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Abstract

In order to provide a method for precise identification of insulin sensitivity from clinical Oral Glucose Tolerance Test (OGTT)
observations, a relatively simple mathematical model (Simple Interdependent glucose/insulin MOdel SIMO) for the OGTT,
which coherently incorporates commonly accepted physiological assumptions (incretin effect and saturating glucose-driven
insulin secretion) has been developed. OGTT data from 78 patients in five different glucose tolerance groups were analyzed:
normal glucose tolerance (NGT), impaired glucose tolerance (IGT), impaired fasting glucose (IFG), IFG+IGT, and Type 2
Diabetes Mellitus (T2DM). A comparison with the 2011 Salinari (COntinuos GI tract MOdel, COMO) and the 2002 Dalla Man
(Dalla Man MOdel, DMMO) models was made with particular attention to insulin sensitivity indices ISCOMO, ISDMMO and kxgi

(the insulin sensitivity index for SIMO). ANOVA on kxgi values across groups resulted significant overall (P,0.001), and post-
hoc comparisons highlighted the presence of three different groups: NGT (8.626102569.3661025 min21pM21), IFG
(5.306102565.1861025) and combined IGT, IFG+IGT and T2DM (2.096102561.9561025, 2.386102562.2861025 and
2.386102562.0961025 respectively). No significance was obtained when comparing ISCOMO or ISDMMO across groups.
Moreover, kxgi presented the lowest sample average coefficient of variation over the five groups (25.43%), with average CVs
for ISCOMO and ISDMMO of 70.32% and 57.75% respectively; kxgi also presented the strongest correlations with all considered
empirical measures of insulin sensitivity. While COMO and DMMO appear over-parameterized for fitting single-subject
clinical OGTT data, SIMO provides a robust, precise, physiologically plausible estimate of insulin sensitivity, with which
habitual empirical insulin sensitivity indices correlate well. The kxgi index, reflecting insulin secretion dependency on
glycemia, also significantly differentiates clinically diverse subject groups. The SIMO model may therefore be of value for the
quantification of glucose homeostasis from clinical OGTT data.
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Introduction

Metabolic conditions related to glucose tolerance disorders exist

in several distinct forms, such as Type 2 Diabetes Mellitus

(T2DM), Impaired Glucose Tolerance (IGT) and Impaired

Fasting Glucose (IFG). In order to prevent and treat such

disorders, early diagnosis of glucose intolerance is of crucial

importance, since a deterioration of beta-cell function can

determine the conversion of impaired glucose metabolism (IGM)

to diabetes [1]. However, it has been shown that also subjects with

normal glucose metabolism can show elusive impairment of beta-

cell function [2]. Therefore, identification and characterization of

altered beta-cell function can help understand and potentially

prevent disease development [3] [4].

The euglycemic-hyperinsulinemic clamp technique is widely

considered to be the reference method for the assessment of insulin

sensitivity. This procedure, however, is complicated, experimen-

tally demanding, and costly: its use outside of specialized research

centers is impractical. Moreover, clinical research involving the

assessment of metabolic parameters has moved from small patient

samples to large trials, thus making the use of the clamp technique

even more unrealistic. Alternative methods applicable to large

studies have been proposed. Among these, the Intravenous

Glucose Tolerance Test (IVGTT) is experimentally easier, but

the need of frequent blood sampling makes its application to a

large number of patients difficult. Oral tests, such as the Mixed

Meal and the Oral Glucose Tolerance Test (MMTT, OGTT), in

addition to being simpler, are also more reliable because the oral

administration triggers a physiological secretion of glucose

regulating hormones, such as gastrointestinal incretins [5]. The

MMTT and OGTT are in fact more physiological tests,

mimicking habitual carbohydrate intake.

The OGTT is a very common test in medical practice: it

consists of administering glucose orally and detecting, by means of

a few blood samples, how rapidly it is absorbed into and then

cleared from the blood stream. For its simplicity, it is a method
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suitable for large studies assessing insulin secretion and action. As

regards insulin sensitivity, several attempts have been made to

obtain surrogate measurements [6–10]; however, it would seem

logical to use a suitable ‘‘patient-tailored’’ mathematical model to

extract from observed concentrations as much information as

possible on insulin secretion and sensitivity.

An ideal model ought to be simple and devoid of too many

arbitrary assumptions. Arbitrary mathematical constructs have

been used in the past to overcome the inherent lack of robustness

of some models, encountered when trying to estimate too many

parameters from relatively small data sets. Model assumptions

should however be physiologically plausible and not simply

represent ad hoc numerical simplification shortcuts. A good usable

model should therefore be simple, with as few free parameters as

practicable and should remain pertinent by directly incorporating

the variables of physiological and clinical interest [8].

The aim of the present study is the development of a relatively

simple mathematical model for the OGTT, which nonetheless

coherently incorporates commonly accepted physiological assump-

tions, providing a patient-oriented approach for the identification

of insulin sensitivity and secretion.

The present model extends and integrates several previous

contributions [10–13], with the stated goal of achieving a compact,

clinically applicable formulation, with good physiological plausi-

bility and without sacrifice in adaptation to observations. In Dalla

Man et al. [10], the classic minimal model of glucose kinetics [14]

was coupled with a parametric model of the rate of glucose

appearance (Ra), described in piecewise linear fashion. Although

data fitting was generally good when that model of Ra was applied

to our data, we found that the model was neither numerically

robust (with large variability in parameter estimates), nor

physiologically convincing: a piecewise-linear approximation of

glucose gastrointestinal absorption needs many parameters and,

above all, uses noisy observations as theoretical, error-free pivotal

points, which is statistically inconsistent. Salinari et al. [13]

proposed a new version of the OGTT minimal model [15,16],

where gastric emptying, the transport of glucose along the

intestinal tract and its absorption from gut lumen into portal

blood predicted the time course of glucose Ra in terms of

parameters with a direct physiological meaning. The Salinari

model also provided an expression for the release of incretin

hormones as related to glucose transit into gut lumen. While this

formulation has physiological value, its identification requires

fitting the model to OGTT glucose and GLP-1 data, which are not

collected during standard clinical practice. Moreover, while the

Salinari model does address the physiological plausibility of the

prediction of glucose Ra, the model lacks a representation of

insulin dynamics, using instead interpolated noisy observations as

a forcing function for plasma glucose dynamics. Interpolating

noisy observations in order to represent the expected values of a

state variable is incorrect and opens the door to potentially very

misleading parameter estimation results: see elsewhere [17,18] a

complete discussion of this issue in the present glucose-modeling

context.

For the purpose of the present work, computations for the Dalla

Man and Salinari models were performed in Matlab and in R,

both interfacing with C routines. The Salinari model was

implemented in the Matlab environment and the ‘‘interp1’’

function was used (piecewise linear interpolation). Predictions for

the Dalla Man Model were obtained in C++ interfacing with the R

environment, and as before, a linear interpolation was used.

We present here a new model (Simple Interdependent glucose/

insulin MOdel SIMO) where, on one hand, insulin secretion from

beta-cells after glucose intake is represented by a mathematical

formulation of the theoretical predicted insulin concentrations

rather than by the noisy observations themselves, and where, on

the other hand, the glucose rate of appearance is derived by

absorption of glucose along the gastrointestinal tract, represented

by a sequence of three compartments, as a simplification of the

continuous one-dimensional process presented in Salinari et. al.

[13].

The model can be rapidly implemented in standard computa-

tional software packages (e.g. Matlab, R, Scilab, Octave, etc.) and its

computation is freely available via internet at the page http://

biomat1.iasi.cnr.it/gemini/ogtt/. In the present work we have

applied this model to data from 78 patients from five different

glucose tolerance groups: Normal Glucose Tolerance (NGT),

IGT, IFG, IFG+IGT and T2DM, showing that model parame-

ters, identified on each subject, reflect accurately and informatively

the underlying physiological status in the different conditions

examined. We also compared the new model’s performance with

standard empirical and model-based indices of insulin sensitivity.

Materials and Methods

Model Development
During model development, we studied the use of a series of

glucose absorption compartments, that is, a number of sections

through which glucose sequentially transits, before becoming

available in plasma: no clear advantage was obtained if more than

three compartments, in addition to the Stomach, were considered.

Therefore, four compartments, corresponding indicatively to

Stomach, Jejunum and Ileum, plus a delay compartment between

Jejunum and Ileum, were included in the model. Glucose entry

into the gut causes the release of incretin hormones, which have an

effect on insulin release. Incorporating the incretin mechanism

proved to be essential for model performance. The incretin effect

was assumed to stem from glucose content in the Jejunum and

Ileum. We also considered modeling stomach emptying by means

of a nonlinear dynamics (results not shown), but results were no

better than with the linear version. Incorporating in the model

both an incretin mechanism and a limited power progression of

pancreatic insulin release with increasing glycemias turned out to

be fundamental in fitting data: a good performance of the model

strongly depended on both these features.

Model Structure
A block diagram of the model is shown in Figure 1,

schematically illustrating compartments and their interactions.

The model consists of the following six compartmental ordinary

differential equations:

dS

dt
~{kjsS S(0)~D ð1Þ

dJ

dt
~kjsS{kgjJ{krjJ J(0)~0(2)

dR

dt
~{klrRzkrjJ R(0)~0 ð3Þ

dL

dt
~klrR{kglL L(0)~0 ð4Þ

Insulin Sensitivity and Secretion from OGTT
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dG

dt
~{kxgG{kxgiIGzGPRODzf

kgjJzkglL

V|BW

� �
G(0)~Gb ð5Þ

dI

dt
~{kxiIzkmax

ig

~GGc

G�cz~GGc
I(0)~Ib ð6Þ

where

GPROD~T1g|e
{l1gG

zT2gi|e
{l2gG|I ð7Þ

and

~GG~Gzfgj(JzL) ð8Þ

From the steady state conditions it follows that:

GPROD(0)~(kxgzkxgiIb)|Gb ð9Þ

T1g~
GPROD(0){T2gi|e

{l2gGb|Ib

e
{l1gGb

ð10Þ

kmax
ig ~Ib|kxi|

G�czG
c
b

G
c
b

� �
ð11Þ

G and I represent glucose and insulin plasma concentrations,

respectively. S, J and L are glucose amounts in stomach, jejunum

and Ileum respectively, while R is a delay compartment necessary

to describe the transit of the glucose load through the intestinal

lumen.

Gastric emptying and gastrointestinal tract

representation. The above mathematical representation (eq.1

to eq. 4) is a simplification of the glucose transit in the intestinal

tract as described by Salinari et al. [13], where the progression of

the glucose bolus was represented by means of a continuous one-

dimensional process in which all glucose particles are transported

from the proximal to the distal end of the small intestine with

constant speed. Stomach glucose dynamics is described by

equation 1, where the initial condition is the administered glucose

dose D. The elimination (emptying) term depends on glucose

amount in the stomach, where kjs is the glucose transfer rate from

stomach to jejunum. From the jejunum, glucose passes into the

ileum through a delay compartment, and is absorbed with two

potentially different constant rates of transfer (kgj and kgl). Equation

2 represents the variation of glucose amount in the jejunal

compartment. The first term on the right hand side is glucose

entry, which coincides with emptying from the stomach. The

second term represents glucose absorption rate from the jejunum,

which constitutes part of the rate of appearance into the glucose

plasma compartment; the third term represents instead the

amount of glucose not absorbed in the proximal intestinal tract,

which transits to the Ileum (represented by equation 4) through the

delay compartment R (represented by equation 3). The structure

of equations 3 and 4 is clearly similar to that of equation 2.

Glucose dynamics. Equation 5 describes glucose dynamics,

with the first term on the right hand side representing spontaneous

glucose elimination rate and with the second term representing

glucose tissue uptake due to insulin effect. The parameter kxgi,

which is the insulin-dependent glucose elimination rate, represents

an index of insulin sensitivity. Following identical considerations as

those described elsewhere for the Single Delay Model (SDM) of

the IVGTT [17], kxgi has the same dimensions and meaning as the

insulin sensitivity index SI computed from the ‘‘Minimal Model’’

[14].

Hepatic Glucose Production: the term GPROD (equation 7)

represents Hepatic Glucose Output (HGO) as dependent on

circulating plasma glucose and insulin. Liver glucose production is

suppressed and glycogen-synthesis is enhanced in the presence of

high plasma glucose and insulin concentrations. In the present

formulation this indirect relationship has been represented by a

decreasing exponential net glucose production for increasing

glycemia and insulinemia. The first term in the GPROD equation

describes net HGO as only dependent on plasma glucose levels,

the second term instead takes into account the response of the liver

also in the presence of high insulin concentrations.

Glucose Rate of Appearance: the last term of equation 5

represents glucose appearance into plasma, due to the adminis-

tered dose D, which goes through the stomach and is absorbed

from the small bowel. Since not all of the administered glucose

amount is effectively absorbed, this term is multiplied by a fraction

of absorption f. Delayed insulin action on glucose uptake has not

been included because, even if it is widely believed that insulin

action is in fact delayed [19], diffusion time of insulin into the

interstitium is relatively fast, given the short recirculation time

Figure 1. Block diagram of the model. Schematic representation of
the six-compartment model. D is the orally administered quantity of
glucose. S represents the quantity of glucose in the stomach while J, R
and L represent the glucose content in the jejunum, in a delay
compartment and in the Ileum respectively. G indicates the compart-
ment for the plasma glucose concentration and I indicates the insulin
plasma concentration. Measurements were taken for plasma glucose
and insulin concentrations. Continuous lines represent entry or exit
fluxes while dotted lines represent stimulation (arrows) or inhibition
(black circles) mechanisms.
doi:10.1371/journal.pone.0070875.g001
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(approximately 2 minutes in the human). Further, previous

experiences with an IVGTT model [17] showed that this term is

not necessary to provide good adaptation to data. In that work, it

was also shown that appreciable delay in the apparent effect of

insulin was well reproduced by the model even in the absence of

an explicit delay in the action of the hormone on target cells.

Insulin dynamics. Equation 6 describes insulin dynamics.

The first term on the right-hand side represents insulin elimina-

tion, where kxi is the apparent first order insulin elimination rate;

the second term describes insulin secretion due to both direct

glucose stimulation and incretin hormones (equation 8).

Pancreatic Insulin Release: pancreatic insulin release is assumed

to vary according to a Hill dynamics whose slope depends on the

value of the exponent c, and which reaches a maximal rate of

release equal to kmax
ig . The coefficient c represents the rate of

attainment of maximal insulin secretion rate as glycemia and

incretin hormones increase. Equations 9, 10 and 11 derive from

equilibrium conditions of equations 5 and 6.

The meaning of each model parameter and the corresponding

units of measurement are reported in Table 1.

Empirical Glucose Homeostasis Descriptors
Besides model parameter estimates, for each subject a number

of surrogate indices of glucose/insulin homeostasis were also

computed (for a review see [20]): the Homeostasis Model

Assessment (HOMA-IS), the Insulin Sensitivity Index Composite

(ISIcomp) and the glucose Metabolic Clearance Rate (MCRest)

were used to provide estimates of insulin sensitivity. A comparison

was also made with the OGIS index [6] and with the ISBREDA

index [9], which are both model-inspired. Moreover a naif index

(ISNAIF), computed simply as the inverse of the mean of the

observed glycemias during the OGTT, was compared with all the

other considered indices. The HOMA-BCF, the ratio (AUCrig) of

area under the insulin concentration curve to area under the

glucose concentration curve and the Insulinogenic Index (IGenic)

were used as estimates of beta-cell function.

Models of Glucose-insulin Homeostasis
Both the Dalla Man [10] and the Salinari [13] models were

compared with the SIMO as alternative models for the

interpretation of the OGTT. In all three models the insulin

sensitivity index SI appears as one of the parameters to be

estimated.

Patient Sample
After signing the written informed consent, a total of 118

subjects were admitted to the Outpatient Clinic of the Institute of

Endocrinology in Prague. Women participated between the 1st

and 5th day of their spontaneous menstrual cycle. The protocol

was approved by the Ethical Committee of the Institute of

Endocrinology in Prague (Czech Republic) and was conducted

according to the principles of the Helsinki Declaration. Weight (to

the nearest 0.1 kg) and height (to the nearest cm) were measured.

Basal fasting blood samples were taken from the cubital vein.

Subsequently, a 75 g glucose oral load was administered and

additional blood samples were gathered at 30, 60, 90, 120, 150

and 180 min for measuring glucose and insulin concentration.

Samples were centrifuged and serum was stored at 220uC until

analysis. Insulin was assayed by IRMA (Immunotech, Prague,

Czech Republic), with an intra- and inter-assay CV of 4.6 and

5.3%, respectively. Glucose concentration was measured using the

glucoxidase method (Beckmann Glucose Analyser, Fullerton, CA)

in venous plasma, with an intra- and inter-assay CV of 1.8 and

2.6%, respectively. Of the original 118 subjects, 78 had at least five

Table 1. SIMO model parameter description.

Parameter Unit of measurements Description

Gb [mM] basal plasma glucose concentration immediately before glucose administration

Ib [pM] basal plasma insulin concentration immediately before glucose administration

V [L/Kg] glucose distribution volume

D [mmol] dose of glucose administered

kjs [min21] glucose transfer rate from stomach to jejunum

kgj [min21] glucose transfer rate from jejunum to plasma

krj [min21] glucose transfer rate from jejunum to the delay compartment

klr [min21] glucose transfer rate from the delay compartment to ileum

kgl [min21] glucose transfer rate from ileum to plasma

kxg [min21] insulin independent first order glucose elimination rate

kxgi [min21 pM21] insulin dependent second order glucose elimination rate

T1g [min21 mM] maximal rate of liver glucose production (in plasma concentration units) as dependent only on glycemia

T2gi [min21 mM] maximal rate of liver glucose (in plasma concentration units) production as dependent on both glycemia and
insulinemia

l1g [mM21] rate of decay of liver glucose production with increasing glycemia

l2g [mM21 pM21] rate of decay of liver glucose production with increasing glycemia and insulinemia

f [#] fraction of bioavailable glucose from gastrointestinal tract

kxi [min21] first order insulin elimination rate

kig
max [min21 pM] maximal rate of insulin release

c [#] pancreatic insulin secretion acceleration

fgj [mM/mmol] glucose-concentration equivalent effect of incretins on insulin release depending on gut glucose content.

doi:10.1371/journal.pone.0070875.t001
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valid measurements out of seven for glycemia and five out of seven

for insulinemia, and were retained for model identification.

According to fasting and 2 h glucose, subjects were divided into

5 different metabolic groups following the American Diabetes

Association criteria [21].

Statistical Parameter Estimation
Individual model parameters were obtained for each subject,

by fitting the new proposed model to glucose and insulin plasma

concentrations by Weighted Least Squares (WLS). Weights were

obtained by multiplying the inverses of the squares of the

expectations by the squared coefficients of variation, which were

set at 22% for glucose and 31% for insulin, as estimated in a

previous work [18] from a series of Glycemia and Insulinemia

determinations in humans after an Intravenous Glucose

Tolerance Test. It is to be noted in this context that the 22%

and 31% CVs in-vivo observations are obviously much larger

than the commonly reported CVs for repeated measurements

on the same blood sample (e.g. 6% for insulin and 2% for

glucose [22]). All observations on glucose and insulin were

considered in the estimation procedure. Parameter estimation

was also performed for the Salinari et al. [13] model as well as

for the Dalla Man model [10] (a synthetic description of both

models is reported in Appendix S1 and Appendix S2

respectively); for these two models only glucose data were used

for the fitting procedure whereas interpolated insulin observa-

tions entered the models as a forcing function as suggested by

the respective Authors. Due to the lack of GLP1 data, when

applying the Salinari et. al. model some parameters were set at

their average values, as reported in the original work [13] and

as summarized in the following.

The original set of parameters of the Salinari et. al. [13] model

to be estimated for each subject consisted in fact of seven

parameters: k, c2, SG, SI, p, GLPb, and bGLP (see Appendix S1 for a

more detailed description of the implemented model). The

remaining model parameters were set to fixed values by the same

authors. In particular, in the present work the values used for the

fixed parameters are those reported in the legend of Figure 2 in

[13], with z1 = 0 cm, z2 = 630 cm, s1 = 35 cm, s2 = 140 cm,

L = 630 cm, u = 3.5 cm/min, b = 1.2 and V = 0.19 L/kg. Param-

eters GLPb and bGLP should be estimated from the observed GLP-1

dynamics. Because of the lack of GLP-1 observations, in the

present work GLPb, and bGLP were set to the average values

reported in Table 1 of [13], that is to 17.6 pM and 6.3361029

L21 respectively, while parameters k, c2, SG, SI and p were free and

were therefore estimated.

Due to evident a priori unidentifiability, some parameters were

kept fixed throughout the optimization process. The distribution

volume Vg was set at 0.19 liters per kg body weight, the standard

assessment of glucose distribution space [23]. Glucose effectiveness

kxg was set at 0.001 min21: in this case, previous work [17] showed

that this coefficient was not necessary for a good fit to IVGTT

data; also, the mass of glucose-metabolizing tissue, other than the

brain (assumed having constant glucose consumption), is insulin-

dependent (muscle and adipose tissue); on the other hand, some

linear glucose consumption could be attributed to red blood cells

and possibly other tissues, and therefore a small but nonzero value

for kxg was selected. The coefficient kgj was set at 0.042 in order to

have, empirically, a residue of 8% of an intra-jejunally adminis-

tered bolus after 1 hour, a number which was felt plausible by the

medical doctors with whom the authors collaborate. Similarly, the

coefficient fgj was set at 0.02 in order to express the empirical idea

that an addition of 50 mmol (9 g, approx. two teaspoons) of

glucose in the bowel may have the same stimulating effect (via the

incretin mechanism) on pancreatic insulin release as the addition

of 1 mM to plasma glucose concentration. The coefficients krj and

klr were empirically set at 0.09 min21 and at 0.06 min21

respectively in order for essentially 100% of jejunal glucose

content to reach the ileum within 3 hours. For all of the above

parameter values, the concern was to acceptably assess at least the

order of magnitude involved, leaving to further investigation the

issue of obtaining more precise individual estimates for a given

patient.

A Nelder-Mead simplex algorithm was used for all optimiza-

tions [24].

For each subject, the estimate of the approximate covariance

matrix of the parameter estimates was computed according to

asymptotic distribution theory. Given the independency of errors

and given the hypothesized structure of the covariance of errors,

the estimated parameter vector b̂b is normally distributed with

mean b, consisting of the true values of the model parameter

vector, and covariance matrix equal to:

Sb̂b~ Jt bð ÞS{1 bð ÞJ bð Þ
� �{1

whose estimate is obtained by replacing b with b̂b, and where S is

the covariance matrix of the error vector.

Comparisons among groups on the estimated model parameters

as well as on the empirical glucose homeostasis indices were

performed by means of one-way Analysis of Variance. Post-hoc

multiple comparisons were performed using the Least Significant

Difference (LSD) test with the Hochberg correction. A P-

value,0.05 was assumed to be statistically significant.

Model Validation
A Visual Predictive Check (VPC) was performed for the SIMO

model in order to have a visual inspection of its predictive

properties. Parameter estimation was conducted in terms of

logarithms; at the second stage of the statistical model formaliza-

tion a normal distribution of the logarithm of the parameters was

hypothesized. In particular we hypothesized the presence of five

sub-populations (indexed by g), one for each different glucose

tolerance group. Formally:

hig*N(hg,Dg),

where hig is the individual parameter, in logarithm form, of subject

i belonging to sub-population g, hg and Dg are the true sub-

population mean and variance-covariance matrix respectively. In

a two-stage parameter estimation method the estimates of hg and

Dg are given by the sample mean and covariance of the estimates

of hig.

For each of the 5 groups the sample mean and the sample

variance-covariance matrix were then used to draw parameter

samples from a multivariate normal distribution. Measurement

errors were hypothesized to be independent and normally

distributed with zero mean and variance equal to the squares of

the expectations times the squared coefficients of variation, set at

22% for glucose and 31% for insulin observations, as stated in the

previous subsection. For each patient in the five groups 200

simulations were performed with the model, using parameters

drawn from the corresponding distribution and observation errors

drawn from the relative error distribution. The 25th, 50th and 75th

percentile were computed and plotted along with the observed

data. The 90% prediction interval (from the 5th percentile to the

95th percentile) was also reported as shaded area.

Insulin Sensitivity and Secretion from OGTT
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Results

In the following, the three models compared have been

indicated as SIMO model (Simple Interdependent glucose/insulin

MOdel) to refer to the new proposed model, COMO (COntinuous

GI tract MOdel) for the Salinari et. al. model, and DMMO for the

Dalla Man MOdel.

The three models have been fitted to individual OGTT

experiments from 78 subjects belonging to 5 groups with different

types and degrees of glucose metabolism impairment.

Sample Description
Table 2 reports the anthropometric characteristics of the

analyzed subjects, by group. Age was significantly different among

groups (P,0.001 by ANOVA), with the NGT group presenting a

lower average age with respect to all the other groups. BMI also

increased with worsening of the metabolic status: post-hoc

comparisons showed that patients with T2DM and with IGT

plus IFG have a greater BMI than patients with only IGT or IFG.

NGT subjects had the lowest BMI. ANOVA on basal glucose (Gb)

and basal insulin (Ib) plasma concentrations resulted significant

overall (P,0.001 for both variables). Post-hoc analyses highlighted

no significant difference between IFG and IGT+IFG and between

IGT and NGT for basal glycemia. Basal insulinemia was

significantly different between IFG+IGT and all the other groups

apart from T2DM; T2DM subjects had higher basal insulinemia

than NGT’s subjects. Table 3 reports the computed empirical

indices of glucose/insulin homeostasis by group. Glucose levels at

2 hours (G2h) were higher in T2DM, IFG+IGT and in IGT

subjects (11.9562.43, 9.2261.43 and 9.1761.37 respectively,

P,0.001 from ANOVA). Average values of G2h in the other two

groups were 5.7162.13 in NGT patients and 5.8861.08 in the

IFG group.

Validation of the Model
The predictive properties of the SIMO model were assessed by

performing a visual predictive check (VPC) for each of the 5

groups. For each patient 200 simulations were performed with the

model and Panels A and B of Figure 2 report the 90% prediction

interval (shaded area), the 25th, 50th and 75th percentile (dashed

lines) as well as all the observed data from patients in the

considered group. In interpreting the figures, it must be noticed

that scale varies after NGT for glycemia and after IFG for

insulinemia.

The performance of the model in predicting glycemia and

insulinemia observations and the validity of the assumptions made

in relation to the error variance were evaluated by means of the

diagnostic plots of weighted residuals versus time, weighted

residuals versus predicted concentrations and observed concen-

trations versus predicted concentrations. Figures 3 and 4 from

panel A to C report the three plots for glycemia and insulinemia

respectively.

Model Insulin Sensitivity Indices: a Comparison among
Models

Comparison among models was made with particular attention

to the results related to insulin sensitivity indices: ISCOMO,

ISDMMO and kxgi (the insulin sensitivity parameter from the

SIMO).

The values of G2h in the investigated groups were highly and

inversely correlated with the insulin sensitivity parameters kxgi

(r = 20.57, P,0.001) and ISDMMO (r = 20.34, P = 0.003). No

correlation was observed between G2h and ISCOMO.

Correlations of model-derived and empirical sensitivity indices

are reported in Table 4. The kxgi index correlates better than the

other model derived index SIDMMO with all other insulin

sensitivity indices. ISBREDA appears to have the highest coefficients

of correlation with all other indices, however, it does not

discriminate between the different glucose tolerance groups: for

it, LDS contrasts only separate NGT from all other groups

(Table 4). The ISNAIF index was also highly correlated with all

other indices and was moreover able to discriminate all groups

from each other.

ANOVA on kxgi values across groups resulted significant overall

(P,0.001), and post-hoc comparisons highlighted the separation

between three different groups: NGT patients presenting with the

highest value (8.626102569.3661025), followed by IFG patients

(5.306102565.1861025) and with the combined IGT, IFG+IGT

and T2DM patients presenting with the lowest average values

(2.096102561.9561025, 2.386102562.2861025 and

2.386102562.0961025 respectively). Table 5 reports single

group mean values as well as the average over the aggregated

groups. No significance was obtained when comparing the other

two model-derived insulin sensitivity indices across groups.

Figure 2. Visual Predictive Check. Visual Predictive Check (VPC) for each of the 5 groups (panel A for NGT, IFG and IGT; panel B for IFG+IGT and
T2DM). For each patient 200 simulations were performed with the model: the shaded area represents the 90% prediction interval, dashed lines
represent the 25-th, 50-th and 75-th percentile. Observed data are reported as circles.
doi:10.1371/journal.pone.0070875.g002

Table 2. Anthropometric characteristics of the subjects: means and standard deviations by group.

NGT N = 28 IFG N = 15 IGT N = 13 IFG+IGT N = 10 T2DM N = 12

mean SD mean SD mean SD mean SD mean SD

Age [year] 35.35 13.65 48.25 12.62 47.74 11.49 49.56 14.72 52.00 12.06

Weight [Kg] 74.98 15.92 80.55 11.56 83.45 17.01 89.98 20.99 83.28 19.81

Height [cm] 168.8 9.3 171.5 8.2 170.4 13.2 169.0 9.5 163.8 10.20

BMI [kg/m‘2] 26.33 5.52 27.32 3.18 28.71 4.73 31.00 5.00 30.88 5.88

Basal glucose [mg/dl] 85.54 6.71 106.04 5.14 90.26 5.70 106.90 5.96 123.03 19.95

Basal insulin [mU/L] 7.29 5.32 11.52 6.50 14.08 14.90 23.01 24.28 18.66 12.17

Gender F/M (%F/%M) 18/10 (64.29/35.71) 7/8 (46.67/53.33) 7/6 (53.85/46.15) 7/3 (70.00/30.00) 10/2 (83.33/16.67)

doi:10.1371/journal.pone.0070875.t002
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Among model-based insulin sensitivity indices, kxgi presented the

lowest sample average coefficient of variation over the five groups

(25.43%), with the average CVs for ISCOMO and ISDMMO being

equal to 70.32% and 57.75% respectively. In order to attempt to

limit the impact of outlier estimates, which could obscure the

physiologic significance of the indices, comparisons among groups

in terms of insulin sensitivity were also repeated when considering

only values between the 20th and 80th percentiles. Results for this

‘‘trimmed’’ subgroup are also reported in Table 5. While ANOVA

was again non-significant for both SIDMMO and SICOMO, for kxgi

ANOVA was significant and post-hoc analysis isolated two

(instead of three) groups: NGT and IFG together versus IGT,

IFG+IGT and T2DM together.

The comparison in terms of dispersion of the parameter

estimates was performed only between SIMO and DMMO

models, since COMO model performs poorly also in terms of

insulin sensitivity estimation. This apparently poor performance of

the COMO model is essentially due to a large number of model

parameters, which, in the absence of GLP-1 observations, have to

be fixed to some average or plausible values.

Keeping in mind that the results are valid only when asymptotic

theory holds, summary results related to the computations of the

asymptotic dispersion around the parameter estimates are

reported in Tables S1, S2 and S3 in the Supporting Information.

Inversion of the matrix Sb̂b was possible only in 14 case out 78 for

the DMMO model whereas for the SIMO model the covariance

matrix could be computed for every subject. Table S1 reports the

median of the coefficients of variation for each free parameter of

the SIMO model, estimated on logarithmic scale. Table S2 reports

results obtained for all free parameters of the DMMO model, as

well as for the SIDMMO index, whose dispersion was computed

from the dispersion of parameters p2 and p3, on which the insulin

sensitivity index SIDMMO depends. From Table S1 it can be seen

that the parameter kxgi is the parameter whose estimate dispersion

is the lowest in all five groups. The other parameters which are

estimated with good precision are the parameters kxi, c and kjs.

From Table S2 it can be seen that, over the 14 subjects which

the DMMO model estimated with sufficient numerical stability to

allow the computation of the asymptotic variance-covariance

matrix, the best precision is obtained for the SIDMMO and p3

parameters in all groups. Table S3 presents a direct comparison

between the SIMO and DMMO models in terms of precision of

the respective Insulin Sensitivity index estimates. The first column

on the left reports results obtained for the SIMO kxgi index over the

whole sample of 78 subjects, the column in the center reports

results for the SIMO kxgi over the best 14 patients in terms of

estimate precision and the column on the right reports results for

SIDMMO over the subsample of 14 subjects for whom the

covariance matrix of the estimates could be computed. The table

reports the average estimates, in natural units, the median of the

coefficients of variation and their Interquartile Range.

The results obtained with the SIMO model over the whole

sample are comparable with those obtained for the best

subsample, and much better than the results obtained with the

DMMO over the 14 subjects for which a Hessian could be

computed and inverted: not only the coefficients of variation are

smaller, hence the estimates are more precise, but the average

values of insulin sensitivity obtained with the DMMO model

average more than 20061025 for NGT subjects (more than 20

times the ‘‘normal’’ value which should be of the order of 1024

[14]), 22 and 3561025 respectively for IFG’s and T2DM’s, which

would imply that T2DM subjects are 6 to 7 times more insulin

sensitive than IGT’s and IFG+IGT’s. These results are not

plausible and are clearly due to numerical instability.

In order to study model behavior in case of extreme parameter

estimates, Figure 5 panel A1 reports the predicted and observed

plasma glucose concentrations obtained with the COMO model

for one IFG patient whose insulin sensitivity index ISCOMO was

estimated at the low limit of optimization (10210), while Figure 5

panel B1 reports the predicted and observed plasma glucose

concentrations obtained with the DMMO model for one T2DM

patient whose insulin sensitivity index ISDMMO was estimated at

3.2661023 (very high). The OGTT data from these same two

patients are reported again in Figure 5 panels A2–A3 (IFG patient)

and panels B2–B3 (T2DM patient), together with curves obtained

by fitting these subjects with the SIMO model.

The problem introduced by incorrectly using interpolated noisy

observations as forcing function for model fit was explored, for the

newly proposed model, by using interpolated insulin instead of

predicted insulin. Figure 6 compares, for one NGT patient, the

fitting performance of the COMO model (dotted line) with the

Table 3. Empirical indices of glucose/insulin homeostasis by group.

NGT IFG IGT IFG+IGT T2DM P

mean SD mean SD mean SD mean SD mean SD

HOMA-IS 1.07 0.95 0.43 0.22 0.56 0.34 0.30 0.20 0.25 0.14 ,0.001

ISIcomp 9.20 6.58 4.54 2.33 4.34 2.43 3.02 2.63 2.40 1.24 ,0.001

MCRest 9.65 1.72 9.14 1.17 7.66 1.96 6.70 2.23 6.24 1.90 ,0.001

OGIS 622.4 175.22 541.3 85.58 469.9 121.98 375.2 110.63 371.5 102.71 ,0.001

ISBREDA 20.70 17.91 11.59 7.02 6.24 5.12 6.87 8.16 4.16 3.94 ,0.001

ISNAIF 0.17 0.042 0.14 0.014 0.12 0.016 0.11 0.014 0.09 0.012 ,0.001

HomaBCF 6.46 4.00 5.50 3.42 9.86 8.48 10.11 9.28 7.26 6.16 0.19

AUCrig 41.26 19.75 46.27 22.62 68.39 72.64 73.35 57.65 52.17 47.72 0.19

IGenic 92.53 64.23 80.94 45.46 228.10 449.62 88.95 63.11 71.07 65.78 0.20

AUCG 1043.86 268.08 1167.32 183.92 1363.56 274.45 1348.32 258.38 1781.38 307.48 ,0.001

AUCI 41851.50 20816.66 53991.00 26365.69 96569.31 113092.57 106146.60 105779.98 91675.50 82809.23 0.03

G2h 5.71 2.13 5.88 1.08 9.17 1.37 9.22 1.43 11.95 2.43 ,0.001

doi:10.1371/journal.pone.0070875.t003
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SIMO model either when insulin is fitted (solid black line) or when

insulin is interpolated (dashed line).

Insulin Secretion
All empirical insulin secretion descriptors resulted non-signifi-

cantly different among groups (Homa-BCF, P = 0.19; AUCrig,

P = 0.19; IGenic, P = 0.20). The SIMO parameter kmax
ig , which

represents maximal insulin secretion rate, also resulted non-

significant (P = 0.31) even if subjects seemed to divide into two

groups: IGT and IFG+IGT patients with larger kmax
ig values

(71.84666.52 and 72.016112.09 respectively), and NGT, IFG

and T2DM patients with smaller kmax
ig values (45.93641.67,

34.21631.72 and 43.6630.93 respectively). The empirical insulin

secretion descriptors were positively correlated with kmax
ig (r = 0.62,

P,0.001; r = 0.41, P,0.001; r = 0.38, P,0.001 for correlation

with Homa-BCF, AUCrig and IGenic respectively).

The parameter c resulted significantly different among groups

(overall P = 0.009 from ANOVA); post-hoc comparisons high-

lighted the presence of three groups: T2DM patients presenting

with the highest value at 7.9865.51, IFG and IFG+IGT together

for which parameter values were 6.5863.69 and 6.2164.76

respectively and NGT and IGT patients together with values

equal to 4.4260.96 and 4.1560.81 respectively.

Liver Glucose Output
Even if the rate of decay of liver glucose production with

increasing glycemia, l1g, did not result significantly different

among groups (P = 0.07 from ANOVA), it does show a trend, with

the lowest values for IFG subjects (0.3960.42) and the largest

value for the IGT group (0.8060.26); values for NGT, IFG+IGT

Figure 3. Glucose prediction diagnostic plot. Panel A reports
weighted residuals versus time, panel B reports weighted residuals
versus glucose predictions and panel C reports observed concentra-
tions versus predicted concentrations.
doi:10.1371/journal.pone.0070875.g003

Figure 4. Insulin prediction diagnostic plot. Panel A reports
weighted residuals versus time, panel B reports weighted residuals
versus insulin predictions and panel C reports observed concentrations
versus predicted concentrations.
doi:10.1371/journal.pone.0070875.g004
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and T2DM were 0.5860.39, 0.6060.33 and 0.5860.30 respec-

tively.

Tables S4, S5 and S6 report descriptive statistics for free and

determined model parameters, by clinical group, for the SIMO,

DMMO and COMO models respectively.

Discussion

Diseases associated with glucose intolerance are widespread and

diagnosis is fundamental for prevention and treatment. Therefore,

the need for a low cost, easily and widely applicable tool for insulin

sensitivity detection is unquestionable. Mathematical models can

allow the computation of metabolic indices from glucose tolerance

tests and can offer a real, practical opportunity to quickly diagnose

patient status: their usefulness is enhanced if they can reliably

provide at the same time measures of insulin secretion together

with measures of insulin sensitivity.

In the present work a Simple Interdependent glucose/insulin

MOdel, SIMO, is proposed and used to fit data from a cohort of

subjects with different types and degrees of glucose metabolism

impairment, ranging from normal (NGT) to impaired (IGT, IFG,

IFG+IGT) glucose tolerance, to Type 2 Diabetes Mellitus

(T2DM). The present model exhibits some specific features: the

first one is the incorporation of an explicit incretin term; the

second one is the derivation of the glucose rate of appearance; the

third one is the mathematical representation of insulin release; the

fourth one is a consistent representation of the dynamics of hepatic

glucose output.

Modeling the Incretin Effect
In the present work the incretin effect was modeled as a

nonlinear function of the content of glucose in the gastrointestinal

tract, expressing the effect of gastrointestinal hormones on glucose-

stimulated insulin secretion. The importance of considering gut

hormones in humans is supported by different studies that have

demonstrated that incretins account for about 50–70% of the

insulin response to oral glucose [25]. While in most of hitherto

published models the direct effect of incretins was not taken into

account, recently some works inserted incretin terms into models

for OGTT data [26,27]. In Silber et al. [26] the incretin effect was

introduced as a linear function of glucose absorption rate; in

Brubaker’s work [27] variation over time of GLP-1 and GIP

gastrointestinal hormones was modeled by means of an ordinary

differential equation and the incretin effect was directly considered

as a first order effect on insulin production. Besides the fact that, as

stated by these last Authors, the ‘‘model’s insulin response over an

extended time course falls short of that which is observed

experimentally’’, the work was completely simulative, no param-

eter estimation was performed and parameter values as well as

some functional forms were derived from published data. In

Salinari et al. [13] modeling of the release of gastrointestinal

hormones was used to validate the modeling of the time course of

the rate of appearance of glucose, which represented the focus of

that work, and was not used to understand the mechanisms

underlying insulin secretion: plasma insulin observations were in

fact interpolated and used as forcing function in the glucose

dynamics.

Glucose Rate of Appearance
As regards modeling the glucose rate of appearance, the

description of the gastrointestinal tract proposed in the present

work by means of a sequence of three compartments represents a

simplification of the continuous one-dimensional process described

by Salinari et al. [13]. While this latter type of modeling sounds

physiologically appealing, model fitting requires the observation of

GLP-1 concentrations, which are in fact never collected in

standard clinical conditions, making the model difficult to use in

practice. In fact, the poor performance of this model with the

present series of patients (see below) may stem essentially from the

fact that in our series GLP-1 determinations were not available.

Other approaches [10,16] are not as convincing from a

physiological point of view, when the parametric model of the

glucose rate of appearance (Ra) is described by a piecewise linear

model without mechanistic biologic interpretation. A similar

representation is indeed found in Silber et al. [26] where a

Table 4. Correlations among empirical measures of insulin sensitivity and model-derived insulin sensitivity indices.

HOMA-IS ISIcomp MCRrest OGIS ISBREDA ISNAIF ISDMMO ISCOMO kxgi

HOMA-IS 1 0.87** 0.50** 0.54** 0.56 ** 0.45** 0.31* 0.016 NS 0.49**

ISIcomp 0.87** 1 0.60** 0.77** 0.87** 0.71** 0.62** 0.02 NS 0.79**

MCRrest 0.50** 0.60** 1 0.69** 0.65** 0.71** 0.33* 0.084 NS 0.56**

OGIS 0.54** 0.77** 0.69** 1 0.75** 0.83** 0.53** 0.080 NS 0.72**

ISBREDA 0.56** 0.87** 0.65** 0.75** 1 0.81** 0.77** 20.02 NS 0.90**

ISNAIF 0.45** 0.71** 0.71** 0.83** 0.81** 1 0.54** 0.015 NS 0.72**

ISDMMO 0.28* 0.51** 0.33* 0.48** 0.69** 0.58** 1 20.07 NS 0.63**

ISCOMO 0.016 NS 0.02 NS 0.084 NS 0.080** 20.02 NS 0.015 NS 20.07 NS 1 20.05 NS

kxgi 0.49** 0.79** 0.56** 0.72** 0.90** 0.72** 0.70** 20.05 NS 1

Asterisks indicate significance of the correlations: * P,0.01, **P,0.001, NS Not Significant.
HOMA-IS: Homeostasis Model Assessment.
ISIcomp: Insulin Sensitivity Index Composite.
MCRrest: glucose Metabolic Clearance Rate.
OGIS: Oral Glucose Insulin Sensitivity index as estimated in [6].
ISBREDA: Insulin Sensitivity index as derived in [9].
ISNAIF: Insulin Sensitivity index computed as the inverse of the mean of the observed glycemias during the OGTT.
ISDMMO: Insulin Sensitivity index as derived from the Dalla Man model [10].
ISCOMO: Insulin Sensitivity index as derived from the Salinari model [13].
kxgi: Insulin Sensitivity index as derived from the proposed SIMO model.
doi:10.1371/journal.pone.0070875.t004
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‘‘flexible input model’’ is used, that is an empirical model in which

the input rate is modeled as a series of zero-order inputs.

Insulin Release
Another fundamental feature introduced by the present model

is the Hill dynamics used to represent insulin secretion, where the

parameter c in the function represents the non-linear pancreatic

progression in insulin production as glucose concentrations rise. In

the context of normal pancreatic reserve, at low glycemic levels a

minority of the beta-cell population is actually secreting at high

rates. If at baseline glycemia the relatively quiescent beta-cell

subpopulation is large with respect to the active subpopulation, as

glycemia increases a progressive recruitment of secretory units

occurs. Conversely, in advanced stages of pancreatic insufficiency,

a proportionally large beta-cell subpopulation is already active at

baseline glycemic levels, and further increases in glycemia lead to

quick saturation of the limited remaining secretion reserve. This

‘‘population-of-independent controllers’’ beta-cell recruiting

mechanism, originally postulated by Grodsky [28], has in fact

been found capable to explain both fast and slow experimentally

observed insulin oscillations [29]. The c parameter represents the

‘‘acceleration towards maximal values’’ of insulin secretion rate as

glycemia and incretin hormones increase, and it is highest when

relatively small increases in glycemia already push insulin secretion

to near-maximal capacity. This is in fact what happens with

T2DM patients, for whom residual insulin secretion reserve is so

severely compromised that small increases in glycemia are already

sufficient to obtain near maximal secretion. IFG and IFG+IGT

together represent an intermediate situation, and, in this case also,

saturation of pancreatic response could be due to glucose

concentrations already high at baseline. For the NGT plus IGT

group, residual reserve is large (due to normal baseline plus

possible insulin hyper-secretion in IGT) and the c coefficient is

correspondingly small.

Of great interest in describing insulin release is also the maximal

rate of insulin secretion kmax
ig . While ANOVA among patient

groups was not statistically significant, the trend in the average

values is consistent with our understanding of the physiology: the

Table 5. Insulin sensitivity indices estimates by group.

kxgi [min21 pM21] NGT IFG T2DM IFG+IGT IGT

Mean 8.62E-05 5.30E-05 2.38E-05 2.38E-05 2.09E-05

Standard Deviation 9.36E-05 5.18E-05 2.09E-05 2.28E-05 1.95E-05

group mean6SD 2.27E-0562.04E-05

kxgi trimmed [min21 pM21] NGT IFG T2DM IFG+IGT IGT

Mean 5.70E-05 4.12E-05 2.00E-05 1.90E-05 1.69E-05

SD 2.70E-05 1.70E-05 8.18E-06 1.29E-05 6.04E-06

group mean6SD 5.13E-0562.47E-05 1.86E-0568.86E-06

kxgi interpolated [min21 pM21] NGT IFG IFG-IGT IGT T2DM

Mean 7.10E-05 5.88E-05 2.61E-05 2.45E-05 1.91E-05

Standard Deviation 6.98E-05 5.37E-05 2.23E-05 1.58E-05 1.39E-05

group mean6SD 2.31E-0561.71E-05

kxgi interpolated trimmed [min21 pM21] NGT IFG IGT IFG+IGT T2DM

Mean 5.35E-05 4.20E-05 2.13E-05 1.95E-05 1.78E-05

Standard Deviation 2.05E-05 1.54E-05 5.69E-06 1.48E-05 5.66E-06

group mean±SD 4.94E-0561.93E-05 1.96E-0569.46E-6

ISCOMO [min21 pM21] IFG IGT NGT IFG+IGT T2DM

Mean 1.06E-02 6.07E-03 3.31E-04 2.32E-04 2.71E-05

Standard Deviation 2.66E-02 1.85E-02 1.14E-03 5.47E-04 5.83E-05

ISCOMO trimmed [min21 pM21] IFG IGT NGT IFG+IGT T2DM

Mean 4.17E-04 9.04E-05 8.94E-05 5.42E-05 2.78E-06

Standard Deviation 9.84E-04 5.00E-05 5.35E-05 4.88E-05 6.25E-06

ISDMMO [min21 pM21] NGT IFG T2DM IGT IFG-IGT

Mean 3.91E-03 2.27E-03 1.32E-03 8.96E-04 3.62E-04

Standard Deviation 9.68E-03 4.49E-03 2.16E-03 1.99E-03 9.40E-04

ISDMMO trimmed [min21 pM21] T2DM NGT IFG IGT IFG-IGT

Mean 6.59E-04 3.80E-04 2.59E-04 2.58E-04 6.54E-05

Standard Deviation 7.99E-04 4.90E-04 1.93E-04 4.75E-04 7.65E-05

ISDMMO: Insulin Sensitivity index as derived from the Dalla Man model [10].
ISCOMO: Insulin Sensitivity index as derived from the Salinari model [13].
kxgi: Insulin Sensitivity index as derived from the proposed SIMO model.
The term ‘‘trimmed’’ was used to identify the subgroup consisting of values of the insulin sensitivity index between the 20th and 80th percentile.
The term ‘‘interpolated’’ coupled with the kxgi index refers to parameter estimate values obtained when observed insulin concentrations are interpolated rather than
fitted.
doi:10.1371/journal.pone.0070875.t005
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high-secretor groups are the two groups of subjects showing

postprandial glucose intolerance, who hyper-secrete in response to

the glucose load. The three groups with lower insulin secretion

after oral glucose load are NGT and IFG (who have no problems

disposing of the load) and T2DM (who may show relative

secretion insufficiency, and for this reason show the frank clinical

picture of diabetes).

It is commonly believed that some kind of pancreatic

‘‘exhaustion’’ underlies the eventual insulin secretion failure and

the emergence of the frank picture of diabetes mellitus in the final

stages of the pathogenesis of T2DM. The present OGTT model

offers a numerical index c, directly estimable from the standard

clinical test, which quantifies the degree of pancreatic secretory

insufficiency. A possible physiologic interpretation of variations of

this index (based on the varying ability to recruit additional

pancreatic secretory units) has been attempted above. Whether

this interpretation is correct is open to debate, but the numerical

values of this index, as estimated in progressively more severe

stages in the development of the disease, are certainly suggestive

that some essential mechanism has in fact been identified. The

present modeling study, therefore, quantifies in this way the

progression of disease, which is clearly associated with a

progressive derangement of all indices of insulin sensitivity

(whether empirical or model-derived), as well as with a progressive

increase in average BMI.

Conversely, while empirical insulin secretion indices (Ho-

maBCF, IGenic, AUCrig) show no statistical significance in

differentiating groups with respect to secretory response, the

progressive failure of insulin secretion is associated with a very

significantly different SIMO c model parameter, pointing to

variations in pancreatic secretory reserve among the studied

groups. The trend in the SIMO kmax
ig parameter, albeit not

statistically significant, corroborates this interpretation.

Pathophysiology and Insulin Sensitivity Indices
Panels A and B of Figures 2 show the differences in the

dynamics of the glucose insulin system after orally administered

perturbation in the five patient groups. First of all, there is a

Figure 5. COMO, SIMO and DMMO model data fitting. Panels A reports glucose and insulin dynamics for one IFG patient. Panel A1 reports
observed (circles) plasma glucose concentrations together with their prediction using the COMO model (continuous line). Panels A2 and A3 report
respectively glycemia (A2) and insulinemia (A3) concentrations (circles), together with the corresponding predictions obtained with the SIMO model
(continuous line). Panels B report glucose and insulin dynamics for one T2DM patient. Panel B1 reports observed (circles) plasma glucose
concentrations together with their prediction using the DMMO model (continuous line). Panels B2 and B3 report respectively glycemia (B2) and
insulinemia (B3) concentrations (circles), together with the corresponding predictions obtained with the SIMO model (continuous line).
doi:10.1371/journal.pone.0070875.g005
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modest difference in postprandial glucose dynamics between the

NGT and IFG groups, as can be expected, and actually some

differences in the insulin secretion profile, due above all to a larger

sample variability in the IFG group. Conversely, the glycemia

profile worsens from NGT to IGT to IFG+IGT and then to

T2DM, with a progressive slowing of the return to baseline levels

and a progressive increase of the peak glycemic levels attained.

The contribution of pancreatic secretory insufficiency to the

pathogenesis of T2DM is well highlighted by the actual decrease of

insulin secretion in the progression from IFG+IGT to T2DM.

All of the above pathophysiologic considerations are certainly

not new, and agree with the trends observed for basal glycemia

and basal insulinemia, which correspond with what is expected

(with basal insulinemia decreasing in T2DM with respect to

IFG+IGT, possibly due to progressive secretory defects), as well as

with the trend of G2h values, for which post-hoc comparisons

highlighted the presence of three groups (NGT and IFG together,

which were not significantly different from each other, but which

were different from IGT and IFG+IGT subjects together, who in

turn differed from T2DM subjects).

It is however of interest to see that the expected pathophysiology

is faithfully mirrored in the proposed model’s parameters, as they

change from group to group. In particular, the values of G2h were

strongly and inversely correlated with the SIMO insulin sensitivity

index kxgi: high values of G2h reflect, in fact, a defect in peripheral

insulin action, translating into an impaired muscle glucose

absorption mechanism.

In this context, explicit insulin secretion modeling serves several

useful purposes: it provides a clear physiological description of the

underlying mechanisms; it resolves statistical inconsistencies, by

exhibiting a theoretical expected insulin time course around which

observations scatter with error (for a thorough discussion of this

problem see [17]); it determines a sensible improvement in data

fitting in comparison with the piecewise-linear Ra models, in terms

of the precision of parameter estimates (above all with respect to

insulin sensitivity), without sacrificing goodness of fit. This last

improvement in parameter estimation precision allows kxgi to

decrease significantly from NGT, then to IFG, then to IGT,

IFG+IGT and T2DM together, as is highlighted by post-hoc

comparisons (Table 5). Conversely, when ANOVA was used to

test differences among groups for the other two model-derived

insulin sensitivity indices, no significance was obtained. Lack of

significant differences for ISCOMO and ISDMMO is in fact

attributable to their high variability: both very large values (of

the order of 1021 for ISCOMO and of 1022 for ISDMMO), and very

small values (of the order of 10210, the inferior limit of

optimization, for ISCOMO and 1026 for ISDMMO) were obtained

from data fitting. It is to be noticed that a lack in the ability to

differentiate groups is present also with ISBREDA, in spite of its

overall strong correlation with the other insulin sensitivity indices.

Despite insulin sensitivity estimates way out of the acceptable

range, however, both COMO and DMMO models seemed to

perform well in terms of adapting predicted levels to observed

plasma glucose concentrations. This is in effect a classical finding

for over-parameterized models, where different parameter com-

binations may yield essentially indistinguishable data fits, making

parameter identification imprecise. The bad performance of the

COMO model could moreover be attributed to the lack of data

related to GLP-1 measurements, making the problem of over-

parameterization even worse.

Figure 3 summarizes this point very well: despite an apparently

very good data fit, ISCOMO was estimated at 10210 for an IFG

subject and ISDMMO was estimated at 3.2661023 (a very large

value) for a T2DM subject; for these two subjects, SIMO (Figure 5

panels A2–A3 and B2–B3) estimated insulin sensitivity at

respectively 3.2461025 and 4.5861025, well within physiologi-

cally plausible limits. It is clear that, in order to overcome over-

parameterization for COMO and DMMO, and hence to reduce

parameter variability, more observations could be used in the

fitting procedure: the standard OGTT performed in clinical

practice, however, yields glycemia and insulinemia observations

over only seven time points.

Even when a sub-sample, not considering outliers (the

‘‘trimmed’’ sample), was considered, again ANOVA on ISCOMO

and ISDMMO resulted non-significant. Conversely, the results

obtained (Table 5) with SIMO in both the full sample and the

trimmed sample situations were quite similar.

Figure 6. Comparison between fitting with predicted and interpolated insulin concentrations. Observed glucose and insulin data
(circles) for one NGT patient. The COMO fitted model (dotted line) is shown together with the SIMO model either when insulin is fitted (solid black
line) or when insulin is interpolated (dashed line).
doi:10.1371/journal.pone.0070875.g006
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The strongest positive correlations between well-known empir-

ical insulin sensitivity indices and the three model-derived insulin

sensitivity indices (ISDMMO, ISCOMO and kxgi) were obtained with

kxgi; for ISCOMO in fact no correlation resulted significant whereas

ISDMMO showed weaker correlations.

It is interesting to observe that while ISBREDA was more strongly

correlated with all other indices (possibly because its definition

involves the basic building elements common to most indices,

AUCG and AUCI), it was actually unable to significantly

discriminate clinical groups with evidently different insulin

sensitivities.

Another interesting finding is that if a completely naı̈f index is

considered, (such as ISNAIF, defined simply as the inverse of

average glycemia during the OGTT), this also correlates well with

all other indices of insulin sensitivity and in fact discriminates

significantly ALL clinical groups from one another. On one hand,

this result underscores the fact that when we use a clinical

classification based upon OGTT glycemias, it is not at all

surprising that a simple summary of these glycemias is able to

discriminate among the groups. Average glycemia, or equivalently

glycemia AUC, or combinations of glycemias at relevant time

points, all carry essentially the same information. On the other

hand, it is clear that insulin resistance involves something more

than just the glycemic levels attained. An index able to separate

NGT from IFG and from the other three groups, while still

assessing insulin sensitivity as approximately the same in IGT,

IFG+IGT and T2DM, irrespective of the actual glycemias

attained, could in fact be more informative about the underlying

pathophysiology.

It may be worthwhile to clarify the criteria whereby we may

judge an index to be ‘‘good’’, in the absence of a gold standard (no

one of the following criteria, taken by itself, should be determi-

nant).

1) The index should be sound: it should show a general

correlation with similar indices. Clearly, insofar as a new

index is worse than existing ones in characterizing the

phenomenon under study, the correlation of the new with

the old ones will be less than one. In fact, the correlation will

also be less than one if the new index is better than existing

ones in characterizing the phenomenon under investigation.

Implied in the notion of soundness is the idea that the index

values should be consistent with known phenomena: it cannot

be, for example, that an index of insulin sensitivity assumes

high values for known insulin-resistant subjects.

2) The index should be meaningful, i.e. it should have a clear

physiological meaning: it should, as far as possible, represent a

clear (possibly simplified) component or mechanisms in the

overall function under investigation. In any case, it should be

clearly associated with the conceptual understanding of the

phenomenon it seeks to quantify.

3) The index should be expressive, in the sense that it should

be able to discriminate experimental subjects or experimental

situations expected to differ with regards to the phenomenon

under consideration.

4) The index should be precise, i.e. the numerical values it takes

under the same experimental conditions should be concen-

trated around the expected theoretical value for those

conditions. For example, repeated testing of the same subject

should give rise to index values close to each other.

5) The index should be robust, it should not vary widely upon

modest variations of the data it is computed from. This

criterion is somehow connected with the previous one: if an

index is robust to small variations of the data, its realizations

will be concentrated around the expected value upon repeated

testing, hence it will be precise. An index is also robust when

its computable value is relatively insensitive to missing data. In

other words, an index, which can be computed to approx-

imately the same value, notwithstanding some missing

observations in the relevant dataset, is robust. It is to be

noted that the requirements of robustness and expressivity are

somehow in competition: a maximally robust index could be,

in fact, a constant, completely insensitive to data variations,

and for this reason totally inexpressive.

6) Ideally, the index should be accessible: it should be simple

to compute or a computation system for it should be readily

available, so that it is not cumbersome to use and may be

employed by a wide class of users at low cost (including the

cost of the data necessary for its computation).

Applying these concepts to the set of indices studied in the

present-work, we can see that all considered indices are sound, in

the sense that they all exhibits positive correlations with one

another. One exception is ISCOMO, whose main shortcoming,

however, does not reside in the lack of soundness but in the lack of

precision, from which the lack of correlation derives: on one hand

the large number of parameters to be estimated with respect to the

small number of observations, and on the other hand the need to

fix the dynamics of GLP-1, given the lack of observed plasma

GLP-1 concentrations, are the cause of its poor performance in

terms of insulin sensitivity assessment for the present data set. The

problem of over-parameterization, hence of lack of precision, is

also evident with the ISDMMO index, which, while being sound, is

for this reason not expressive, since it is not able to discriminate at

all experimental subjects coming from different pathophysiologic

conditions. Both ISCOMO and ISDMMO are model-derived indices,

and they are as physiologically meaningful as the models from

which they derive. For these two indices, the problem of over-

parameterization also determines a lack of robustness: small

variations in data or, even worse, an incomplete set of available

observations determine wide swings in the numerical values these

indices take (from 1.E-10 to 1.E-1 for ISCOMO and from 1.E-6 to

4.E-2 for ISDMMO), hence neither ISCOMO nor ISDMM are robust

indices. While ISDMMO maintains the property of being rather

accessible, as it derives from a parameter estimation procedure on

data from a standard OGTT, ISCOMO is less accessible, since it

requires GLP-1 measurements, which are not collected in standard

clinical practice.

All the examined empirical indices (HOMA-IS, ISIcomp,

MCRest, OGIS and ISBREDA), besides being sound, are accessible,

precise and robust: they are in fact constructed from aggregated

quantities, AUCG and AUCI, which are not sensitive to small

changes in observed data. While MCRest and OGIS also result to

be rather expressive, in our series HOMA-IS, ISIcomp and

ISBREDA were able to discriminate only between NGT and all the

other groups combined. Apart possibly from the OGIS, whose

construction is rather convoluted and reflects a number of rough

simplifying assumptions, all the other empirical indices appear to

be meaningful, since they all essentially express the concept that

insulin resistance is definable as how much (supra-basal) insulin is

necessary with respect to how much (supra-basal) glucose is

circulating.

It is worth commenting on the ISNAIF index, as an exercise in

index-building. This index seems sound, in fact it correlates

positively with the other indices. However, its formulation does not

include any information related to insulin: there is therefore a

likely lack of meaningfulness, and the apparent expressivity (it
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discriminates all groups from one another) derives from the fact

that worsening glucose homestasis, as defined by glycemic levels

(baseline and at 2 hours), implies by definition higher plasma

glucose concentrations and correspondently lower ISNAIF values.

This index is obviously completely insensitive to changes in insulin

concentrations, given its independence from it, and therefore its

robustness and precision are completely artifactual. In fact, if an

index is not meaningful, it is nonsense to consider all the other

desirable characteristics as gauged from the performance of the

index on a given dataset.

Finally, the kxgi index apparently complies with all the listed

properties: it is sound due to its strong correlation with the other

indices; it is meaningful due to its derivation from a model which

reflects the essential physiological aspects of glucose homeostasis

through insulin secretion and action; it is precise and robust

(sample CVs are small in the five considered groups); it is

expressive, discriminating among those groups, which are indeed

expected to be different; it is accessible, in the same way as are all

indices computable from the estimated parameters of a simple

mathematical model of glycemia and insulinemia observations.

Hepatic Glucose Output
The parameter l1g in the hepatic glucose output function

represents the decay rate with which liver glucose secretion is

modeled to adapt directly to circulating plasma glucose and

indirectly to circulating plasma insulin (through its effect on

glycemia). This represents of course a simplification of the

mechanisms by which liver glucose production is suppressed and

glycogen-synthesis is enhanced in the presence of high plasma

glucose and insulin concentrations. The results obtained for l1g,

even if not significant, show an interesting trend: the smallest

estimate was obtained for the IFG group and the largest one for

the IGT group. Results are consistent with central insulin

resistance in the IFG condition. For IGT, it must be noticed that

l1g expresses the sensitivity of Hepatic Glucose Output (HGO) to

increases in glycemia only: since in IGT insulin is hypersecreted in

response to glycemia, HGO appears more than normally

suppressed for the same glucose concentrations.

Final Comments
It is worth noting that the SIMO model is just the latest addition

to several existing mathematical models for the glucose-insulin

system. No model can of course be thought of as being definitive,

and the present formulation only attempts to introduce a few

meaningful improvements with respect to preexisting models.

The SIMO model is relatively simple, with only 7 free

parameters to be estimated: this makes data fitting robust and

provides acceptable precision in the estimates, even from a single-

patient data set. In order to keep the structure simple and still be

able to adequately fit experimental observations, this model

explicitly recognizes the nonlinearity in the insulin secretion

dependence on glycemia, and incorporates the effect of incretins,

which stimulate insulin secretion upon oral glucose administration.

Incretin effect and nonlinear insulin secretion progression are in

fact the two innovative features that allow the model to realistically

capture experimental curves of glycemia and insulinemia, without

introducing empirical mathematical constructs with many degrees

of freedom (which, while improving data fit, compromise both the

robustness of the model and its ability to quantify the underlying

physiology). The fact that the SIMO model could indeed

meaningfully capture the relevant physiology would be supported

by the regular and physiologically consistent change of its key

parameter values along the spectrum of progressive metabolic

decompensation states considered here. For this reason, and in

conclusion, the use of the SIMO model for the interpretation of a

subject’s OGTT may be practically informative to the clinician for

the assessment of the type of lesion and of the stage of disease

progression.
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