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Abstract

Reading requires the interaction of a distributed set of cortical areas whose distinct patterns give rise to a wide range of
individual skill. However, the nature of these neural interactions and their relation to reading performance are still poorly
understood. Functional connectivity analyses of fMRI data can be used to characterize the nature of interactivity of
distributed brain networks, yet most previous studies have focused on connectivity during task-free (i.e., ‘‘resting state’’)
conditions. Here, we report new methods for assessing task-related functional connectivity using data-driven graph
theoretical methods and describe how large-scale patterns of connectivity relate to individual variability in reading
performance among children. We found that connectivity patterns of subjects performing a reading task could be
decomposed hierarchically into multiple sub-networks, and we observed stronger long-range interaction between sub-
networks in subjects with higher task accuracy. Additionally, we found a network of hub regions known to be critical to
reading that displays increased short-range synchronization in higher accuracy subjects. These individual differences in task-
related functional connectivity reveal that increased interaction between distant regions, coupled with selective local
integration within key regions, is associated with better reading performance. Importantly, we show that task-related
neuroimaging data contains far more information than usually extracted via standard univariate analyses – information that
can meaningfully relate neural connectivity patterns to cognition and task.
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Introduction

The operation of the human brain depends on a complex,

hierarchical system of interactions that we are now beginning to

probe through the use of functional imaging tools and connectivity

analyses. Reading, in particular, is a high-level function supported

by a widely distributed and dynamic system of brain regions acting

in concert [1,2], and proficiency levels are highly variable even in

individuals without diagnosed reading disability. Recent findings

demonstrate significant differences in structural or functional

connections between key reading areas in subjects with reading

disability versus controls [3–5], but few investigations of large-scale

connectivity patterns related to reading have been conducted.

Structural and functional networks of the brain have been found

to display nonrandom network properties [6], which can be

characterized using graph theoretical methods that quantify the

statistical properties and distributions of connection patterns. Such

analyses require conceptualizing brain connectivity as a network of

elements (i.e. brain areas) and pairwise connections (i.e. inter-areal

interactions) between them, with enough elements and connec-

tions such that statistical regularities can be detected. Graph

theory allows for the ability to quantify complex network structure

and to locate nodes with special network properties (see [6,7] for

comprehensive reviews of graph theoretical applications to brain

connectivity). We distinguish these large-scale, graph theoretical

analyses from seed- or ROI-based analyses that restrict the areas

investigated to a priori defined anatomical regions of interest and

do not necessarily investigate general network patterns in

connectivity.

Prior applications of graph theoretical methods to resting-state

functional connectivity data have been promising, demonstrating

that brain networks can be characterized as small-world, modular,

and hierarchical systems [6–10]. Group-level fMRI connectivity

studies of the resting state have elucidated important changes in

brain activation patterns over development [8,11–13] or neuro-

pathology [14–16], but little work has been done considering

individual variation in connectivity and how these can relate to

task performance. A few studies have found that functional

connectivity is related to the type of task being performed [17,18],

and Sheppard et al. demonstrated increased global efficiency

among participants with better auditory pitch discrimination [19].

However, in general, previous task-related functional connectivity
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studies have not included tasks with high cognitive load or graph

theoretical analyses over a large network (.100 nodes).

At the same time, the considerable heterogeneity of brain

structure and networks has led to the idea that higher-level brain

functions emerge from the interaction of many regions acting in

different, complementary functional roles [8,10,20]. Recent

literature has attempted to locate regions with important function

or connectivity, called ‘‘hubs,’’ defining them based on their

degree of connectedness or other network properties [10,21,22].

Hubs are considered nodes with special properties, but there exists

no standard definition of ‘‘node’’ in the functional connectivity

literature. In general, they are arbitrarily specified, as single voxels

or groups of voxels of certain size, or as entire anatomical regions.

This study aims to relate large-scale functional connectivity

patterns to individual, real-time task performance and recover hub

regions functionally important to reading. We analyzed a dataset

of children performing a rhyme-judgment reading task and

implemented a novel, graph theoretical connectivity analysis that

was data-driven and made no assumptions of relevant spatial

scales. By not imposing a global threshold or signal averaging over

large anatomical regions, both of which can eliminate substantial

amounts of information, we investigated the intrinsic patterns of

connectivity related to reading as well as how these patterns varied

in relation to task performance. Importantly, we recovered hubs at

a scale that was functionally relevant to our data. These methods

constitute a novel extension to current functional connectivity

approaches and demonstrate how brain connectivity reflects

individual differences in reading performance at multiple scales.

Results

Behavioral Results
Subjects performed a visual rhyme judgment task by responding

to two sequentially presented words with an appropriate button

press. Accuracy on these trials (Figure 1) ranged from 0.58 to 0.98,

with a mean of 0.86 and a standard deviation of 0.09. The age of

subjects (range 9–15 years) was marginally correlated with task

accuracy (Pearson’s product moment correlation, r(37) = 0.32,

p = 0.047).

Group-averaged Connectivity Network and Constituent
Subnetworks

We performed standard fMRI data preprocessing and conduct-

ed a group-level GLM analysis (see Methods for detailed

description). We identified two sets of brain regions – one

associated with greater activation for lexical compared to fixation

trials (task-positive), and one associated with greater activation for

fixation trials compared to lexical trials (task-negative). It should be

noted that we applied a liberal threshold for activation

(p,0.001 unc.), as this initial step only aimed to mask out voxels

unresponsive to the task. As such, we make no claims about the

significances of these activations or deactivations and simply

consider these regions to be ‘‘task-responsive.’’ No distinctions are

made between task-positive and task-negative regions for all

subsequent analyses.

As expected, the task-positive and task-negative regions we

identified through the GLM analysis align closely with previously

known reading [23,24] and task-negative systems [25]. The task-

positive set of regions encompasses brain areas critical to reading

including the fusiform gyrus and adjacent visual cortex, inferior

parietal lobule, superior to middle temporal gyrus, and inferior

frontal gyrus, all primarily left lateralized (see Table S1). The task-

negative set of regions includes, among others, medial prefrontal

cortex, posterior cingulate cortex, precuneus, medial temporal

lobe, the inferior parietal/posterior temporal cortex [26] (see

Table S2), areas that are known to be core regions of the default

mode network, a system of brain regions found to deactivate or

attenuate during attention-demanding cognitive tasks [27–29].

Because we did not wish to make any assumptions about which

spatial scales contained important information, we defined our

highest resolution as non-overlapping, 6-mm isotropic regions of

interest (ROIs) drawn from these task-responsive regions, for a

total of 621 ROIs (Figure 2A–B). This particular resolution was

chosen because of considerations for computational efficiency and

signal-to-noise ratios, as our data were not smoothed and smaller

ROIs contained much more noise. BOLD time courses extracted

from these ROIs were then cross-correlated to form subject-

specific connectivity matrices. These ROIs are hereafter referred

to as ‘‘nodes,’’ and the Fisher’s Z-transform [30] of the correlation

value between time series extracted from a pair of nodes is referred

to as the ‘‘link weight.’’

Before investigating individual differences in functional connec-

tivity, we first characterized group-level connectivity patterns by

averaging the individual connectivity matrices across all subjects.

We denote the resulting matrix as the ‘‘mean connectivity strength

network’’ (Figure 2C). In order to reveal the hierarchical

organization of this network, we implemented a hierarchical

clustering algorithm that is purely data-driven and partitions nodes

based on modularity [31,32] with no constraints (see Methods for

details). Importantly, this algorithm handles negative as well as

weighted connections. We specified three hierarchical levels of

grouping (Figure 2B). The top level is referred to as the ‘‘system’’

level, the middle level is referred to as the ‘‘block’’ level, and the

lowest level of groupings is referred to as the ‘‘cluster’’ level. A link

between two nodes is labeled according to the lowest level at which

the two nodes share a group (Figure 2D). Therefore, if two nodes

are in separate clusters but the same block, we refer to this as a

‘‘block’’ link, whereas a link between two nodes in the same cluster

would be termed a ‘‘cluster’’ link. A link between two systems (i.e.

two nodes that don’t share any group) is termed a ‘‘cross’’ link.

Figure 1. Time course of each trial and experimental design.
Thirty-nine children were presented with 48 lexical trials interspersed
pseudo-randomly with 36 fixation and 24 perceptual control trials in an
event-related design. Each trial lasted 4200 ms, with 200 ms breaks in
between, for a total of 4.4 sec each and 480 sec for the entire run.
During lexical trials, words were presented sequentially for 800 ms, after
which a red fixation cross appeared. The subject then had 2200 ms to
provide a rhyming judgment response. During fixation trials, a black
cross was displayed for 1800 ms and then was replaced by a red cross.
The subject subsequently had 2200 ms to acknowledge the red cross
with a button press.
doi:10.1371/journal.pone.0059204.g001

Task-Related Functional Connectivity of Reading
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The mean connectivity strength network shows that nodes

within the same cluster are strongly connected to each other (via

cluster links), while those more distantly related along the

hierarchy – i.e., in different blocks (system links) or in different

systems (cross links) – are more weakly connected. There was an

overall effect for link type [Kruskal-Wallis ANOVA:

x2(3,152) = 121.53, p,2610216]. Cluster links (median = 0.3107)

have higher weights than block links [median = 0.1971; Wilcoxon

signed-rank test: Z(76) = 5.44, p = 5.2661028] which in turn have

higher weights than system links [median = 0.0977; Z(76) = 5.44,

p = 5.2661028]. Cross links (median = 25.2061024) have the

lowest weights and are not significantly different from 0

[Z(38) = 0.64, p = 0.5209].

At the top level of grouping, the nodes separate into two

systems, one of which is similar to the task-positive set of regions

(System 1) and one similar to the task-negative set of regions

(System 2; Figure 3A–B), despite not being constrained or biased

in any way by the GLM contrast. The notable exceptions are the

Figure 2. Determination of task-responsive network and hierarchical partitioning to form three levels of functional hierarchy. (A)
We determine group-level GLM random effects contrasts of lexical minus fixation trials (task-positive) and fixation minus lexical trials (task-negative)
to define two functional systems encompassing task-responsive brain regions. Voxels within these regions are coarse-grained to 66666 mm3 ROIs to
form the highest-resolution units of our network, called nodes. Time series of hemodynamic response are extracted from these nodes and are
pairwise cross-correlated to define a weighted connectivity matrix for all subjects. (B) Schematic illustration and dendrogram of hierarchical
partitioning. All nodes are pooled together and iteratively partitioned using modularity-based clustering algorithms to form a hierarchical network of
relations. Each group on a higher level is partitioned to yield subgroups on the next lower level. Three levels of partitioning are defined, with various
numbers of groups on each level: 2 ‘‘systems,’’ 9 ‘‘blocks,’’ and 33 ‘‘clusters.’’ (C) Matrix of Fisher’s Z-transformed correlation coefficients averaged over
all subjects. Nodes are ordered to keep clusters, blocks, and systems contiguous. Colored bars and dendrogram along the sides indicate group
membership of nodes at all three levels and correspond to those from (B). (D) Categorization of link type depends on the lowest level at which the
two associated nodes are classified in the same group; i.e. same cluster (‘‘cluster links,’’ brown), same block but different clusters (‘‘block links,’’ tan),
same system but different blocks (‘‘system links,’’ beige), or between systems (‘‘cross links,’’ white). Colored bars illustrate the partition of nodes into
different groups at the three levels, similar to (B) and (C), but the specific groupings in (D) are conceptual only and do not represent real data.
doi:10.1371/journal.pone.0059204.g002
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thalamus and basal ganglia, areas of middle and superior frontal

cortex, inferior parietal lobule, supplementary motor, and right

middle/superior temporal cortex, all of which are classified as task-

negative nodes in the GLM but are grouped with other task-

positive nodes by the hierarchical clustering algorithm. At the

middle hierarchical level, the nodes separate into nine blocks, four

within System 1 and five within System 2 (Figure 3C). System 1 is

composed of Block 1: inferior visual cortex, Block 2: an extensive

set of regions spanning fronto-temporal, motor, and subcortical

areas, with some nodes being task-negative (including cingulo-

operculum), Block 3: a set of nodes primarily from the task-

negative regions, including superior temporal and supramarginal

areas, and Block 4: occipital to inferior temporal areas including

fusiform gyrus. System 2 is composed of Block 5: left-lateralized

posterior temporo-parietal areas, Block 6: right-lateralized coun-

terpart to Block 5, Block 7: middle and superior frontal cortex,

Block 8: a highly localized set of regions including middle cingulate

cortex and superior precuneus, and Block 9: a set of regions

located directly below Block 8 containing posterior cingulate

cortex, cuneus, and inferior precuneus. At the lowest level, the

blocks are further subdivided into 33 clusters (Figure 3D).

Although the hierarchical clustering algorithm is purely data-

driven and unconstrained by anatomical boundaries, we recovered

a high concurrency with anatomical regions at the cluster level, as

defined by the AAL template [33] (see Figure 4 and Tables S1 and

S2). We quantified how different the data-driven cluster partition

is from direct anatomical assignment by calculating the variation

of information v [34], an information theoretic measure ranging

from 0 to 1 that specifies how different two separate community

structures are. We obtained v = 0.27, as compared to the expected

v of 0.77560.006 if the partitions are randomized, indicating that

our clusters correspond closely to anatomical regions. Moreover,

the partitions are robust (see Methods). Significantly, subsequent

results do not depend on the particular partitioning used.

Comparison of Block Partitions to Resting-state Networks
Comparison of our networks to those found in resting state

literature reveals a high degree of commonality, but also

interesting differences. The two systems discovered by our

hierarchical partitioning algorithm are consistent with the task-

positive and task-negative systems found by Fox et al. [25], but our

results show more visual and less parietal activation, most likely

due to task-related stimulation. Overall, System 1 appears to

comprise a large subcomponent that integrates top-down control

with subcortical and visual areas, while System 2 is highly

consistent with previously found regions of the default network

[27]. The core ‘‘nodes’’ of the reading network [35–38] – left

lateralized fusiform, superior/middle temporal gyrus, inferior

parietal lobule, and inferior frontal gyrus – are restricted to Blocks

2 and 4. Blocks 1 and 4 are consistent with the visual areas found

by Power et al [9], and Block 2 appears to be a combination of the

cingulo-operculum/somatosensory and fronto-parietal subgraphs.

Block 3 encompasses the temporal portion of the default network,

an interesting finding that seems to indicate that in the face of task

demands the default network will reorganize into dynamic

subcomponents, some of which interact with task-positive regions.

Connectivity Patterns Correlated with Increased
Performance

While the mean connectivity strength network reveals the

group-averaged multi-scale organization, it hides significant

between-subject differences. Most previous functional connectivity

analyses ignored the signed and weighted nature of link

correlations and instead applied a global threshold to yield a

binary connectivity matrix, thus discarding possibly important

information. Here, we incorporated the full information available

in the weighted connectivity matrix and took advantage of inter-

subject variability in order to elucidate how differences in

connection strength reflect differences in performance at multiple

hierarchical levels.

For each link type (cluster, block, system, or cross), we analyzed

how individual differences in connection strength are correlated to

individual differences in subjects’ accuracy on the reading task. We

conducted a between-subjects analysis by averaging all link weights

of the same link type in each subject and then found the cross-

correlation of these link weight averages with subject accuracy.

Notably, we found that correlation between link weight and task

accuracy is higher for nodes that are more distant along the

hierarchy. As shown in Figure 5, cluster and block link weights do

not significantly correlate with accuracy [Pearson’s product

moment correlation; cluster links: r(37) = 0.036, p = 0.830; block

links: r(37) = 0.192, p = 0.241]. However, the system link weights

are significantly correlated with task accuracy [r(37) = 0.352,

p = 0.028], as are cross link weights [r(37) = 0.331, p = 0.039]. In

addition, the ratio of a single subject’s average system link weight

to their average cluster link weight is significantly correlated with

accuracy [r(37) = 0.399, p = 0.012], as is the ratio of block link

weight to cluster link weight [r(37) = 0.363, p = 0.023].

Hub Regions of the Task Network
The brain is well-known for being highly heterogeneous, in

terms of both connectivity and anatomical structure. In order to

characterize heterogeneity among the functional groups, we

investigated hub-like properties of our clusters, rather than

individual nodes, allowing our data to functionally define relevant

spatial scales. We chose the clusters found at the third level of our

hierarchical network as candidate hubs for the following reasons:

1) clusters were recovered through data-driven means and thus are

more likely to reflect the relevant scales of our data, 2) unlike

blocks or systems, clusters do not span many anatomical regions,

thus making them readily interpretable, and 3) the relatively high

number of clusters in our network allows for the application of

graph theoretical measures, whereas such measures are not

meaningful if applied to fewer numbers of elements.

We located hubs based on their pattern of network embedded-

ness in the context of task performance. Our analysis was restricted

to the performance modulation network, which quantified how

strongly average link weight between clusters correlated with task

accuracy (see Figure 6A–B and Methods). Conceptually, being a

hub in the performance modulation network indicates that a

cluster is part of a group of clusters that all display higher

connectivity weights to each other as accuracy increases. As such,

it is a measure defined only in relation to other elements and is

therefore not a property of an individual element in isolation. Our

results indicate that Clusters 12, 7, and 9 can be classified as hubs,

with z-scores of 5.58, 5.19, and 4.08, respectively. As illustrated in

Figure 6C, Cluster 12 is composed of left inferior temporal gyrus,

left fusiform gyrus, and left hippocampus; Cluster 7 left thalamus

and right caudate; and Cluster 9 left middle temporal gyrus and

right putamen. Possibly this indicates that reading accuracy is

supported by task-dependent interactivity between dorsal striatum

and the core left-hemisphere regions known to be critical for

reading (for related findings, see references [5,23,35,38]). Hubs

have marginally significant increased integration as accuracy

increased [r(37) = 0.301, p = 0.055], whereas non-hub clusters

displayed no integration with accuracy [r(37) = 0.040, p = 0.809].

Task-Related Functional Connectivity of Reading

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e59204



Discussion

The application in recent years of graph theoretical approaches

to functional connectivity analyses has highlighted the complex,

non-random nature of neural connectivity and interaction

dynamics within the brain [32]. The majority of these analyses

have been performed on the resting state, a paradigm that offers

many advantages including its relative ease of collection. However,

resting-state connectivity highlights commonalities across a pop-

ulation and probes neural interactions in the absence of any task,

and thus is difficult to relate to task-related experimental results.

Our study constitutes a novel extension that builds on both

univariate task-related methods as well as previously implemented

resting state functional connectivity methods to yield important

insight into how reading, a high-level cognitive skill, relates to

patterns of neural interaction.

Activation levels found through univariate analyses are not

trivially related to connectivity during task performance (see Figure

S1), indicating that considerable additional information can be

gained by analyzing task-related neuroimaging data with connec-

tivity methods. These results demonstrate that, during reading, the

task-responsive system decomposes – based on strengths of

interaction between nodes – into a hierarchical network with

multiple functional scales. We found that, surprisingly, some task-

negative regions are highly interactive with task-positive regions,

which runs counter to expectations from univariate, GLM-based

approaches and demonstrates the power of combining connectiv-

ity with task-based approaches.

We observed higher link weights in the subject-averaged mean

connectivity matrix for more local links (cluster link weights.block

link weights.system link weights, see Figure 2), but the opposite

trend when examining connectivity across subjects and correla-

Figure 3. Brain maps of hierarchical partitioning. (A) Task-positive and task-negative regions defined through univariate GLM methods have
high correspondence with (B) the 2 systems found through modularity-based partitioning, with the exception of a few subcortical,fronto-parietal, and
temporal areas (highlighted by yellow circles). Brain maps of (C) the 9 blocks and (D) the 33 clusters show that functional groups tend to be spatially
localized and confined to only a few anatomical regions.
doi:10.1371/journal.pone.0059204.g003

Task-Related Functional Connectivity of Reading
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tions with accuracy. A possible explanation is that group-averaged

functional connectivity aligns with core anatomical structure [39],

which tends to be stronger locally, whereas functional connections

that vary across subjects are dynamic, task-specific, and involved

in information transfer between anatomical regions. Our results

are consistent with recent resting-state functional connectivity

studies reporting general integration (increased long-range inter-

actions) in the default mode network over the course of

development [40,41], perhaps suggesting that long-range integra-

tion is indicative of a more efficient functional brain network state

which requires maturation. We extended these findings by

showing that, in addition to spatial distance, the functional scale

at which two regions are connected determines their connectivity

and how their interaction varies with task behavior. Interestingly,

cross link weights, which mostly connect task-positive and task-

negative nodes, display long-range integration with task-accuracy,

implicating a more distributed and complex brain network

supporting fluent reading than previously thought. For instance,

long-range frontal to temporal increases in connectivity could

support higher levels of cognitive control, consistent with prior

findings of increased long-range connectivity between these areas

in adults versus children [40,42]. The complex dependence of

connection strength on behavior can only be uncovered by

examining connectivity in the context of variation in task

performance.

We found considerable heterogeneity among different clusters,

suggesting that, despite occupying the same functional level,

clusters play different functional roles in support of reading.

Figure 4. Functional groups have high concurrency with anatomical regions. Colors correspond to number of nodes belonging to the
group (system, block, or cluster) as well as the anatomical region (AAL template).
doi:10.1371/journal.pone.0059204.g004

Task-Related Functional Connectivity of Reading
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Previous literature suggests that those with reading disability have

altered activation and connectivity in the ‘‘core’’ reading network

[4,5,43]: left fusiform gyrus, superior/middle temporal lobe,

inferior frontal gyrus, and inferior parietal lobule. The hubs we

recovered are consistent with several of these regions, but also

include subcortical areas such as thalamus, basal ganglia, and

hippocampus, indicating the recruitment of a wide range of brain

functions during reading. Although our subjects were all healthy

children, it is likely that readers with lower accuracy exhibit mild

versions of the connectivity disruptions seen in children diagnosed

with reading disability.

We observed that the network of hubs is more synchronized

within clusters as well as between clusters in support of better

reading, supporting the hypothesis that these areas coordinate

separate sources of bottom-up or top-down information and that

this coordination facilitates correctly performing reading tasks. No

hubs were found in the task-negative regions, suggesting that, in

the presence of a cognitively complex task such as reading, local

integration within the default network is not helpful for

performance. Collectively, these results constitute a possible neural

signature for better reading in children.

There are two key advantages of our approach. First, examining

subject differences in connectivity rather than group averages

allows for the ability to control for artifacts that could be

introduced by various preprocessing steps, such as smoothing

(higher local correlations), resampling (higher local correlations),

and global signal regression (introduction of negative weights).

Because these steps are uniformly applied to all subjects, they

should not affect between-subject differences in connectivity. A

second important issue regarding connectivity analyses is how to

properly define a node [9]. We argue that no assumptions of

spatial scale should be made; therefore, our time series were

extracted from ROIs of the minimum size that was computation-

ally feasible and contained adequate signal-to-noise ratios.

Further, brain networks contain multiple functional scales, so we

allowed these scales to arise from data-driven means through

hierarchical partitioning on the naturally occurring, weighted, and

signed interactions.

It is important to note some potential limitations of the current

study. First, because our time course consists of task, fixation, and

perceptual control trials, the connectivity patterns found cannot be

specifically linked to any one trial type or to the overall effect of task.

Specifically, it is possible that task-related connectivity found here is

partially due to either simultaneous activation of two regions from

common sensory input or to underlying anatomical connectivity.

However, our major results are built on differences in connectivity

across subjects performing the same task and therefore cannot be an

artifact of common sensory input. It is true, however, that we are

unable to distinguish between anatomical connectivity and func-

tional connectivity, and therefore care must be taken with the

interpretation. Nevertheless, we would like to point out that this issue

is not limited to task-related connectivity and extends to the resting

state as well. Further, the mixing of trial types might contribute to the

subtlety of our findings; i.e. block or system links only correlate with

behavior at a correlation coefficient of r = 0.3–0.35. However, any

such dilution of the signal would only serve to reduce our statistical

power, and trials were pseudo-randomized with both fixation and

perceptual control trials to reduce any systematic contaminations

between trial types. Thus, our results are conservative and likely to

be strengthened in a task-related block design of only reading tasks.

Second, as with any functional connectivity analysis, the results

can be sensitive to preprocessing steps such as smoothing or to

subject movement. Therefore, we made efforts to ameliorate or

control for these effects by not smoothing our data, ensuring that

ROI’s are not overlapping, ignoring links between ROIs less than

10 mm apart, and removing from the analysis all volumes with

frame displacement of more than 0.3 mm.

Finally, hierarchical partitioning of the mean connectivity matrix

and calculating eigenvector centrality of the cluster-level perfor-

mance modulation network are analyses necessarily conducted on a

Figure 5. Links spanning higher levels of the hierarchy are more correlated with task accuracy. Plots of average link weight (Fisher’s Z
transformed) versus task accuracy for (A) cluster links, (B) block links, (C) system links, and (D) cross links. Plots of the ratio of the average weight of (E)
system links to cluster links, and (F) block links to cluster links.
doi:10.1371/journal.pone.0059204.g005

Task-Related Functional Connectivity of Reading
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measure already defined across subjects. As such, we could not define

between-subject statistics for thesecalculations.Wehavemadeefforts

to quantify the robustness of our findings by conducting various

robustness tests and showing that leaving out multiple random

subjects did not significantly alter the results of these analyses.

Recently, Gonzalez-Castillo et al. [44] have pointed out that a

wealth of information is ignored when only considering highly

significant activation maps. Consistent with this, our results

demonstrate that the neural substrates of cognition entail

interactions and dynamics that can’t be entirely captured by

univariate, task-related methods. Connectivity analysis offers

insight into data that is complementary to univariate analyses,

and integration between these two sources of information is crucial

for forming deeper understanding of higher-level cognition such as

reading. Tying these results with the resting state literature will

also prove vital to answering intriguing questions such as: How

does connectivity within the ‘‘default’’ network change in support

of various types of tasks and across different conditions? Many

open questions remain regarding the relationship between

functional connectivity and univariate studies, including the exact

extent of their mutual information. The methods presented here

could pave the way for understanding such questions and at the

same time provide a cost-efficient, quick method of analyzing

previously acquired task-related data, thus revealing promising

avenues of future research.

Materials and Methods

Ethics Statement
Subjects, as well as parents or guardians, gave written, informed

consent to participate in this study. The study protocol was

Figure 6. Performance modulation network quantifies modulation of correlations by task accuracy and reveals key hub regions. (A)
We investigated the hub-like nature of the 33 clusters by averaging together link weights of all links within clusters as well as links between pairs of
clusters to create cluster-level connectivity matrices for all subjects. Performance modulation for every link was then found by calculating the
correlation of link weight with task accuracy across participants to create the performance modulation matrix. (B) We classify as hubs the clusters with
the highest eigenvector centrality values calculated on the performance modulation matrix from (A). The hubs found (large spheres) encompass key
reading areas such as fusiform gyrus and left temporal gyrus, as well as dorsal striatum, thalamus, and left hippocampus. Views depicted are lateral
(top), posterior (center), and medial (bottom).
doi:10.1371/journal.pone.0059204.g006
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approved by the Institutional Review Board at Northwestern

University.

Subjects
Thirty-nine healthy children recruited from the Chicago

metropolitan area participated in the study (21 females, mean

age = 11.92, range = 9–15). All children were native English

speakers with normal hearing and normal or corrected-to-normal

vision, were free of neurological diseases or psychiatric disorders,

and were not taking medication affecting the central nervous

system. Parents of children were interviewed to ensure that

children did not have a history of deficits in reading, language, or

attention. Children were right-handed (mean = 80, range 55–90)

according to the 9-item Likert-scale questionnaire (290 to 90,

positive scores indicate right-hand dominance). Children were

given two standardized intelligence tests: Wechsler Abbreviated

Scale of Intelligence (WASI) [45] and the Word Identification test

from the Woodcock Johnson Tests of Achievement (WJ-III) [46].

All subjects included scored within 2 standard deviations of the

average score (WASI: 111.8615.5; WJ-III: 108.2611.0).

Task and Experimental Design
Data was collected in a pseudo-randomized event-related

design, the initial results of which were published previously

[47]. The experiment consisted of two consecutive runs of 108

trials, including 48 lexical trials, 36 fixation trials, and 24

perceptual baseline trials. However, only the first run was analyzed

in each subject because of concern over habituation and practice

effects as well as fatigue, especially since this study was conducted

with children. In the lexical trials, two words were presented

visually in a sequential order and the participant had to determine

whether the words rhymed. Each word was presented for 800 ms

followed by a 200 ms blank interval. A red fixation-cross appeared

on the screen after the second word, indicating the need to make a

response during the subsequent 2400 ms interval. Twelve word

pairs were presented in each one of four lexical conditions to give a

total of 48 lexical trials that independently manipulated the

orthographic and phonological similarity between words. In the

two non-conflicting conditions, the two words were either similar

in both orthography and phonology (O+P+, e.g. dime-lime), or

different in both orthography and phonology (O2P2, e.g. press-

list). In the two conflicting conditions, the two words had either

similar orthography but different phonology (O+P2, e.g. pint-mint)

or different orthography but similar phonology (O2P+, e.g. jazz-

has). Participants were instructed to press a button with their index

finger for rhyming word pairs and to press a different button with

their middle finger for nonrhyming word pairs. Conflicting and

non-conflicting pairs were employed so that participants could not

make rhyming decisions on spelling alone. All words were

monosyllabic words (4–7 letters), and were matched across

conditions for written word frequency in children by using The

Educator’s Word Frequency Guide [48] and for written and

spoken word frequency in adults by using CELEX [49].

Thirty-six fixation trials were included as a resting baseline. In

the fixation condition, a black fixation cross was presented for the

same stimulus duration as the lexical stimuli and a button was to

be pressed with the index finger when the black fixation-cross

turned red. It should be noted that our fixation trials consist of a

motor response in order to control for motor movement during

task trials. In addition, 24 trials in two control conditions were

used as a perceptual baseline for a related study (see [47,50] for

detailed methods). For these conditions, participants were visually

presented with pairs of either single symbols or symbol strings with

the same timing as the lexical trials and had to determine if they

matched. The lexical trials were interspersed with the fixation and

control trials in pseudo-random fashion to minimize the effect of

contamination from previous trials, as recommended by Burock

et al [51], for a total of 108 trials. The order of stimuli within the

task was fixed for all subjects. All trials lasted for a total of 4.4

seconds.

After informed consent was obtained and the standardized tests

were administered, participants performed one run of the

experimental task in a custom simulator scanner in order to

ensure their understanding of the tasks and to acclimatize

themselves to the scanner environment. In addition, participants

were trained to minimize head movement in the simulator scanner

using online feedback from an infrared tracking device (Flock of

Birds, Ascension Technology Corporation, Milton, VT). Different

stimuli were used in the practice and in the scanning sessions.

Scanning took place one week after the practice session. Accuracy

of performance in the scanner and reaction times from the onset of

the second item in each trial were recorded.

MRI Data Acquisition and Preprocessing
Images were acquired using a 1.5-T GE (General Electric)

scanner, using a standard head coil. Head movement was

minimized using vacuum pillow (Bionix, Toledo, OH). The

stimuli were projected onto a screen and viewed through a mirror

attached to the inside of the head coil. Participants’ responses were

recorded using an optical response box (Current Designs,

Philadelphia, PA). The BOLD (blood oxygen level dependent)

functional images were acquired using the echo planar imaging

method. Image orientation was oblique axial. The following

parameters were used for scanning: TE = 35 ms, flip angle = 90u,
matrix size = 64664, field of view = 24 cm, slice thickness = 5 mm,

number of slices = 24; TR = 2000 ms. One run contained 240

time points and lasted 480 seconds. In addition, structural T1-

weighted 3D image were acquired (SPGR, TR = 21 ms,

TE = 8 ms, flip angle = 20u, matrix size = 2566256, field of

view = 22 cm, slice thickness = 1 mm, number of slices = 124),

with the same orientation as the functional images. All images

were acquired in the axial plane starting at the top of the brain, so

coverage of the cerebellum was not complete for either the

structural or functional scans.

The functional and structural data were preprocessed within

each run by using SPM8 (Wellcome Trust Centre for Neuroim-

aging, http://www.fil.ion.ucl.ac.uk/spm). The functional images

were spatially realigned to the first volume to correct for head

movements using second degree b-spline interpolation. Functional

volumes were slice-time corrected to the first slice and sinc

interpolation was used to minimize timing errors between slices.

The functional images were co-registered with the corresponding

structural MRI using mutual information optimization and

normalized to the MNI (Montreal Neurological Institute) tem-

plate, with voxel size 26262 mm3. Data were not smoothed in

order to minimize spurious correlations at small distances. The

first four volumes of each participant’s functional data, which

contain transient T1 effects, were discarded from statistical

analysis.

Defining Functional Networks
The 4 lexical, 2 control, and fixation conditions were modeled

as conditions of interest. All conditions were treated as individual

events and modeled with a canonical hemodynamic response

function. Six-parameter rigid body movement was included as a

nuisance regressor. A group-level, random-effects analysis [52]

identified brain areas most significantly active for the lexical.fixa-

tion conditions and for fixation.lexical conditions. Significance
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was determined by resampling to 66666 mm3 cells and taking

only cells that were significant at p,0.001, uncorrected, using a

two-sample t-test in SPM. Cells significant in the lexical.fixation

contrast (262) were denoted ‘‘task-positive’’ nodes, signifying brain

areas most associated with experimental task-related activation.

Cells significant in the fixation.lexical contrast (359) were

denoted ‘‘task-negative’’ nodes, signifying areas most associated

with task-related deactivation [25].

This particular resolution of 6 mm isotropic ‘‘nodes’’ was

chosen in order to create relatively small, uniformly sized ROIs

that avoid any assumptions of spatial scale. This presents a

computationally efficient method that helps to stabilize the signal

against noise without implementing Gaussian smoothing, which

introduces spurious correlations by averaging over overlapped

nodes.

Constructing Functional Connectivity Matrices
Power et al. and Van Dijk et al. [53,54] have demonstrated that

even after motion regression, volumes with high frame displace-

ment (FD) can introduce spurious correlations. They recommend

a procedure called ‘‘motion scrubbing’’ to eliminate high-

movement volumes prior to connectivity analyses. Before

conducting motion-scrubbing procedures on our data, subjects

had an average FD of 0.18 mm, collapsed across all time points

and subjects. All volumes with FD.0.3 mm were eliminated and

ignored in subsequent analyses. On average, 30 volumes (12.5% of

all data) per subject were eliminated via this procedure, with all

subjects retaining at least 50% of all volumes. The results remain

largely unchanged after motion scrubbing, but all results presented

include this step.

Time series of BOLD activation from each 66666 mm3 node

were calculated by averaging all voxel time series within the node,

conducting motion scrubbing, subtracting the global signal, linear

detrending, and filtering at 0.008–0.1 Hz in accordance with

previous functional connectivity techniques. It should be noted that

the motion scrubbing and frequency-filtering steps were only

conducted for the connectivity analyses, and not for the univariate

GLM analysis used to select our ROIs. These steps were taken in

addition to the standard 6-parameter rigid body motion regression.

We then calculated single-subject connectivity matrices by

pairwise cross-correlating, using Pearson’s product moment

correlation, all BOLD response time series and obtaining the

Fisher’s Z-transform of the cross-correlation values [30]. In the

following, we denote the Fisher’s Z-transform of the correlation

value between a pair of nodes as the link weight. This resulted in a

6216621 element matrix, where the ij-th element corresponds to

the cross-correlation between the time series from the i-th node

and that from the j-th node. As an additional measure against

movement-related artifacts, we ignored links between nodes less

than 10 mm apart in all analyses. The adjacency matrix of the

mean connectivity strength network was constructed by averaging the

Fisher’s Z-transformed correlation values across subjects. The

Fisher’s Z transformation was performed in order to stabilize the

variance for correlation values. High values in mean connectivity

strength indicate a consistent (across subjects) synchronization in

time dynamics between two nodes. All connection weights,

positive and negative, were retained. Although currently there is

no consensus on how to interpret negative connectivity weights,

our analyses primarily consider changes in weights with reading

performance rather than absolute values. As such, our results are

insensitive to the actual sign of the connectivity weights.

Dissociation between High Activation Levels and
Correlation of Time Series

An important concern with conducting functional connectivity

analyses on task-related data is the possibility that the correlations

found between brain regions are solely driven by the magnitude of

task-related activations in those regions. To address this concern,

we investigated whether the connectivity between two ROIs is

significantly related to the main effect of task in those ROIs. An

analysis of the most activated regions (those with t.4) in response

to lexical task minus fixation trials shows that the BOLD time

series are not highly correlated with each other on average (mean

r = 0.13960.144; see Figure S1), as would be expected if

correlation is solely driven by magnitude of activation. There

are two possible explanations for this result: 1) neuroimaging data

contains sufficient noise that regions with relatively high activation

levels still contain enough deviations to attenuate correlations with

other highly activated regions, or 2) typically, there are many

variables of interest that could influence activation levels, and thus

high activation with respect to one variable does not completely

determine the time series (i.e. there are many possible time series

that would all achieve a high t-value). The dissociation between

activation levels and correlation in time series that we observe here

suggests that task-related connectivity is not redundant with

activation levels found in univariate GLM analyses.

Statistics and Significance Testing
Connection strengths of various link types are tested by first

averaging Fisher’s Z-transformed correlation values across all links

at each hierarchical level, followed by significance testing using the

nonparametric Wilcoxon signed-rank test, the Wilcoxon rank-sum

test, and the Kruskal-Wallis ANOVA test because no assumptions

of normality were made. Correlations with task accuracy are

conducted using Pearson’s product moment correlation. Task

accuracy is defined as the percentage correct on all lexical trials.

Hierarchical Clustering and Partitioning
To hierarchically partition our nodes, we use a standard

algorithm included in the Brain Connectivity Toolbox (Rubinov

and Sporns, 2010), modified so that it will implement iterative

clustering to yield a hierarchical network. We have chosen this

algorithm because, to our knowledge, it is the only standard,

public algorithm that works with weighted, signed networks. It

implements an undirected, signed version of the Louvain method

[55], a highly efficient community detection algorithm using

Newman’s modularity statistic [31] as a metric. We modified this

algorithm to operate iteratively to create multiple levels of

partitions, so that the partitions found at one level are then

themselves partitioned to create the groups of next lower level.

Specifically, all task-responsive nodes are first partitioned to

recover groups we call Systems, which are then partitioned to

recover groups we call Blocks, and these are subsequently

partitioned to recover groups called Clusters.

In order to test the robustness of our partitions, we conducted

three analyses: 1) calculating partitions on the mean connectivity

strength network 100 times with different random seeds, 2)

calculating partitions on individual subject correlation matrices,

and 3) calculating partitions on a mean connectivity strength

network constructed with 3 random participants left out of the

analysis, repeated 100 times. For each analysis, we can calculate

the difference between all pairs of partitions by calculating the

variation of information v [34], an information theoretic measure

ranging from 0 to 1 that quantifies the amount of information lost

when changing between two partitions (Brain Connectivity
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Toolbox, [56]). We found that the average v for analysis 1 is

0.016/0.036/0.086 (top/middle/lowest level; 4,450 comparisons),

for analysis 2 is 0.015/0.119/0.186 (741 comparisons), and for

analysis 3 is 0.028/0.067/0.105 (4,450 comparisons). We then

constructed a null model, where partitions are randomized but the

total numbers of clusters and the number of nodes per cluster are

fixed. The expected variation of information v was found to be

0.311, 0.7077, and 0.7876 for the top, middle, and lowest level,

respectively. Therefore, the partitions we recovered lost almost no

information at the top level, little information at the middle level,

and a small but nontrivial amount of information at the bottom

level, although much smaller than would be expected by random

chance. Notably, subsequent results do not depend on the

particular partitioning used.

Identifying Hub Regions
In order to ascertain if certain clusters are more strongly

embedded than others as reading performance increases, we

calculate the eigenvector centrality z-scores [57,58] of all 33

clusters.

We first calculate average individual-subject link weights

between all pairs of clusters, to obtain a 33633639 matrix that

defines how clusters are related in each subject. The correlation

coefficient between link weight and subject task accuracy is

calculated across subjects for each pair of clusters to yield a 33633

matrix of cluster-level performance modulation (see Figure 6).

High values in performance modulation for a link signify increases

in connection strength between two clusters for individuals with

higher accuracy. We then calculate the eigenvector centrality of

each cluster based on this performance modulation network and

identify those with statistically significant values of eigenvector

centrality as ‘‘hubs.’’

Eigenvector centrality calculates how well an element is

connected within the network by looking at the quality of its

neighbor’s connections [10,57,58]. The advantages of eigenvector

centrality are that it generalizes well to weighted networks and it

takes higher order connections into account when assessing

importance, i.e. connection to important nodes confers more

importance than connection to unimportant nodes. We compute

eigenvector centrality using a standard iterative algorithm defined

by Newman [59]. Because eigenvector centrality is only defined

for positive weights – variations which take into account negative

weights exist, but do not necessarily converge to unique or stable

solutions [57,60] – we add a constant to all connection strengths.

Significance is determined by creating a sample null distribution

of 1000 matrices with shuffled rows and columns and calculating

centrality of all clusters. We consider a cluster to have a significant

eigenvector centrality if the corresponding z-score (compared to

the null distribution) is significant at p,0.01, corrected for multiple

comparisons.

A leave-3-out robustness test, in which 3 random participants

are left out of the analysis, indicates that the hubs recovered are

highly stable. Out of 100 trials, clusters 7, 9, and 12 were assigned

hub status 99, 83, and 98 times, respectively. No other clusters

were comparable, with the closest being clusters 5 and 23, which

were assigned hub status 12 times each. We are therefore

reasonably confident that the hubs found are typical and

representative.

Visualization
All brain surface visualizations were constructed using Caret

software [61] and the PALS atlas [62].

Supporting Information

Figure S1 High activation levels are not related to high
time-series correlation. (A) Two example time series of

activation from two separate ROIs (light gray and dark gray solid

lines) are superimposed on stimulus onsets for lexical (dashed green

line) and fixation (dashed orange line) trials, convolved with a

canonical hemodynamic response. The fixation trial stimulus

onsets are inverted (onset corresponds with downward inflection)

for visual clarity. Both ROIs exhibit high activation levels (t.6.5

for lexical minus fixation contrast), yet have very low correlation

between them (Pearson’s product moment r = 0.085). (B) Time

series from all nodes with high activation (t.4) are binned

according to activation level, and all time series in the same bin are

cross-correlated. The resultant correlations are binned along the y-

axis to yield a 2-D histogram of how correlations are distributed

for every t-value bin.

(TIF)

Table S1 Details of anatomical regions in the task-
positive areas. Columns refer to the number of nodes within

each anatomical region (as defined by the AAL atlas), spatial

coordinates of the center of mass, and Brodmann Area (BA). X, Y,

and Z refer to MNI coordinates. Region names: CAL: Calcarine,

MCG: Middle Cingulate, IFGoperc: Inferior Frontal Gyrus pars

opercularis, ORBinf: Inferior Frontal Gyrus pars orbitalis,

IFGtriang: Inferior Frontal Gyrus pars triangularis, SFG: Superior

Frontal Gyrus, SFGmed: Medial Superior Frontal Gyrus, FFG:

Fusiform, HIP: Hippocampus, INS: Insula, LING: Lingual Gyrus,

IOG: Inferior Occipital Gyrus, MOG: Middle Occipital Gyrus,

SOG: Superior Occipital Gyrus, IPL: Inferior Parietal Lobule,

SPG: Superior Parietal Gyrus, PoCG: Postcentral Gyrus, PreCG:

Precentral Gyrus, PCUN: Precuneus, SMA: Superior Motor Area,

ITG: Inferior Temporal Gyrus, MTG: Middle Temporal Gyrus,

THA: Thalamus.

(DOCX)

Table S2 Details of anatomical regions in the task-
negative areas. Columns refer to the number of nodes within

each anatomical region (as defined by the AAL atlas), spatial

coordinates of the center of mass, and Brodmann Area (BA). X, Y,

and Z refer to MNI coordinates. Region names: ANG: Angular

Gyrus, CAL: Calcarine, CAU: Caudate, MCG: Middle Cingulate,

PCG: Posterior Cingulate, CUN: Cuneus, MFG: Middle Frontal

Gyrus, SFG: Superior Frontal Gyrus, SFGmed: Medial Superior

Frontal Gyrus, FFG: Fusiform, HES: Heschel’s Gyrus, MOG:

Middle Occipital Gyrus, PHG: Parahippocampal Gyrus, IPL:

Inferior Parietal Lobule, PreCG: Precentral Gyrus, PCUN:

Precuneus, PUT: Putamen, SMA: Superior Motor Area, SMG:

Supramarginal Gyrus, MTG: Middle Temporal Gyrus, STG:

Superior Temporal Gyrus.

(DOCX)
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