 10. In

contrast, our analysis, under a parameter variation of only +20%
found 15 parameters able to exert a control of magnitude greater

than 1, with values ranging between 2500 and 1000. This

difference is not surprising, since our method allowed for all

parameters to vary from their original values simultaneously,

whereas the technique used by Ihekwaba et al. varied only one

parameter at a time.

In a similar study by Achar et al. [37], parameters of the

Trypanosoma glycolysis model [29] were sampled from log-normal

distributions, and the impact on the control of flux was measured.

Their results match with ours — the situation in the reference

model, in which the control on the flux through the main branch is

mainly in the glucose transport reaction, is not the only possible

scenario. Incorporating a degree of uncertainty surrounding the

parameter values results in situations where other reactions can

also gain a high degree of control, notably phosphoglycerate

mutase and glyceraldehyde-3-phosphate dehydrogenase. One

should therefore be cautious in drawing conclusions regarding

which reaction exerts the most control on the flux based on a

single set of parameter values.

Two observations that were common to all models examined

are: 1) if the parameter variation in global sensitivity analysis is

small enough the conclusions are the same as for the classical

(local) sensitivity analysis; 2) given a sufficiently large domain of

variation, all sensitivities will become potentially very large. What

differs from model to model is the range of parameter variation at

which the model changes from one single pattern of control to

several possible patterns. A different pattern of control would

result in different responses to variations in e.g. the amount of

individual proteins. Thus, whereas initially the system might show

insensitivity towards a change in the concentration of a specific

protein, moving in parameter space can change to a different

pattern of control where the protein under consideration suddenly

has a large impact on the systems behavior. We argue that the size

of the parameter variation domain where the distribution of

control starts showing multiple patterns (such as low-magnitude

and high-magnitude, zero and non-zero, positive and negative) is a

measure of the overall robustness of the output of the model for

which the sensitivities were calculated.

By this measure, the MAPK and cell cycle models were non-

robust to changes in parameter values of as little as +5%, while

the NFkB model was robust to changes up to +10%. Although

sensitivities were calculated against different outputs for each

model, each chosen output can be considered the main function of

the system. Therefore, comparisons between these models are

appropriate.

For the glycolysis models, some model outputs were more

robust than others. For example, in the Trypanosoma model, the

concentration control coefficient for the glucose transport reaction

on the concentration of adpg (Figure 5) was robust to variations of

+5%, but by +10% the control could be positive, zero, or

negative. The control coefficient for alcohol dehydrogenase on the

concentration of acetaldehyde in the S. cerevisiae model (Figure 6),

however, was robust to parameter variations of up to +50%.

In general, the sensitivities of the two glycolysis models showed

much stronger robustness than the signalling models. These

metabolic models differ from the signalling models in that they

have a stronger experimentally-determined basis with regards to

parameter values and regulation. The increased robustness is

therefore likely to be a result of a better knowledge of the kinetic

parameters and the regulation (such as feedback loops) of these

systems. This implies, of course, that evolution has favoured

robustness, which is perhaps not a controversial notion.

This concept of robustness is similar to that proposed by

Morohashi et al. [35] and Coelho et al. [38]; they propose that

model robustness can be quantified by the changes in parameter

values needed to abruptly change the performance of the system

(such as an oscillation period or a concentration). These

techniques are limited by the numbers of parameters which can

be simultaneously changed — scanning all possible combinations

of parameter values within a defined range is possible for a model

with few parameters, but infeasible for high-dimensional models.

Of course, changing a limited number of parameters is possible in

these cases, but a global picture of robustness is not observed. Our

approach has the advantage that all model parameters can be

varied simultaneously, even in high-dimensional models with

many parameters, giving a truly global measure of model

robustness.

Robustness and sensitivity analysis are also related in the field of

optimal experimental design (OED). OED is a technique used to

determine the necessary experiments which should be performed

in order to estimate model parameters with the highest possible

statistical quality. OED methods are typically based on local

sensitivity analysis, and are therefore dependent on the local

sensitivities being representative of the physiological system [39].

Robust experimental design aims to optimally design experiments

even when there are uncertainties in the initial model parameters,

and is therefore closely related to global sensitivity analysis. By

identifying which parameters can potentially have a large impact

on the model output, global sensitivity analysis can be used in

measurement set selection, i.e. determining which parameters it is

important to have a good experimental measurement for.

Robustness is important at many levels and biological systems

do display some remarkable robust properties. For example

circadian rhythms do not seem to be affected by temperature

changes. Other systems require high sensitivity to a signal. For

example the vision system seems to be so sensitive that a single

photon can generate a nervous impulse [9]. In both cases the
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properties are fundamental parts of those systems and arose by

selection.

But an entirely different kind of robustness is desirable in most

systems: robustness against noise. Small perturbations on the

parameters should not destroy the model’s control structure

completely. We desire systems that are stable enough not to react

to small magnitude fluctuations. It is in such cases that the concept

of a system’s robustness makes sense. Including global sensitivity

analysis can help to analyse this important property of models.

It seems critical to repeat the obvious: Sensitivity analysis of

models which are heavily underdetermined should be not taken

seriously unless a global analysis indicates that the results are

robust towards dramatic parameter changes.

Comparison of methods
Our results show that the performance of the optimisation-

based and sampling-based techniques was mixed. In some cases

the sampling-based approach found more extreme values for

sensitivity coefficients, while in others the optimisation based

approach was more successful. This seems to depend on the

solution space of the specific models, since there were clearly

different trends between the different models — the optimisation

technique performed well for the NFkB model, but less well for

MAPK and cell cycle models. However, this also indicates that

none of the methods provides a guarantee for finding absolute

maximal or minimal values, as it is difficult to determine if an

optimisation has converged to a global optima or if enough

samples have been taken. It is, however, questionable whether the

exactness of the bounds is of any practical value at all. Most of the

time, the problem finding the absolute maximum appears when

searching a large parameter space and the resulting maximal value

becomes very high. An extremely large magnitude of a control

coefficient means that a tiny perturbation will result in an almost

catastrophic change of behaviour, something which is not

expected in most physiological cases. As also discussed by Sahle

et al. [17], these extreme values are often singular values like

bifurcation points and it might be of little importance to assess, if

there the control is in the magnitude of hundreds or thousands.

The general trends in the results of both methods coincided well

making both methods applicable for analysing models with respect

to global sensitivities.

In cases where parameter sensitivities appear robust to large

changes in parameter values, one must consider whether this is a

true property of the model, or rather a failure of the analysis

technique to detect fragility. Neither a global optimisation or

random sampling approach is guaranteed to find global optima,

though the likelihood of finding such optima increases with the

number of function evaluations.

A major consideration for using the sampling technique is that

of sampling density — the volume of the sampling space increases

exponentially with the number of parameters; therefore the

sampling density in high-dimensional models is much less than

in low-dimensional models, especially for larger parameter spaces.

To compound this problem, as the number of parameters in a

model increases, the computational cost of each sample typically

becomes more expensive. There is therefore a danger that the

sampling technique will underestimate the robustness of high-

dimensional models.

Such a phenomenon was observed, to an degree, in our

analyses. For the 142-parameter cell cycle model, 105 samples

were taken; for the equivalent sampling density in the 27-

parameter NFkB model, only 9 samples would be needed. Since

the cost of each sample in the NFkB model was significantly less,

we were actually able to take 3|105 samples. Despite this, both

the sampling and optimisation techniques found that the cell cycle

model was less robust to small variations in parameter values than

the NFkB model, though in smaller parameter spaces, the

optimisation technique outperformed the sampling technique

(Figure 2).

In theory, the use of a properly tuned optimisation algorithm

such as Particle Swarm to search the sensitivity space of a model

should be more efficient at finding global optima than a random

search. However, the use of such an algorithm reveals only the

bounds for parameter sensitivities; the sampling approach offers a

richer picture of the distribution of sensitivities, from which

substantial information can be obtained, if interpretation is done

with care. In addition, the easily-parallelizible nature of the

sampling-based technique enabled us to fully exploit our powerful

Condor high-throughput computing pool. For the optimisation-

based technique, each optimisation can be run in parallel, but

unless the number of optimisations approaches the number of

computing nodes, the parallel nature of the pool will not be fully

exploited. Whether one technique is more suitable than another

will depend on aspects such as the dimensionality of the model,

and whether a distributed computing platform is available for use.

Conclusions
Global sensitivity analysis is a methodology that allows the study

of how perturbations in each parameter affect the properties of a

model. In contrast to the more common local sensitivity analysis,

the global version allows for large changes in parameter values.

The results of these investigations reveal which parameters are

sensitive and therefore should be determined with precision. If the

real value of a parameter with high sensitivity is estimated poorly

in a model then this could have strong consequences on the

behaviour of the model, whereas if the parameter had a low

sensitivity, determining an accurate value would be less important.

By increasing the size of the parameter variation, we are able to

see a model go from a single pattern of control (that of the

reference system) to many potential patterns (at different nominal

values of parameters, but all within the range of variation). We

argue that the amount of variation at which the pattern of control

becomes uncertain is a measure of robustness of one or more

outputs of the entire system.

Systems for which multiple patterns of control appear at small

variations of parameter values are very sensitive systems, while

those for which this happens only at large variations can be

considered robust. Up until now the concept of robustness was

appropriate for each parameter in isolation. Our study suggests

that global sensitivity analysis can be used as a measure of

robustness for the system as a whole.

Table 1. Optimisation algorithm settings.

Model Iteration limit Swarm size

MAPK 2000 50

NFkB 500 20

Cell cycle 100 10

Settings used for the Particle Swarm optimisation algorithm for each model in
the sampling-based global sensitivity analysis. Different algorithm settings were
used for each model due to differences in the time taken to compute parameter
sensitivities for each model.
doi:10.1371/journal.pone.0079244.t001
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Materials and Methods

Each model was imported into COPASI [14] (version 4.7, build

34) from an SBML [40] file, obtained from the BioModels

database [41]. All analyses were then carried out with this

software.

Optimisation-based analyses
The optimisation-based sensitivity analyses were performed

using the COPASI optimisation task. For a given range of

parameter variation, two optimisations were prepared for each

sensitivity coefficient — one to maximise and one to minimise it.

The sensitivity task was configured to calculate parameter

sensitivities against an appropriate systems-level property. For

the MAPK model the steady-state concentration of PP-MAPK was

used. For the NFkB model, the period of oscillation of nuclear

NFkB was used; the period of oscillation was calculated using the

COPASI events system, after simulating the model for a time-

course of 106 seconds. Briefly, an event is introduced that is

triggered at a maximum of one of the variables and time is

assigned to a variable, then in the next time the maximum is

detected, the current value of time is subtracted with the previous

one, thus resulting in the period of the oscillation. For the cell cycle

model, the period of cell division was used; the period was already

explicitly defined [27] and was calculated after simulating the

model for a time-course of 1000 minutes.

Sensitivities were calculated by perturbing each parameter by

0.1% using the COPASI sensitivities task, and then and measuring

the effect on the target property. In all cases, sensitivity coefficients

were scaled.

For the optimisation approach the Particle Swarm optimisation

algorithm [18] was used. Different algorithm settings were applied

for each model, due to differences in the time taken to compute

parameter sensitivities (Table 1).

The Condor-COPASI package [42] was used to automate the

process of defining optimisations for each sensitivity coefficient,

and to execute the optimisations in parallel on our Condor pool

(which has approximately 3500 CPUs).

Sampling-based analyses
The sampling-based analyses were prepared using the COPASI

parameter scan task. Parameters were sampled from uniform

random distributions. 1,000,000 samples were taken for the

MAPK model, 300,000 samples taken for NFkB, 100,000 for the

cell cycle model, the Trypanosoma glycolysis model and the

Saccharomyces cerevisiae glycolysis model (summarised in Table 2).

For the MAPK, NFkB and cell cycle models, sensitivities were

calculated in the same way as the optimisation-based analyses. For

the glycolysis models, control coefficients were calculated using the

COPASI ‘Metabolic Control Analysis’ task.

Condor-COPASI [42] was used to split the sampling tasks for

the MAPK, NFkB and cell cycle models into multiple parallel jobs,

each of which was run in parallel on our Condor pool. The

sampling tasks for the glycolysis models were manually split into

smaller parts and run on a distributed computing cluster using the

COPASI command-line mode.

A Python script [43] was written to process the sampled

sensitivity coefficients, and the MatPlotLib graphics plotting

library [44] was used to produce the histograms.
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