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Abstract

Validation of multi-gene biomarkers for clinical outcomes is one of the most important issues for cancer prognosis. An
important source of information for virtual validation is the high number of available cancer datasets. Nevertheless,
assessing the prognostic performance of a gene expression signature along datasets is a difficult task for Biologists and
Physicians and also time-consuming for Statisticians and Bioinformaticians. Therefore, to facilitate performance comparisons
and validations of survival biomarkers for cancer outcomes, we developed SurvExpress, a cancer-wide gene expression
database with clinical outcomes and a web-based tool that provides survival analysis and risk assessment of cancer datasets.
The main input of SurvExpress is only the biomarker gene list. We generated a cancer database collecting more than 20,000
samples and 130 datasets with censored clinical information covering tumors over 20 tissues. We implemented a web
interface to perform biomarker validation and comparisons in this database, where a multivariate survival analysis can be
accomplished in about one minute. We show the utility and simplicity of SurvExpress in two biomarker applications for
breast and lung cancer. Compared to other tools, SurvExpress is the largest, most versatile, and quickest free tool available.
SurvExpress web can be accessed in http://bioinformatica.mty.itesm.mx/SurvExpress (a tutorial is included). The website was
implemented in JSP, JavaScript, MySQL, and R.
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Introduction

Cancer causes millions of deaths around the world. To improve

treatments, several biomarkers have been proposed for risk

prognosis and treatment response. Recent published biomarkers

in many types of cancer contain numerous genes and are mainly

based on gene expression. They have been generated using

microarray profiling and lately by RNA-Seq technologies. Often,

identified biomarkers are developed to a specific cancer tissue and

subtypes. In breast cancer, for example, more than 40 biomarkers

have been proposed containing between 3 and 512 genes and

whose prognostic or predictive performance depends on therapy,

hormone receptor status, and the number of genes [1,2]. On the

other hand, assessing the performance of proposed biomarkers in

different populations or evaluating competing biomarkers are

difficult tasks even though hundreds of public datasets are

available. The main limitations are the time and resources needed

for acquiring, processing, normalizing, filtering, and statistical

modeling of large gene expression datasets. This is important since

several of the reasons involved in the failure of biomarkers in

clinical trials are related to data analysis [3]. For the analysis of

biomarkers, tools as ITTACA, KMPlot, RecurrenceOnline, bc-

GeneExMiner, GOBO, and PrognoScan have been proposed

[1,4–9]. However, these tools have serious restrictions (Table 1),

complicating and limiting the assessment of multi-gene biomarkers

in cancer. Some of the main limitations include considering just

one gene at the time or a specific set of genes; focusing on breast or

ovarian cancer datasets or to a particular Affymetrix gene

expression platform; requiring the upload of Affymetrix gene

expression data (.CEL files); and using a single quantity per gene

even though some microarray platforms provide more probesets.

To solve these issues and to facilitate performance comparisons

and validations of prognostic and predictive biomarkers for cancer

outcomes, we developed SurvExpress. SurvExpress is a compre-

hensive gene expression database and web-based tool providing

survival analysis and risk assessment in cancer datasets using a

biomarker gene list as input. The tool is available in http://

bioinformatica.mty.itesm.mx/SurvExpress. The tool includes a

tutorial that describes the analysis options, plots, tables, key

concepts related to survival analysis, and representative methods to

identify biomarkers from gene expression data.

Materials and Methods

Database Acquisition
Datasets were obtained mainly from GEO (http://www.ncbi.

nlm.nih.gov/geo/) and TCGA (https://tcga-data.nci.nih.gov)

after searching for keywords related to cancer, survival, and gene
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expression technologies. Additionally, a few were obtained from

author’s websites and from ArrayExpress (http://www.ebi.ac.uk/

arrayexpress/). The data source used is shown in the web

interface. We favored cancer types above two different cohorts and

datasets containing survival data over 30 samples in which

censoring indicator and time to death, recurrence, relapse, or

metastasis were provided. Clinical data was provided by dataset

authors via personal email when not available online in

corresponding repositories. Datasets were annotated from provid-

er files as found up to September 2012, and were quantile-

normalized and log2 transformed when needed. From TCGA, all

datasets were obtained at the gene level (level 3). RNA-Seq counts

data were log2 transformed. In some cancer types where many

datasets were found for the same gene expression platform, we also

provide a merged meta-base. In meta-bases, datasets were quantile

normalized; probesets means were equalized conserving the

standard deviation by each cohort; and datasets were merged by

probeset id. At the moment we provide meta-bases for breast,

lung, and ovarian cancer. To facilitate gene searches and

conversions between gene identifiers, human gene information

was used and obtained from the NCBI FTP site (ftp://ftp.ncbi.nih.

gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_

info.gz). To simplify the user interface, datasets were grouped by

related organ or tissue using disease ontologies [10].

Web Interface Implementation
Two simple and lightweight HTML user interfaces based on

java server pages, JavaScript, R, Ajax, Apache, and MySQL were

implemented (Figure 1A). In the Input page, users introduce the

gene list based on NCBI compatible gene identifiers (official

symbol, Entrez, Ensembl, HGNC, or others) and select the target

dataset. Users can also choose how to treat genes having more

than one probe. The Analysis page extracts the dataset rows related

to genes in the biomarker and delivers a web interface. Then, users

can assess the biomarker in a variety of ways, including switching

on and off specific genes, stratifying samples by available clinical

information (e.g. stage, grade, age, biochemical results, and

mutation status), specifying training and test samples, and

weighting genes instead of using the Cox fitting. The results are

displayed in common and flexible publication-ready plots and

tables within the Analysis page. A PDF version of the results can

also be obtained.

Prognostic Index Estimation
The prognostic index (PI), also known as the risk score, is

commonly used to generate risk groups. The PI is known as the

linear component of the Cox model [11], PI = b1x1+
b2x2+...+bpxp where xi is the expression value and the bI can

obtained from the Cox fitting. Each bI can be interpreted as a

risk coefficient. SurvExpress implements two procedures to

estimate the b coefficients. The first procedure is the classical

Cox model where all genes are included in a unique model.

The fitting is performed in R (http://cran.r-project.org) using

the survival package. In the second procedure, the user can

specify a weight for each gene instead of using the values from

the Cox fitting. Such option is useful to make comparisons with

biomarkers computed with mathematical models other than

Cox.

Table 1. Comparison of survival analysis tools.

Tool Genes Per Analysis Tissues Datasets Samples Input Risk Groups

KMPlot* 1 2 .30 4,441 AffyID Quartiles

ITTACA** 1 7 231 .739 Genes, Groups User

Recurrence Online Specific 1 – – CEL Files Specific

bc-GenExMiner 1 1 21 3,414 Genes Median

PrognoScan 1 14 741 8,626 Genes Algorithm

GOBO* Multiple 1 10 1,881 Genes Classifier

SurvExpress Multiple 22 142 21,051 Genes Various***

Comparison of survival analysis tools in terms of genes, databases, input, and risk group generation.
*Data includes only Affymetrix microarrays.
**Only few of the datasets have survival data.
***SurvExpress risk groups can be generated based on the Cox fitting, an optimization algorithm, or user-specified weights.
1Only including datasets with clinical outcome information.
doi:10.1371/journal.pone.0074250.t001

Figure 1. Overview of the SurvExpress web tool. Panel A shows a
schematic diagram of the SurvExpress workflow while Panel B shows
snapshots of the interfaces tagging the required input fields. In the first
Input web page, the user can paste the list of genes (tagged with the
number 1, which can be symbols, entrez gene identifier and others
identifiers) and choose the dataset from around 140 available datasets
(tagged with 2 and 3). SurvExpress validates and searches the genes
and dataset to show the Analysis web page where the user selects the
censored outcome (tag 4) and visualizes the results (right-bottom
expanded in Figure 2). The whole process can be achieved in less than
one minute for a sensible number of genes.
doi:10.1371/journal.pone.0074250.g001

SurvExpress: Biomarker Tool for Clinical Outcomes
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Risk Estimation
SurvExpress implements two methods to generate risk groups.

The first method (default) generates the risk groups splitting the

ordered PI (higher values for higher risk) by the number of risk

groups leaving equal number of samples in each group. For two

risk groups, this is equivalent to split the PI by the median. The

second method to produce risk groups uses an optimization

algorithm from the ordered PI. Briefly, for two groups, a log-rank

test is performed along all values of the arranged PI. Then, the

algorithm chooses the split point where the p-value is minimum.

This procedure is generalized for more than two groups repeatedly

optimizing one risk group at the time until no changes are

observed. Details of this procedure are described in the tutorial

provided in SurvExpress web site.

Outputs
The outputs included correspond to common metrics and plots

used to assess the performance of survival data. An example of the

Figure 2. Common outputs of the SurvExpress Results page. This figure shows the results from a breast cancer meta-base included in
SurvExpress. Panel A shows the Kaplan-Meier curve for risk groups, concordance index, and p-value of the log-rank testing equality of survival curves.
Panel B shows clinical information available related to risk group, prognostic index, and outcome data. Panel C shows a heat map representation of
the gene expression values. Panel D shows a box plot across risk groups, including the p-value testing for difference using t-test (or f-test for more
than two groups). Panel E shows the relation between risk groups and prognostic index. Panel F shows fragments of tables with the summary of the
Cox fitting and the prognostic indexes. Details are provided in SurvExpress Tutorial.
doi:10.1371/journal.pone.0074250.g002

SurvExpress: Biomarker Tool for Clinical Outcomes
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outputs generated by SurvExpress is shown in Figure 2. Panel A

shows the Kaplan-Meier plots by risk group, the log-rank test of

differences between risk groups, the hazard-ratio estimate, and the

concordance indexes, which estimate the probability that subjects

with a higher risk will experience the event after subjects with a

lower risk [12]. Panel B displays a visual association of available

clinical information to risk groups. Panel C illustrates a heat map

of gene expression values. Panel D shows box plots of gene

expression values across gene groups together with the p-value of

the corresponding difference. Panel E demonstrates the risk group

optimization plot. Panel F shows fragments of the tables for the

beta coefficients including corresponding Cox p-values, prognostic

index per sample, and Cox fitting information from the survival

package in R. Other advanced plots are also available in the

tutorial provided in SurvExpress. Other ‘advanced plots’ include

SurvivalROC that estimates time-dependent sensitivities and

specificities for survival risk groups [13] but needs a few minutes

to compute. Additional plots, details and interpretations of the

outputs are described in the tutorial provided in the SurvExpress

web site.

Results and Applications

Database
Although data collection will continue, to date we have collected

around 20,000 cancer samples distributed in 140 datasets covering

more than 20 tissues (Table 2). The main limitation to include

more datasets was that the absence of censoring information in

repositories. Nevertheless, the SurvExpress collection surpasses

that of similar tools in terms of tissue coverage, number of samples,

multivariate predictor estimation, and functionality (Table 1).

From the 20 cancer types, the most represented by their number of

datasets were breast, hematologic, lung, brain, and ovarian,

reaching around 70% of the database collection. It is surprising

that most of the existing tools are mainly concentrated in breast

cancer even though a similar number of datasets is available for

other cancer types. Consequently, one of the immediate advan-

tages of SurvExpress is the availability to perform powerful

analysis for these highly studied types of cancers. In addition,

SurvExpress will allow the validation of biomarkers in cancer types

that have not been considered by other tools such as kidney, liver,

gastrointestinal, pancreatic, bone, head and neck, and uterine. In

the web interface, we also encourage users to suggest or send data

to increase cancer and dataset coverage.

Web Interface
The two web interfaces comprise three sections: Input, Analysis

and Results (Figure 1B). The Input page is easily operated typing or

pasting a list of genes and specifying the target dataset (numbers 1

to 3 in Figure 1B). It also includes a link to the tutorial that

describes all options and provides comprehensive interpretations

of the outputs. The subsequent Analysis and Result page is obtained

in a few seconds (about 1 second per gene and 200 samples). In the

Analysis section, the user specifies the outcome of the selected

dataset in which the analysis will be performed (number 4 in

Figure 1B). The Results section (Figure 2) is obtained few seconds

after submitting an analysis. This section includes outputs such as

Kaplan-Meier curves for risk groups, visual comparison of the

clinical information to risk groups, a heat map of the gene

expression values, box plots of the gene expression per gene and

risk group, a plot of the risk group optimization process, tables of

the Cox coefficients, prognostic indexes, and Cox fitting informa-

tion, and a link to obtain the R scripts used.

Validation and Applications
Because of limitations in other tools, multi-gene comparisons

across tools were not possible. Still, SurvExpress can provide

similar results to other tools when one gene only is used.

Nevertheless, to assess the functionality and estimations of

SurvExpress, we performed two analyses evaluating the perfor-

mance of well-known and proposed prognostic biomarkers. We

used the OncotypeDX biomarker for recurrence in breast cancer

and two published biomarkers for lung cancer survival.

OncotypeDX biomarker for breast cancer. As an exam-

ple for testing one biomarker in several datasets, we used the 16

OncotypeDX genes [14]. OncotypeDX estimates a recurrence

score that is mainly offered to early-stage, estrogen positive, lymph

node negative breast cancers. The genes included are AURKA,

BAG1, BCL2, BIRC5, CCNB1, CD68, CTSL2, ERBB2, ESR1,

GRB7, GSTM1, MKI67, MMP11, MYBL2, PGR, and SCUBE2

(ACTB, GAPDH, GUSB, RPLP0, and TFRC genes used as reference

in the RT-PCR assay were not used here). To estimate the score,

OncotypeDX uses a weighting algorithm equivalent to a weight

multiplied by corresponding gene expression normalized by a

reference [14]. In SurvExpress we used Cox fitting (as an

approximation since gene expression data is not normalized to

reference genes) in four breast cancer datasets (Table 3). Other

settings were the maximum row average for genes with multiple

probesets, and two risk groups split at the median of the prognostic

index. To test the biomarker in several conditions, the datasets

were chosen to reflect patients suitable for the test (Wang [27] and

Ivshina [26]), patients with partial information besides different

event (TCGA [25]), and patients without clinical information (Kao

[15]). The results shown in Figure 3 and summarized in Table 4

suggest that, overall, Oncotype DX can separate significantly low-

Table 2. Current content of the SurvExpress database per
cancer type.

Cancer Type Datasets

Breast 25

Hematologic 20

Lung 19

Brain 17

Ovarian 12

Colon 6

Kidney 6

Liver 4

Prostate 4

Gastrointestinal 4

Bladder 3

Head & Neck 3

Skin 3

[Miscellaneous] 3

Esophagus 2

Eye 2

Pancreas 2

Bone 1

Oral 1

Stomach 1

Uterine 1

doi:10.1371/journal.pone.0074250.t002
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and high-risk groups in the four datasets tested. Moreover,

satisfactory indexes of concordance and areas under the ROC

curve were obtained. These results can be obtained using

SurvExpress in a few minutes. To demonstrate the analytical

features of SurvExpress, we also performed the survival evaluation

stratifying the samples using the tumor grades provided by authors

(AJCC Stage in the TCGA dataset and grade in the Ivshina

dataset). Representative results for the Ivshina dataset are shown

in Figure 4. The figure suggests that the performance, given by the

concordance index and log-rank test for risk groups, decreases

along grade. Results for the TCGA dataset are shown in the

Tutorial available in the SurvExpress web site.

Comparison of two lung cancer biomarkers. For non-

small-cell lung cancer (NSCLC), at least 16 biomarkers have been

proposed [16]. Here we compared two biomarkers proposed for

survival of NSCLC that attempt to predict the same event

Figure 3. Kaplan-Meier curves and performance of the OncoTypeDX biomarker in four datasets. Censoring samples are shown as ‘‘+’’
marks. Horizontal axis represents time to event. Dataset, outcome event, time scale, concordance index (CI), and p-value of the log-rank test are
shown. Red and Green curves denote High- and Low-risk groups respectively. The red and green numbers below horizontal axis represent the
number of individuals not presenting the event of the corresponding risk group along time. The number of individuals, the number of censored, and
the CI of each risk group are shown in the top-right insets.
doi:10.1371/journal.pone.0074250.g003

Table 3. Datasets and clinical for the OncotypeDX example.

Dataset Platform
Samples/
Censored ER+/2 LN+/2 Outcome

Breast Invasive Carcinoma TCGA [25] Agilent 502/437 388/109 Survival

Kao Huang Breast GSE20685 [15] Affymetrix 327/244 Metastasis

Ivshina Miller Breast GSE4922 [26] Affymetrix 249/160 211/34 81/159 Recurrence

Wang Foekens Breast GSE2034 [27] Affymetrix 286/179 209/77 0/286 Recurrence

ER and LN stand for Estrogen Receptor and Lymph Node respectively.
doi:10.1371/journal.pone.0074250.t003

SurvExpress: Biomarker Tool for Clinical Outcomes
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Figure 4. Kaplan-Meier curves and performance of the OncoTypeDX biomarker in the breast cancer Ivshina dataset across three
tumor grades. Legends as in Figure 3.
doi:10.1371/journal.pone.0074250.g004

SurvExpress: Biomarker Tool for Clinical Outcomes
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Table 4. Results of the Oncotype DX in four breast cancer datasets.

Dataset GenesFound ResponseTime*
Risk Groupsp
Value CI

DEG betweenRisk
Groups SurvivalROC**

TCGA 16 9.1 s 2.9e-7 72.2 11 0.74

Kao GSE20685 16 6.1 s 2.0e-5 69.1 16 0.69

Ivshina GSE4922 16 6.0 s 5.0e-6 68.7 13 0.70

Wang GSE2034 16 6.0 s 1.1e-7 69.1 13 0.73

CI stands for Concordance Index. DEG means differential expressed genes.
*Response time of the results page.
**SurvivalROC was estimated around time = 6 years, curves took one order of magnitude more than the response time shown.
doi:10.1371/journal.pone.0074250.t004

Figure 5. Performance and representation the two NSCLC biomarkers. Kaplan-Meier curves as in Figure 3. Heat map shows the expression
of each gene (rows) along samples (columns) in risk groups. Low expression is represented in green grades and high expression in red grades.
Corresponding beta coefficients from the Cox fitting is shown. Two stars (**) marks genes whose fitting p-value ,0.05, one star (*) for marginal
significant genes having p-value ,0.10, and no stars for genes whose p-value is .0.1. Box plots compare the difference of gene expression between
risk groups using a t-test.
doi:10.1371/journal.pone.0074250.g005

SurvExpress: Biomarker Tool for Clinical Outcomes
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(survival) and use a similar number of genes; however, the genes

are different. The first NSCLC biomarker was proposed by

Boutros et al. [17] and contains the following genes: STX1A,

HIF1A, CCT3, HLA-DPB1, RNF5, and MAFK. The second

NSCLC biomarker was proposed by Chen et al. [18] and contains

the genes DUSP6, MMD, STAT1, ERBB3, and LCK. Therefore, it

is of clinical interest to compare their performance. For this, we

performed an analysis in SurvExpress using the maximum row

average for genes with multiple probesets, two risk groups by

prognostic index median, and Cox fitting. We used a special lung

meta-base build in our research group, which is composed of more

than 1,000 samples obtained from six authors (Bild [19], Raponi

[20], Zhu [21], Hou [22], NCI [23], Okayama [24]), equivalent

Affymetrix gene expression platform, and containing all biomarker

genes.

The results show that both biomarkers are able to separate risk

groups characterized by differences in their gene expression (see

Kaplan-Meier and box plots respectively in Figure 5). Nonetheless,

the p-value of the risk group separation, the concordance index,

and the significance of the coefficients were slightly better in the

Chen biomarker. To analyze the biomarkers more deeply, we

tested the biomarker per database author using the SurvExpress

stratification functionality (this can also be achieved performing a

SurvExpress analysis per author dataset). The results for the six

authors are summarized in Table 5. Three representative

examples are shown in Figure 6. The results show that the

Boutros biomarker fails in four datasets (the log-rank test of the

difference in risk groups is not significant) while the Chen

biomarker works better in almost all datasets. In summary, these

results suggest that the performance of Chen biomarker is

superior.

Conclusion

Compared with other tools, SurvExpress is the largest and the

most versatile free tool to perform validation of multi-gene

biomarkers for gene expression in human cancers. The analysis

Table 5. Datasets and results of the Boutros and Chen biomarkers for the lung cancer example.

Dataset
Samples/
Censored

Boutros p-Risk
Groups

Boutros
Overall CI

Chen p-Risk
Groups

Chen
Overall CI

Raponi Beer GSE4573 [20] 130/63 0.255 57.2 0.019 55.3

Bild Nevins GSE3141 [19] 108/50 0.027 59.4 0.023 57.6

Zhu Tsao GSE14814 [21] 72/49 0.401 59.0 0.009 63.6

Hou Philipsen GSE19188 [22] 64/23 0.771 54.5 0.028 62.4

Directors Challenge Consortium NCI [23] 444/207 0.001 58.2 0.001 60.3

Okayama Kohno GSE31210 [24] 226/191 0.222 59.1 0.006 66.1

p-Risk Groups column show the p-value of the equality between survival curves among risk groups.
doi:10.1371/journal.pone.0074250.t005

Figure 6. Comparison of Kaplan-Meier curves of the two NSCLC biomarkers in three representative lung cancer databases. Legends
as in Figure 3.
doi:10.1371/journal.pone.0074250.g006
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requires only the list of genes and can be performed in

approximately one minute per dataset. Common applications for

testing the performance of biomarkers include the evaluation of a

biomarker in other populations or clinical status and the

comparison of competing biomarkers. We have shown these two

applications of SurvExpress comparing the performance of a

breast cancer biomarker in several datasets, including tumor

grades, and determining the best biomarker out of two alternative

lung cancer biomarkers. We conclude that SurvExpress is a

valuable and comprehensive web tool and cancer database with

clinical outcomes tailored to rapidly evaluate gene expression

biomarkers.
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