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Abstract

Chorea and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder, genetically
characterized by the presence of expanded CAG repeats (.35) in the HUNTINGTIN (HTT) gene. HD patients present
psychiatric symptoms prior to the onset of motor symptoms and we recently found a similar emergence of non motor and
motor deficits in BACHD rats carrying the human full length mutated HTT (97 CAG-CAA repeats). We evaluated cognitive
performance in reversal learning and associative memory tests in different age cohorts of BACHD rats. Male wild type (WT)
and transgenic (TG) rats between 2 and 12 months of age were tested. Learning and strategy shifting were assessed in a
cross-maze test. Associative memory was evaluated in different fear conditioning paradigms (context, delay and trace). The
possible confound of a fear conditioning phenotype by altered sensitivity to a ‘painful’ stimulus was assessed in a flinch-
jump test. In the cross maze, 6 months old TG rats showed a mild impairment in reversal learning. In the fear conditioning
tasks, 4, 6 and 12 months old TG rats showed a marked reduction in contextual fear conditioning. In addition, TG rats
showed impaired delay conditioning (9 months) and trace fear conditioning (3 months). This phenotype was unlikely to be
affected by a change in ‘pain’ sensitivity as WT and TG rats showed no difference in their threshold response in the flinch-
jump test. Our results suggest that BACHD rats have a profound associative memory deficit and, possibly, a deficit in
reversal learning as assessed in a cross maze task. The time course for the emergence of these symptoms (i.e., before the
occurrence of motor symptoms) in this rat model for HD appears similar to the time course in patients. These data suggest
that BACHD rats may be a useful model for preclinical drug discovery.
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Introduction

Huntington disease (HD) is one of the neurodegenerative

disorders where the origin has been unequivocally identified, that

is, an elongation of polyglutamine (.35 CAG repeats) in the

HUNTINGTIN (HTT) gene on chromosome 4 [1]. Patients

carrying the mutation present a combination of motor symptoms

such as chorea, psychiatric symptoms, and cognitive changes [2–

3]. The disease is associated with degeneration of neurons in the

striatum (especially the Medium Spiny Neurons, MSN) and cortex

[4–6]. Treatments to delay HD onset or inhibit the mechanisms by

which neural loss occurs are still lacking [7], and therefore there is

a continuing need for improved animal models to support drug

discovery efforts.

During the last decades, many animal models for HD have been

generated, from insects (Drosophilae melanogaster), to nonhuman

primates (Macaca mulatta), including several rodents models [8–11].

The availability of such a wide range of models increases the

potential opportunities to understand the disease progression and

to find a cure. Besides selection of a reliable and valid animal

model, the timing of drug treatment is of critical importance for

HD drug discovery studies. One plausible explanation for the

recent failure of monoclonal antibodies against the beta-Amyloid

protein to reverse symptoms in patients with advanced Alzheimer’s

disease in Phase III studies, has been that therapeutic intervention

is needed at a time point when the disease has not yet caused too

much neurodegeneration for treatments to be effective [12].

Accordingly, it is increasingly recognized that identification and

validation of prodromal symptoms and biomarkers is critical. For

HD, cognitive impairments may consist of prodromal symptoms

that could be used as clinical endpoints in drug discovery. HD

patients present several impairments in executive and visuospatial

mnemonic functions [13–15]. Cognitive impairment appears to

occur before the emergence of motor symptoms. For example,

patients exhibited impairments in the California verbal learning

test (CVLT) and the Wechsler memory scale (WMS)] in the

absence of motor disturbances [16]. An important aim for future

animal model development is to identify, characterize and validate

cognitive symptoms that occur before the onset of motor symptoms.

It is not yet clear to what extent the occurrence of cognitive and

motor symptoms are adequately reflected in the current rodent
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HD models. In fact, several studies reported cognitive impairments

after the appearance of motors deficits. For example, in a tgHD rat

model of HD that carry the human mutation with 51 CAG repeats

[17], Fielding and colleagues [18] have not found significant

impairment in object recognition, set shifting, and operant tests,

although motor deficits were present at 13 months of age. Deficits

were shown at 12 months of age in radial maze and at later ages

(15 to 20 months old rats) in choice reaction time tasks, spatial,

and location recognition memory tests, whereas in the R6/2

mouse model for HD, selective deficits in spatial, visual and

reversal discrimination were observed before or during subtle

motor deficits (3.5–5.5 weeks and 7–8 weeks respectively) [19–24].

Herein, we used BACHD rat, a novel model for HD that has

been recently established [25]. Like the mouse BACHD model

[26], the rat model carries the full length human mutant

HUNTINGTIN (fl-mHTT) with 97 CAG-CAA mix repeats under

control of the human HD promoter gene. An advantage of the rat

model is that behavioral processes related to learning and memory

and pharmacological validation have been well described for this

species. We have previously found progressive motor deficits

during rotarod testing, starting as early as 2 months of age; a

decrease in spontaneous locomotor activity, as well as, gait deficits

in a catwalk test. However, we were unable to show a significant

cognitive impairment in an object recognition task or robust

sensorimotor deficits in a prepulse inhibition test [27]. These

results were somewhat unexpected in light of the cognitive deficits

reported in patients. Therefore, we decided to perform a more

profound evaluation of the cognitive phenotype of BACHD rats.

The cognitive performance of different age cohorts of BACHD

rats was assessed in reversal learning and associative memory tests.

The cross-maze and the fear conditioning paradigms tests

(contextual, delay and trace conditioning) were selected, because

they have proven to be efficient for cognitive assessment in

rodents. An important consideration for selection of the rat fear

conditioning paradigms was that the neural circuitry for fear

conditioning has been well described in rodents and humans and

that these neural circuits are well conserved [28–29]. This offers a

potentially powerful translational approach as fear conditioning

studies in tandem with functional brain imaging studies in both

species could be used for future drug discovery studies.

Materials and Methods

Ethics statement
The study was carried out in strict accordance with the German

animal welfare act and the EU legislation (EU directive 2010/63/

EU). The protocol was approved by the local ethics committee

Behörde für Gesundheit und Verbraucherschutz (BGV, Hamburg).

Husbandry and genotyping
Wild type (WT) and transgenic (TG) BACHD rats, carrying the

mutant human HTT gene, under the control of the human

huntingtin promoter and its regulatory elements were used. The

transgene contains 97 CAG-CAA mix repeats, which produces a

particular stability of the repeat length, and additional 20 kb

upstream and 50 kb downstream sequences that reduce its

position effect [25]. Two transgenic males were supplied from

the original BACHD colony of the Universitäts Klinikum

Tübingen (UKT, Germany) and an in-house breeding colony

was preserved and maintained at EVOTEC AG (Hamburg,

Germany) by cross-breeding these males with wild type female

rats. BACHD animals were maintained on a Sprague-Dawley

background. All the animals at weaning were group-housed 2 to 4

per cage with wood shavings and a filter top. The environment

was enriched with a play tunnel and shredded paper. BACHD rats

were maintained in climate controlled housing, with a 12-h

reversed dark/light cycle (light from 19:00 to 07:00). Rats had free

access to food and water except during experiments.

Ear punches were taken at weaning to determine their

genotype. Genotyping was performed before and after all the

studies using a validated protocol. Briefly, Genomic DNA was

prepared from ear biopsy tissue using proteinase K digestion,

followed by phenol/chloroform extraction (Qiagen DNeasy Tissue

kit). Primers flanking the polyQ repeat in exon 1 were designed to

recognize whether or not the rat carried at least one copy of the

mutation, and were used to PCR amplify the polyQ regions [Q3:

59 – AGG TCG GTG CAG AGG CTC CTC - 39 and Q5: 59 –

ATG GCG ACC CTG GAA AAG CTG - 39]. Gene status was

confirmed in parallel by using designed primers from UKT [exon

1: FW 59-ATG GCG ACC CTG GAA AAG CTG- 39 and RV: 59

-AGG TCG GTG CAG AGG CTC CTC- 39; exon 67: FW 59-

TGT GAT TAA TTT GGT TGT CAA GTT TT- 39 and RV: 59

–AGC TGG AAA CAT CAC CTA CAT AGA CT- 39]. The

PCR product was run on an automated apparatus PTC-200

(Peltier Thermal Gradient Cycler) and the Agilent 2100

Bioanalyser (Agilent technologies) was used to determine the

fragments size.

Our concern in this longitudinal study was to reduce as much as

possible potential confounds that hamper the interpretation or

extrapolation of the results. Therefore only male rats were used in

the cognitive tests as the female estrus cycle may influence

experimental outcomes [30–31].

Strategy and shifting (Cross-Maze)
The strategy shifting test is a standard dual-solution task which

was used to assess the respective contributions of response (or

egocentric) and place (or allocentric) learning strategies on

memory [32]. It determines the relative involvement of these 2

strategies during the course of learning. We essentially used the

same method as has been described for testing the BACHD mice

[33].

Spatial alternation was assessed using a modified version of the

standard cross-maze; the home made maze consists of 4 identical

arms (50 cm612 cm620 cm) at 90 degrees to each other. The

maze was made with clear Plexiglas, elevated 45 cm above the

floor, and a T-maze was created by closing one arm (north, N)

with a guillotine door. The T-maze configuration was as follow: 2

arms [east (E) and west (W)] are at 180 degrees to each other, and

the last arm (south, S) was perpendicular to these arms. Two holes

were present: one at the end of the E and W arms each, and spatial

cues were placed on a black curtain which surrounded the maze. A

home cage was put at one end of the arms (E or W) to motivate the

animals to explore the maze and find the exit into this home cage

(where they were additionally rewarded with food pellets). One

week prior to the test, rats received small sucrose food pellets in

addition to their normal diet. One day prior to the start of the

experiments, all rats received a 5-min habituation session in the

apparatus. During that period, food was not available.

The next day, the acquisition sessions started and a rat was

placed in the S arm. The home cage containing sucrose food

pellets was placed under the hole in the W arm. The rat had to

guide itself in the maze and reach the home cage. During

acquisition, rats received one trial per day for 7 days. During the

first 2 days, the goal arm (i.e. arm giving access to the home cage)

was baited with small sucrose food pellets. The same training

procedure was run during reversal and extended reversal training

sessions except that the rats had to reach this time the home cage

placed underneath the E arm (opposite of the previously learned
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arm). When a rat made a wrong choice (entrance into the arm

without home cage), it was allowed to trace back to the goal arm. If

the rat failed to reach the home cage within 2 min, the rat was

gently guided manually to the goal arm and the trial ended 20 s

later. The maze was cleaned after each animal crossing with a

10% ethanol solution to avoid any bias related to odor.

Three probe trials were performed at days 8, 16 and 22, at the

end of the acquisition, reversal and extended reversal training

sessions, respectively. During the probe trials the S arm was closed

and the N arm was used as the new start arm; the strategy (place or

response) that the animal used to reach the goal arm was assessed.

If the animal during the acquisition training had learned to use a

place strategy, it would select the W arm. However, if the animal

had used a response strategy (i.e. learned to turn left), it would

select the E arm.

Fear conditioning
Classical fear conditioning (FC) is a form of associative learning

in which subjects express fear responses to a neutral conditioned

stimulus (CS) after it has been paired with an aversive,

unconditioned stimulus (US). The tests were run in an apparatus

(Med Associates Inc., Italy) consisting of a ventilated sound-

attenuated box and a rectangular testing chamber (30626625 cm)

with stainless steel rod floor. Measurements were accomplished

through a front digital video recording camera, connected to a

computer with video freeze software. All rats received 5 min

acclimatization one day prior to training and testing days. The

chambers were wiped with a 70% ethanol solution and were dried

prior to each rat testing. Three different tasks were used:

contextual, delay and trace fear conditioning.

Contextual fear conditioning. The training session consist-

ed of a 5 min acclimatization followed by 6 pairings (1 min inter

trial time) of a 0.6-mA, 1-s foot shock. Animals were returned to

their home cage 3 min after receiving the last foot-shock. On the

next day, conditioned freezing was assessed by placing rats in the

conditioning chambers for 5 min, in the absence of foot shock. For

the evaluation of long term memory (LTM), animals were re-

exposed one and 2 months later during a 5-min sessions to the

conditioning chambers.

Delay conditioning. The testing protocol is similar to the

contextual fear paradigm, except that on the training day, after

3 min acclimatization, rats received 6 pairings (120 s inter trial

time) of a 30-s tone (85 dB) with a 0.6-mA, 2-s foot shock. The foot

shock terminated at the same time as the tone and rats were

removed from the testing chambers 60 s after the last pairing. On

the testing day, rats were tested for contextual freezing in the

conditioning chambers for 3 min, in the absence of tone or foot

shock. One hour later, an altered context was generated with

white polyvinyl chloride materials that covered the shock-grid bars

and the inside of the conditioning boxes. Freezing was assessed in

the altered context without tone for 3min, followed by a 3-min

tone presentation in the absence of foot shock.

Trace fear conditioning. The test was adapted from an

existing protocol [34]. In this associative learning paradigm, rats

received during the training day eight trials of a 85 dB, 10 s tone

(CS), followed by 20 s trace period, after which a 1 s–0.6 mA foot

shock (US) was delivered. Each CS-US pairing was separated by a

random inter-trial interval (ITI) that varied between 60 and 120 s.

The random ITI time was used to prevent time between foot-

shocks to be used as a cue for the US. Rats were removed from the

chamber 60 s after the last CS-US presentation.

Retention tests for contextual, auditory and trace fear memory

were carried out 24 h after conditioning. Rats were first tested for

tone and trace period in an altered context made with a white

polyvinyl chloride insert to cover the shock-grid bars and the inside

of the conditioning boxes. Each rat was given 2 min habituation,

followed by four presentation of the CS with varied ITI, in the

absence of US. Freezing behavior during the four CS presenta-

tions and trace periods were averaged for each animal. Following

CS and trace retention testing periods, contextual retention test

was measured by placing the animals back into the original

context for 2 min during which freezing was scored, without

exposure to the CS or US.

For all the paradigms, freezing behavior was defined as the lack

of any movement, except respiration. The percent of time spent

freezing was assessed using the linear methods of observation

measures (video freeze software).

The ‘flinch-jump’ test
The method has been described by Lehner and colleagues [35].

Rats were placed individually into the fear conditioning boxes

(Med Assoc. Italy). Shocks were delivered to the grid floor of the

test box through a shock generator. After a 3-min period of

habituation to the test box, shock titrations continued to increase

in a stepwise manner (0.05 mA, 0.05–0.6 mA range). In this way,

the ‘flinch’ and ‘jump’ thresholds in mA is defined for each rat.

The interval between shocks was 2 min, and each animal was

tested only once at each intensity. Behavior for each rat was

recorded through a front digital video recording camera and

analysis was done blind to the genotype. The ‘flinch’ threshold was

defined as the lowest shock intensity that elicited a detectable

response. The ‘jump’ threshold was defined as the lowest shock

intensity that elicited simultaneous removal of at least three paws

(including both hind paws) from the grid.

Statistical Analysis
All data were analyzed using GraphPad and InVivoStat software.

Differences between groups were assessed with Student’s t-test or

mix ANOVA with repeated measures, with the factor GENO-

TYPE as between subject and TIME or TEST as within subject

variable. When significance was found, a Bonferroni – post hoc

analysis was performed when appropriate. For the cross maze, the

learning index is defined as the ratio of the mean number of

correct choices over trials per animal. Therefore, we have

generated a binary data set with 2 possible outcomes (correct

choice vs. incorrect choice). The hypothetical value that results is

‘‘K’’ because each animal has 50% chance at every trial. The one

sample t-test was used to evaluate the learning index in each

population with a hypothetical value set at ‘‘K’’. Chi-square (x2)

analyses were computed on animal’s choice during Acquisition (A),

Reversal (R), and Extend Reversal (ER) learning in the cross maze

test, in order to determine discrepancies between groups and to

determine potential changes in strategies between both probe

trials. The Chi square test assesses whether an observed frequency

distribution (i.e. the number of correct choices) differs from a

theoretical distribution, and if this distribution is independent (i.e.

the choice is genotype dependent). Finally, a Mann Whitney U-

test was used to analyze ‘flinch-jump’ data. The significance level

was set for all analysis at 0.05.

Results

We inspected each BACHD rat cohort animals prior to the

experiments and all animals looked healthy. No global differences

in phenotype were observed between wild type (WT) and

transgenic (TG) rats. Only male rats were used during the study.

No difference in weight was found between WT and TG (data not

shown).

Memory Impairment in a BACHD Rat Huntington Model
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Acquisition, Reversal learning and Strategy shifting in a
Cross-maze

The cross maze test was performed in independent cohorts of

2 months (n = 17 per genotype) and 6 months (n = 15 per

genotype) old BACHD rats in order to avoid any bias related to

recall or long term memory of the task. Data from acquisition and

reversal training sessions at the first 2 days were not analyzed

because the goal arm was baited with sucrose food pellets to guide

BACHD rats to the home cage. A schematic representation of the

cross-maze task is presented in Fig. 1a. One WT rat of 2 months

was removed from the data analysis because it did not show any

interest in the task and did not make a choice (turn left or right)

during the experimental period.

Learning indices during acquisition, reversal and
extended reversal learning

The learning index is calculated as the ratio of the mean

number of correct choices over trials per animal (Fig. 1b). Both

cohorts of 2 and 6 months old BACHD rats displayed improved

learning during acquisition (A) (2 months: WT, t = 5.91 and

P,0.0001; TG, t = 4.02 and P,0.001; 6 months: WT, t = 4.35

and P,0,001; TG, t = 5.776 and P,0.0001). During reversal (R), 2

months old WT and TG have a learning index above the chance

level of 0.5, although both groups did only reach a statistical trend

(p value between 0.05 and 0.1; 2 months: WT, t = 2.126 and

P = 0.0532; TG, t = 1.884, and P = 0.0805). The 6 months old

cohort (WT and TG) showed a (R) learning index below chance

level (,0.5) and did not reach statistical significance. In the extended

reversal training (ER), both WT and TG rats of 2 months presented

a statistically significant learning index (WT, t = 3.809 and

P,0.01; TG, t = 2.874 and P,0.05). Six Months old WT rats

had a significant learning index during (ER) (t = 3.323, and

P,0.01) whereas TG did not reach statistical significance

(t = 0.743, and P.0.1); 6 months old TG learning index was

around 0.5. A comparison between the (A) and (ER) learning

index in WT and in TG rats showed only a difference for

Figure 1. Cross-maze task. 2 months (WT n = 17, TG n = 17) and 6 months (WT n = 15, TG n = 15) BACHD rats were used. [a] Schematic
representation of the cross-maze task. The north (N) arm is closed. The rat starts training in the south arm (S) and reaches the home cage through the
hole located in the west arm (w, (1) acquisition) or east arm (E, (2) reversal). During (3) probe trial days 8 (P1), 16 (P2) and 23 (P3), the (S) arm is closed
and the rat starts in the (N) arm. Rats reaching the home cage arm are Place learners, while those reaching the other arm are Response learners. [b]
Learning index. Mean number of correct choices over acquisition (A), reversal (R) and extended reversal (ER) trials in BACHD rats. Both WT and TG rats
of each age showed difficulties during (R); however, with (ER) training, 2 months old rats have improved learning whereas 6 months old TG rats have
a learning index barely above chance level. Asterisks indicate significant difference from the hypothetical value (One sample test, *p,0.05, **p,0.01
and ***p,0.001). [c and d] Training trials. The percentage of correct choices made during acquisition (A), reversal (R) and extended reversal (ER)
training are depicted. For the first 2 days, results where the goal arm was baited with sucrose food pellets are presented by dashed lines. There was
no difference in acquisition training for both age cohorts. 6 months old TG rats (d) differed significantly from WT rats during reversal trial 7 and
overall extended reversal trials (ER1 to ER6). Asterisks indicate significant difference (Chi square test, *p,0.05 and **p,0.01).
doi:10.1371/journal.pone.0071633.g001
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6 months old TG rats (A vs. ER, t = 2.846, P,0.01). A closer look

at the 6 months rats (ER) bar graph (Fig. 1b) suggests a difference

between WT and TG rats, and statistical analysis found a trend

(t = 1.737, P = 0.0946).

Correct choices during acquisition, reversal and extended
reversal learning

The progress of 2 and 6 months old BACHD rats in learning

the task during training sessions for (A), (R) and (ER) is presented

in Fig. 1 (c–d). We analyzed the number of correct choices that

both groups made. All rats had one trial per day. There was no

statistical difference during (A) in 2 and 6 months old BACHD

rats. For (R) and (ER), only animals with learning index higher

than 0.5 during acquisition were analyzed. That is, animals that

actually learned the task. Four (WT, n = 2 and TG, n = 2)

2 months old rats and two (WT, n = 1 and TG, n = 1) 6 months

old rats did not reach the criteria and therefore were not included

in the analysis. Although 2 months old TG rats made correct

choices during (R) and (ER) training, as did WT control rats,

6 months old TG rats made fewer correct choices. In fact, WT –

but not TG – animals made more correct choices over the course

of (ER) training. The difference between 6 months WT and TG

rats was significant already on reversal trial 7 (x2 = 6.23, P,0.05)

and persisted during (ER) trainings (x2 = 8.594, P,0.01).

Strategy shifting during probe trials
On trial days 8, 16, and 23 a probe trial was done to assess

which strategy rats used to solve the task (Fig. 2). The north arm

(N) was now the new start arm. Rats entering the same arm as

during training sessions were designated place learners (allocentric

learning) and rats entering the opposite arm were designated

response learners (egocentric learning). Data were only analyzed

for animals that made (1) correct arm choices with a learning index

greater than 0.5 during each training session, and (2) were

successful for the two last trials prior to the probe trial. Two

months old rats exhibited a preference for response learning on P1

(response: WT = 73% and TG = 77%) and P2 (response: WT = 67%

and TG = 57%). This preference for response learning was

maintained on P3 (response: WT = 64% and TG = 67%). Six

months old WT rats again exhibited a clear response learning

during P1 (WT = 73%) while only half of TG rats were response

learners. However, during P2 and P3, WT rats have adopted a

place learning strategy (WT, place: P2 = 66% and P3 = 57%),

whereas TG rats showed a response learning strategy (TG, response:

P2 = 50% and P3 = 60%). Although WT rats results between both

probe sessions (P1RP3) would suggest a shifting towards a place

learning (D= 30%), this was not statistically significant (x2 = 1.606,

P.0.05).

Contextual fear conditioning
Rats of 4 months (WT, n = 13 and TG, n = 13), 6 months (WT,

n = 7 and TG, n = 9) and 12 months (WT, n = 16 and TG, n = 6)

of age underwent a one day training session in conditioning

chambers. Baseline activity was recorded 5 min before foot shocks

were given and contextual memory was measured 24h later

(Fig. 3a).

As shown in Fig. 3b, there was no significant difference between

WT and TG baselines at all testing ages. However, TG rats

expressed a significant lower freezing behaviour when re-exposed

to the conditioning context (4 months: t = 5.757, P,0.0001;

6 months: t = 4.987, P,0.001 and 12 months: t = 5.147,

P,0.0001). Visual inspection of fig. 3b indicates a decrease in

percentage of freezing between 4 months, 6 and 12 months old

rats. In fact, a 2-way ANOVA analysis on Context results showed

significant GENOTYPE (F (1, 79) = 76.53, P,0.001) and AGE (F

(2, 79) = 13.42, P,0.001) effects. No interaction between

GENOTYPE x AGE was found.

We next evaluated long term memory for contextual freezing in

4 months old rats by exposing them again to the conditioning

chambers 1 and 2 months after the contextual test (retention tests,

Fig. 3c). A progressive ‘extinction’, characterized by a decrease in

percentage freezing was observed in WT and TG rats (2-way

ANOVA, GENOTYPE: F (1, 72) = 82.92, P,0.001 and AGE: F

(2, 72) = 24.48, p,0.001). This trend is sustained as no interaction

(GENOTYPE x AGE) was found.

Delay and Trace conditioning
The delay conditioning experiment evaluated the acquisition of

a tone (85dB) fear conditioning when presented for 30 s before a

2 s foot-shock co-termination (Fig. 4a). Thirteen WT and fifteen

TG rats of 9 months of age were given 6 trials training sessions.

Baseline activity was recorded 3 min prior to the first trial and

expressed as percentage freezing. WT and TG rats did not show

differences in baseline freezing behavior (Fig. 4b). A 3-min

retention test was performed after 24 h in the conditioning context

and, for the tone, in an altered context. Both WT and TG rats

expressed a trend for increased freezing to the context and the

tone. TG rats showed a lower percentage freezing to the context

and to the tone than WT rats. A 2-way ANOVA revealed

significant effects for the main factors GENOTYPE and TEST

(GENOTYPE, F (1,52) = 18.84, P,0.001; TEST, F (2,52)

= 132.04, P,0.0001) as well as a significant interaction between

both factors (F (2,52) = 5.04, P,0.01).

In the trace fear conditioning paradigm, the memory for

context, tone and trace training is evaluated in 3 months old rats

(Fig. 4c). The highest freezing responses were found during the

trace period (Fig. 4d). No differences in baseline activity were

found, but for all the stimuli (context, tone and trace), TG rats

displayed a significantly lower freezing response than WT rats. A

2-way ANOVA analysis showed significant effects for the main

factors GENOTYPE and TEST (GENOTYPE, F (1,78) = 39.34,

P,0.0001; TEST, F (3,78) = 96.42, P, 0.0001), as well as a

significant interaction between both factors (F (3,78) = 15.08,

P,0.0001).

Flinch-Jump test
Thirty BACHD rats (n = 15 per genotype) of 6 months of age

underwent the flinch-jump test. A flinch response was observed in

all rats (Fig. 5a. WT, Mean = 0.2360.048 SEM; TG, Mean

= 0.2560.042 SEM); whereas only 7 WT and 9 TG rats presented

a jump response (Fig. 5b. Mean = 0.53560.037 SEM and Mean

= 0.53860.048 SEM, respectively). In fact, statistical analysis did

not reveal significant differences between WT and TG rats (Mann

Whitney U-test: flinch, U = 85 and P = 0.23; Jump, U = 29 and

P = 0.82).

Discussion

We investigated the cognitive phenotype of BACHD rats at ages

2 through 12 months. Learning deficits were found at 6 months of

age in a cross-maze test. Pronounced associative memory deficits

were found in context, delay (context and tone) and trace (context,

tone and trace) fear conditioning. This fear conditioning

phenotype is unlikely to be confounded by altered pain sensitivity,

as WT and TG rats showed no differences in foot-shock intensity

threshold as determined in a flinch-jump test. This is the first study

to report robust and specific memory deficits in BACHD rats.

Memory Impairment in a BACHD Rat Huntington Model
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Reversal learning deficit in cross maze test
We have investigated BACHD rats in a spatial memory

paradigm with the cross maze test. A T-maze standard dual

solution task [32] has proven to be useful in distinguishing between

spatial and non spatial learning in animals. Rats were trained over

several trials from the same start arm to consistently enter the arm

where a baited home-cage was located. We used a home-cage

baited with sucrose pellets as an alternative to traditional

motivational procedures that use water or food deprivation. Since

BACHD transgenic rats show reduced food intake [25], we felt

that procedures that avoid food deprivation may be less liable to

potential confounds and misinterpretation of behavioral data.

During Acquisition training (A) both TG and WT rats learned

the task and showed a significant learning index (,0.8). This

indicates that a ‘return to home-cage’ is an effective incentive and

that a training protocol of only one trial per day is sufficient. These

observations are in line with results from a study in adult B6D2F2

mice (cross of C57BL/6J and DBA/2J strains) in a Lashley III

maze. It was demonstrated that one training trial per day with a

home-cage reward procedure led to a significant learning index

(,0.7) after just 4 days [36].

During Reversal training (R), the home cage was located at the

end of another arm, different from the initially trained arm. The

same start arm was used. All rats of 2 and 6 months of age initially

had difficulties finding the new location. This was confirmed by a

comparison of the percentage correct choice of the last two

acquisition trials (6 and 7) with the first two reversal trials (1 and 2).

A difficulty in finding the new location is perhaps not surprising, as

reversal learning is more challenging per se because rats have to

disengage from a previous learned task in order to acquire a new

task. We decided to extend the reversal training for 6 days

(Extended Reversal training; ER) and all rats eventually learned

the new task, although the 6 months old TG rats performed

significantly worse than WT rats. We previously reported similar

reversal learning deficits in adult transgenic BACHD mice of

10 months of age in a cross-maze task [33]. In 6 months old

Hdh(CAG)150 knock-in mice, cognitive impairments were shown in

compound reversal of an extra-dimensional shift task (EDS) [37].

Reversal learning difficulties were also reported in a spatial

operant reversal test paradigm of 9 months old tgHD rats and in

27-week old YAC128 mice in a water T-maze task [38–40]. These

data are in accordance with the present findings, suggesting a

progressive cognitive decline between 2 and 6 months of age.

To discover which learning strategy rats have adopted, a test

trial was performed after training was finished. The new start arm

was now located opposite of the arm used during training.

Accordingly, rats which used spatial cues to find the correct arm

would enter the same baited arm as during trainings (place

learners); whereas rats that used ‘body turn response’ learning

(stimulus response, S-R) should enter the non baited arm (response

learners). The first probe trial (P1) demonstrated that BACHD rats

of 2 and 6 months of age were predominantly response learners.

Using a similar cross maze task, this preference for the response

strategy on (P1) was also observed in WT and TG BACHD mice

[33]. Consistent with our findings, homozygote tgHD rats of 6 and

12 months of age were also mostly response learners in a Morris

water maze task [41]. Interestingly, our results are in contrast with

findings suggesting that during (A), place learning is typically

adopted by rats in a cross-maze [32], [42–43]. The reason why

2 months old rats maintain their preference for response learning

during P3 is unclear, but may involve a developmental time scale

of spatial representation. In fact, spatial memory in the cross-maze

involves association of the object (landmarks) to their spatial

location (home cage); we assume that the network underlying the

memory of spatial location in 2 months old WT rats is slower to

develop [44]. The preference (shift) for place strategy was only

observed in 6 months old WT during the 2nd and 3rd probe trial

(P2 and P3), whereas TG rats maintained their response strategy.

The same strategy was seen in adult BACHD mice during reversal

probe trial [33]. The reason why BACHD rats maintain response

learning may probably involve altered functioning of fronto-

hippocampal (place learning) vs. fronto-striatal (response learning)

circuitry [45–47]. Indeed, TG rats show already at 3 months of

age abundant htt aggregates in the CA3 region of the hippocam-

Figure 2. Strategy shifting. Number of rats that exhibited Place (P) or Response (R) learning strategy during each Probe trial P1, P2 and P3 (days 8,
16 and 23 respectively) are represented for WT and TG cohorts of 2 and 6 months of age. The size corresponds to animals that made (1) correct arm
choices with a learning index greater than 0.5 during each training session, and (2) were successful for the two last trials prior to the probe trials in the
cross maze.
doi:10.1371/journal.pone.0071633.g002
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pus, whereas only few aggregates were present in the caudate-

putamen [25]. Therefore, the striatal-based ‘body turn response’

might prevail during learning and subsequent probe testing in TG

rats.

The rodent data are consistent with human data. Similar

impairments in reversal learning and strategy, when attention has

to be shifted from one perceptual dimension to another, have been

demonstrated in early and advanced-stage HD patients in an

extradimensional shift (EDS) test and in a Wisconsin Card Sorting

Test (WCST). These patients made perseverative errors suggesting

memory inflexibility [13–15], [48]. Finally, cognitive set shifting

ability in EDS and WCST involves cortical and basal ganglia

circuitry system, especially the prefrontal cortex and the caudate

nucleus [49].

Associative learning deficits in fear conditioning test
We performed an extensive characterization of BACHD rats in

various fear conditioning paradigms and found very robust deficits

across all age cohorts and under all experimental conditions. A

technical challenge that was successfully mastered was the

selection of an appropriate current intensity. One that was not

too high – high intensities would lead to a generalized freezing

response – or too low – low intensities would lead to large

variability in freezing and inconsistent fear conditioning [50]. A

confound of the BACHD fear conditioning phenotype by motor

deficits seems unlikely since rats did not show any difference in

percent of time freezing during habituation. In order to address if

altered sensitivity to foot shocks (US) may have confounded the

fear conditioning phenotype, we employed a flinch-jump test and

found no differences between WT and TG rats. We used a

relatively low shock intensity (0.6 mA) which may explain that not

all rats showed a ‘jump’ reflex. Our data are consistent with

findings in Wistar rats where no correlation was found between

pain sensitivity, conditioned and novelty-evoked fear responses in

‘flinch-jump’, ‘tail flick’ and ‘contextual’ fear tests [35]. Together,

these data suggest that the deficit in conditioned fear responses in

BACHD rats are not confounded by motor deficits or altered

sensitivity to foot shocks.

Figure 3. Contextual fear conditioning. [a] Schematic illustration of the contextual fear conditioning protocol. [b–c] Results are expressed as
Mean 6 SEM of percentage freezing. 4 months (WT n = 13, TG n = 13), 6 months (WT n = 7, TG n = 9) and 12 months (WT n = 16, TG, n = 6) BACHD rats
were used. No difference in baseline responding to training was observed. TG rats showed less fear memory to the context as they freeze less in
comparison with WT rats at 4, 6, and 12 months of age [b]. Long term memory was assessed 1 month and 2 months after retention testing were
conducted in the 4 months old rats cohort (i.e. they were tested at 5 and 6 months of age respectively) [c]. TG compared to WT still had lower
freezing to the context. A progressive freezing ‘extinction’ was observed. Asterisks indicate significant differences between WT and TG rats
(***p,0.001).
doi:10.1371/journal.pone.0071633.g003
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Figure 4. Delay and Trace fear conditioning. [a] Schematic illustration of the delay fear conditioning paradigm. [b] Results in 9 months old
BACHD rats are expressed as Mean 6 SEM (WT n = 13, TG n = 15). TG rats presented a significant lower freezing response to the context and to the
tone. [c] Schematic illustration of trace fear conditioning paradigm. [d] Results in 3 months old BACHD rats are expressed as Mean 6 SEM (WT n = 13,
TG n = 15). TG rats, compared to WT rats, showed a significantly lower freezing response to the context, to the tone and trace period during retention
tests. Asterisks indicate significant differences between WT and TG rats (**p,0.01 and ***p,0.001).
doi:10.1371/journal.pone.0071633.g004

Figure 5. Flinch-jump test. Sensitivity of 6 months old BACHD rats to foot-shocks for [a] flinch and [b] jump (WT n = 15, TG n = 15). Individual
intensity response is plotted and bars indicate median values for each genotype. There was no difference between WT and TG rats in current
intensities that elicited a flinch or a jump response.
doi:10.1371/journal.pone.0071633.g005
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What are the mechanisms underlying the fear conditioning

deficits in BACHD rats? Learning in contextual fear conditioning

is thought to involve association of stimuli present in the

conditioned chamber (texture, shape, dimensions) with the (US)

itself. More complex stimuli may put a higher demand on effective

learning and memory [51], and thus may affect subjects with

impaired activity in fear conditioning circuitry to a larger extent

than unaffected subjects. The amygdala and hippocampus are

involved in complex stimuli learning [52] and BACHD rats show

htt aggregates in both brain areas [25]. Therefore, TG rat’s lower

freezing response to the context could be associated to a

hippocampal-amygdala dysfunction. Such a conclusion is consis-

tent with our findings from delay and trace fear conditioning

testing. As expected from a stimulus with a higher salience, all rats

showed higher levels of fear conditioning to the tone than to the

context. The BACHD rats showed again a fear conditioning

impairment. During trace fear conditioning, the Tone and shock

(US) are separated by a time interval and the Trace period

becomes predictive of the (US). Using these more complex stimuli,

BACHD rats showed a clear deficit in fear conditioning.

Impairments in fear conditioning have also been reported in

mouse models for HD. For example, 5 weeks old R6/2 mice

showed less contextual freezing than their wild-type control,

although no difference was observed in tone conditioning [53]

(Bolivar et al. 2003). In addition, a reduced fear expression during

extinction retrieval and a reinstatement of a fear conditioning in

R6/2 mice was not associated with a weakness in CS-US, but with

neuronal hypoactivation in the prelimbic cortex, a subregion region

of the prefrontal cortex [54]. Four months old CAG140 Knock-In

(KI) mice have shown an increased freezing response during

training, but, again displayed no deficit in recall tone fear

conditioning [55]. We reported that adult transgenic BACHD

mice present higher freezing rates to the context and tone during

retention testing, and attributed this impairment to emotional

deficits [33]. The difference in fear conditioning phenotypes

between BACHD mice and rats is surprising. However, in view of

the robustness of the rat phenotype and the fact that we are

eventually interested in the translation of these findings to humans,

it would be more sensible to perform fear conditioning studies in a

non human primate model for HD [9], rather than undertaking an

effort to further characterize the mouse fear conditioning

phenotype.

Interestingly, reversal learning impairments in a cross-maze

appeared at 6 months of age, whereas associative learning and

memory deficits in fear conditioning tasks were already present at

3 months of age. Matching the different onset of these deficits with

the emergence of htt aggregates in brain areas involved in the

circuitry underlying cross maze behavior and fear conditioning

will be helpful to translate the findings from rodents to humans.

Especially for fear conditioning the functional neuroanatomy has

been well described [28]. Rodent data support a role for the

amygdala in the acquisition of conditioned fear, whereas the

hippocampus and the medial prefrontal cortex (mPFC) are

required for consolidation of long-term memory [56–59]. Human

functional magnetic resonance imaging (fMRI) studies in delay

and trace fear conditioning, have demonstrated a role of the

hippocampus and other brain regions that support working

memory processes in encoding temporal information and main-

taining the associative representation CS-US during trace intervals

[29]. Wide spread htt aggregates have been observed in brain areas

involved in fear conditioning such as the neocortex, hippocampus,

and the amygdala of BACHD rats [25]. However, the behavioral

effects occurred at an earlier age than the htt aggregates (12

months). It is possible that more subtle molecular and cellular

deficits in the cortex, hippocampus and amygdala contribute to

the early deficits in fear conditioning. Further studies should

address the developmental mechanisms underlying the disease

progression in BACHD rats.

Conclusion

Our study is the first to provide evidence of progressive

cognitive deficits in a transgenic BACHD rat model for HD. TG

animals showed difficulties in associative learning at 3 months of

age in a fear conditioning test, and impairments in spatial memory

at 6 months of age, mainly in reversal training where attention has

to be shifted from one set of learning to another. BACHD rats

recapitulate some of the cognitive impairments seen in HD

patients. The precise time course for development of the cognitive

symptoms requires further studies in additional age cohorts. As

fear conditioning deficits appeared already in the youngest cohort

tested, animals of 1 and 2 months of age need to be tested to

determine if the onset of the fear conditioning is similar to the

onset of, for example, rotarod deficits that occur at 2 months of

age [27]. Emergence of cognitive deficits before motor deficits

might more closely mimic the time course in HD patients [16]. In

conclusion: the robust fear conditioning phenotype offers a firm

foundation for future studies aimed to further characterize the

time course for the associative memory deficit and its underlying

neural circuitry. In addition, this functional readout can be

validated for drug discovery approaches that target htt aggregates,

using, for example, adenovirus-based viral transfection methods

against htt [60].
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