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Abstract

Our current view on how protein complexes assemble and disassemble at promoter sites is based on experimental data. For
instance this data is provided by biochemical methods (e.g. ChIP-on-chip assays) or GFP-based assays. These two
approaches suggest very different characteristics for protein recruitment processes that regulate and initiate gene
transcription. Biochemical methods suggest a strictly ordered and consecutive protein recruitment while GFP-based assays
draw a picture much closer to chaotic or stochastic recruitment. To understand the reason for these conflicting results, we
design a generalized recruitment model (GRM) that allows to simulate all possible scenarios between strictly sequential
recruitment and completely probabilistic recruitment. With this model we show that probabilistic, transient binding events
that are visible in GFP experiments can not be detected by ChIP experiments. We demonstrate that sequential recruitment
processes and probabilistic recruitment processes that contain ‘‘shortcuts’’ exhibit periodic dynamics and are hard to
distinguish with standard ChIP measurements. Therefore we propose a simple experimental method that can be used to
discriminate sequential from probabilistic recruitment processes. We discuss the limitations of this method.
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Introduction

Understanding the regulatory processes which govern cells in a

systemic way is an increasingly important challenge in biology and

medicine [1–5]. One particular challenge of importance within

this rapidly evolving field of research is to understand how

transcription is modulated [6–9] and thus how abundance of mRNA

is controlled on the side of mRNA production (as compared to

mRNA degradation [10,11]). A body of research (e.g. [12–16]) has

contributed to enhance the understanding of transcription

initiation and control, extending the basic principle of promoter

elements serving as ‘‘anchors’’ for the assembly of intermediate

protein complexes and the general transcriptional machinery.

These add-ons to the basic picture, which traditionally consists of a

strictly sequential recruitment of elements from the promoter over

the formation of the pre-initiation complex (PIC) to initiation of

transcription by RNA polymerase II (PolII), include cis- and trans-

regulatory elements, co-regulators and chromatin remodelers [17].

For understanding the dynamics of the transcription initiation

and modulation, mainly nuclear receptors have been used as

models [17]. Biochemical experiments (e.g. ChIP assays for the

pS2 gene [12]) have been used to analyze the transcription

initiation process. Despite all progress in elucidating regulatory

details, the predominant model for interpreting experimental data

relies on the concept of strictly ordered sequential recruitment

processes (SR) [12,16,18,19].

SR became challenged with the green fluorescent protein (GFP)

revolution. Particularly GFP-based assays like fluorescence recovery

after photobleaching (FRAP) [20–22] draw a far more dynamic

picture of protein recruitment, the probabilistic recruitment (PR)

scenario. PR suggests stochastic models for assembling the

transcriptional machinery (e.g. [23,24]).

While it is in principle possible that different promoter sites

show different recruitment characteristics, it is obviously true that the

two scenarios, SR and PR, of protein recruitment can not be true

at the same time for the same recruitment process. Several

attempts have been made to reconcile both scenarios (e.g.

[17,24,25]). One strategy is to find reasons why biochemical

methods, like ChIP-based assays, may overestimate the regularity

of the recruitment process and GFP-based assays may overesti-

mate the stochasticity [25]. Another strategy [17,24] is basically to

reinstate the SR scenario by assuming a transcriptional ratchet at work

that progresses only when the right binding partners or allosteric

interactions initiate an irreversible functional change of the

assembled protein complex giving the process a definite direction.

Other random interactions (as seen by GFP-based assays) simply

are rationalized away as non-functional reversible interactions.

Basically the only stochastic element that remains in this approach

consists of stochastic waiting times between functional state

changes [18].

Nonetheless, it is known that the recruitment process can

partially take place in a non-sequential, probabilistic way. For

example Rafalska-Metcalf et al. (2010) demonstrated that certain

transcription factors can replace the sequential binding of a series

of other proteins for VP16- and p53-induced transcription in

transgenic human osteosarcoma cells. Thus these transcription

factors can act as ‘‘shortcuts’’ in the recruitment process. Another

example was shown by Esnault et al. (2008): According to their
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results the PIC can be formed by several pathways that differ in

the sequence of binding of general transcription factors.

Different models have been proposed to simulate recruitment

processes (e.g. [18,26]). Lemaire et al. (2006) formulated a model

to simulate recruitment in a strictly sequential order with the aim

to reconstruct the binding pattern of proteins and protein

complexes. This model proposed a cyclic protein binding pattern

for ChIP data. D’Orsogna and Chou (2005) modeled complex

formation by ligand binding and compared the mean first-passage

time of the sequential and combinatorial recruitment scenarios.

Since current attempts to reconcile the SR and the PR scenario

remain incomplete, we re-analyze the problem by designing a

generalized recruitment model (GRM) that allows to simulate all

possible scenarios ranging between strictly sequential and com-

pletely probabilistic. We use the model to predict the result of

ChIP experiments based on different underlying recruitment

models and compare the predicted characteristics with experi-

mental data. We show that recruitment processes that deviate

strongly from the SR scenario contradict the ChIP experimental

facts. We also show three additional things: (i) If each step in a

cyclic recruitment process is reversible (where the forward

transition rate is larger than the backward transition rate) then

the ChIP signal of the resulting PR process is equivalent to a SR

process with modified period. (ii) If a PR process can be obtained

from a SR process by adding a few additional long-range transitions

(i.e. opportunities for parts of the assembling protein complex to

form off-site or to break-off), which allow the recruitment process

to progress or regress substantial parts of the transcription cycle in

one step, then ChIP will exhibit oscillatory dynamics that can

easily be confounded with pure SR. (iii) We show how ChIP can in

principle be used to test whether a recruitment process has such

long-range transitions. A negative result however does not exclude

the existence of such transitions, but implies that the deviations

from the SR process are negligible and therefore the process can

effectively be treated as a SR process.

Once it is known that a specific promoter-site recruits proteins

strictly sequentially, then methods as e.g. described in [18] can be

used for inferring the protein recruitment process. If one knows on

the other hand that long-range transitions exist then those have to

be incorporated in model-based inference schemes (which goes

beyond the scope of this paper) and methods designed for SR will

predict wrong recruitment patterns.

A Model for Sequential and Probabilistic
Recruitment

We model recruitment in a more general way than [18,26] by

generalizing the approach presented in [18]. We assume that the

recruitment process can be characterized by ‘‘states’’ i~1, . . . ,W ,

which form the W nodes of a recruitment network (Fig. 1a). Links

between these nodes characterize possible transitions between

these recruitment states. Intuitively such transitions between states

Figure 1. Schematic visualization of the model. (a) The recruitment process is represented by a number of states (blue nodes) that are
connected by transitions (here shown for SR). The Smk matrix determines whether a protein is present (red and green bars) in a state or not. (b) Using
the GRM the resulting ChIP signals for the proteins are predicted. (c) Schematic occupation of states for Gaussian initial conditon (blue) and two later
time points (green and red). (d) Recruitment network for the SR process (0 shortcuts). All states are only linked to their unique successor states in a
circular manner. (e) Recruitment network for a PR process with 7 shortcuts.
doi:10.1371/journal.pone.0055046.g001
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can be understood as the addition or removal of a protein to the

recruiting protein complex, as methylation or deacetylation events

or even as conformal changes of the three dimensional molecular

structure. Yet, only a subset of N such events can be detected in

ChIP experiments and can be regarded as ‘‘landmarks’’ in the

recruitment process, then M*W=N intermediate states on

average lie inbetween these landmarks. As a consequence, if

state-transtions follow an exponential distribution, transitions

between landmark states follow a Poissonian distribution (compare

Eq. 8).

ChIP experiments average over samples composed of many

cells. Each cell on its own may be in a certain state i. The

population of cells in a sample, will in general be distributed over

all states. If however, recruitment to the promoter has to be

initiated by some signal (e.g. by estradiol for the pS2 gene [12]), it

can be expected that directly after initiation, the initial state

distribution of a synchronized cell population will form a sharp

peak around the cleared promoter state i~1. The initial

distribution of cells gets denoted by fi. We want to know how

the initial distribution fi evolves over time once transcription has

been initiated (Fig. 1c). We design a generalized recruitment model

(GRM) in the following way: The waiting time between possible

transitions i?j from state i to j is considered as a probabilistic

event drawn from an exponential distribution

rji(t)~aji exp ({ajit) , ð1Þ

where aji characterizes the transition rate from i to j. If aji~0 then

a transition from i to j is impossible. The probability not to find a

transition i?j within the time-interval ½t,tzt� is given by

�ppji(t)~1{

ðt

0

dt’rji(t’)~ exp ({ajit) : ð2Þ

The effective probability for a transition i?j is therefore

ri?j(t)~rji(t) P
k=j

�ppki(t)~aji exp ({ait) , ð3Þ

where ai~
P

j aji. Given that pi(t) is the probability to find a cell

in state i at time t and by considering the number of transitions

that arrive and leave state i within a small time span t%1, the

differential equation

d

dt
pj(t)~

XN

k~1

ajk{akdj,k

� �
pk(t) ð4Þ

holds, where dj,k is the Kronecker symbol, which is 1 if j~k and 0

otherwise. Depending only on the transition rates aji, Eq. (4)

governs all possible recruitment processes.

The information whether a protein m is present in a state k is

expressed by a matrix Smk: If the value of Smk is 1 then the protein

m is bound in the state k of the recruitment process, if Smk is 0

then the protein m is not bound in state k. Note that the matrix

Smk is constant over time. Since a huge number (typically w105)

of cells is used in ChIP experiments [12], pi(t) can be used to

estimate how the cells’ states are distributed in a sample.

Therefore, we can predict the ‘‘concentration’’ cm(t) (i.e.

percentage of inputs) at time t for protein m that would be

measured in a ChIP experiment (compare Fig. 1a,b). Using the

Smk matrix we get

cm(t)~
XN

k~1

Smkpk(t): ð5Þ

SR is represented in this model by states that are circularly

linked to their successor states (Fig. 1d). Thus, for SR the aji form a

sub-diagonal matrix. To implement PR processes, transitions are

added to this model, so that aji has also off-diagonal entries. These

additional transitions can point either forward or backward in the

recruitment process (Fig. 1e). Depending on the number R of

states such transitions i?i+R can skip without notably adding to

diffusive broadening of observed singals cm(t) over observation

time Tobs we distinguish between short-range and long-range

transitions as described below in more detail.

We now analyze basic properties of the GRM (Eq. 4). First we

show that PR scenarios, where the forward transitions are made

reversible by backward transitions, are practically indistinguish-

able from SR processes by ChIP experiments. We then discuss PR

processes obtained from SR processes by adding shortcuts, i.e.

long-range transitions. The resulting ChIP signal of a PR process

can also exhibit oscillatory dynamics. From observing periodic

signals cn(t) alone it is hardly possible to distinguish whether the

source of the signal is SR or PR. Finally, we describe a method

that allows to test whether a SR process or a PR process with

shortcuts is present and comment on the limitations that may arise

in a practical application of this test.

Sequential Recruitment
For SR a state i is only linked to its successor state j~iz1

(Fig. 1d). Thus, aji~ldiz1,i and one recovers the model used in

[18], with a transition rate l.

This concept of a state also includes all substeps interpolating

between the N landmark events. For simplicity we assume that

each of the N landmark events gets interpolated by M substeps

and the whole number of states of the model is W~NM (Fig. 2).

To see the effect of a large number of interpolating steps we look at

the limit M??. With a set of new variables, 1§x:i=W§0 (the

state x~1 has the successor state x~0), it follows that dx:1=W ,

n:l=W , f (x):Wfi, and r(x,t):Wpi(t). Given these substitu-

tions Eq. (4) can be written in continuous form as

Lr(x,t)

Lt
~{n

L
Lx

r(x,t) : ð6Þ

This equation has solutions of the form

r(x,t)~f (x{w(t)) ð7Þ

with w(t)~nt. This means that in the limit M?? the initial

distribution f (x) propagates periodically over the sequential states

with frequency n. For a SR process the time series produced with

ChIP will therefore show periodic dynamics of cm(t). The resulting

waiting times between landmark events are not exponentially

distributed anymore but are given by

r(M)(t)~lMz1 tM

M!
exp {ltð Þ ð8Þ

and the expectation value of transition time between the N

landmarks

The Protein Recruitment Puzzle
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�tt~
Mz1

l
ð9Þ

defines l. In the limit M?? this expression converges to a delta

distribution and recruitment starts to work like a clockwork rather

than a stochastic process. If the limit M?? is not fulfilled, then

the initial distribution smears out with time. However, ChIP data

for the pS2 gene [12] shows that recruitment processes exist where

this spread can be neglected within the typical experimental

observation time in which case M needs to be large.

Probabilistic Recruitment
Now consider a SR process where the transitions are reversible.

For simplicity we assume that the transition rates are constant. We

denote the forward transition rates by aj,j{1~lz and the

backward transition rates by aj,jz1~l{ and assume that lz is

larger than l{. Thus, Eq. (4) states

d

dt
pj(t)~{lz pj(t){pj{1(t)

� �
{l{ pj(t){pjz1(t)

� �
ð10Þ

and for large M the process can be approximated by a Fokker-

Plank equation

L
Lt

r(x,t)~{neff
L
Lx

r(x,t)zD
L2

Lx2
r(x,t) , D:

nzn{

nzzn{

1

W
ð11Þ

with the flow term neff : nz{n{ð Þ, nz:lz=W , n{:l{=W

and the diffusion constant D. Due to diffusion the initial condition

of the process will get broader by 2tD over time t. In particular,

after the experimental observation time Tobs the width of the

initial distribution f (x) increases by 2TobsD. If diffusion observed

for experimental data is negligible (which is the case for instance

for pS2 data) then 2TobsD, i.e. n{=W , needs to be small. This

means that if n{ is of the same order as nz (n{
vnz), then

reversible transitions only affect the effective frequency neff of the

process while diffusion remains negligible. Moreover, if nz and/or

n{ depend on the position x in the recruitment process then

different parts x~x(t) of the recruitment process are traversed

with different local frequency n(x(t))~ _ww(t).

Next, we consider transitions i?i+R (linking forward and/or

backward). Suppose such transitions are added to the SR scenario

for a large fraction of states i all over the recruitment cycle –

analogous to adding reversible transitions as discussed above. If

those transitions have rates comparable in magnitude to n+ or

smaller, their effect can be split into a part that modifies the

effective (local) transition rate n(x) and a part DR
v* DR that

contributes to the effective diffusion constant. Again, if no

noticeable diffusive spreading of the initial condition is observed

then 2DRTobs has to remain sufficiently small. We call the range of

R where this is true short-range. Conversely, we call transitions that

do not fulfill this criterium long-range. A process where the ChIP

signal shows no notable diffusion therefore can at best only contain

a small number of these long-range transitions.

Recruitment processes containing long-range transitions (short-

cuts) represent the last scenario we are interested in. Note that for

our computer simulations we assume (for reasons discussed above)

that M is large and discretize the recruitment process into N
landmark events. As a consequence we can only represent

shortcuts between these landmark events and not between the

intermediate states in our computer model. The probability for a

shortcut i?k to be traversed is then given by

pshortcut
k,i ~

ashortcut
k,i

ashortcut
k,i zaiz1,i

: ð12Þ

Figure 2. Schematic visualization landmarks and intermediate steps. (a) Using ChIP only a subset of events (landmarks) can be detected. (b)
Binding events of proteins, for instance, are accompanied by conformational changes. ChIP is not sensible to these binding events and thus these
intermediate processes are not reflected in the ChIP signal. (c,d) Transitions between landmarks modeled without (c) and with (d) intermediate steps:
If several intermediate steps are included in the model, the transitions between landmarks become Poissonian instead of exponentially distributed.
For a large number of intermediate states – as suggested by experimental ChIP data (see text) – this converges against a delta distribution.
doi:10.1371/journal.pone.0055046.g002
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We ask how a small number of long-range transitions affect the

ChIP signal and how such shortcuts can be detected. Our

computer experiments show that processes with shortcuts show

distinct dynamics from pure SR processes. However, usually the

recruitment process is not known a priori, i.e. all that is given are

ChIP time-series cm(t), and it is difficult to determine the

underlying recruitment scenario from this data alone. How and

to what extent it is possible to distinguish the two scenarios from

data is discussed in the next section.

Results

Using various recruitment scenarios, we now show how

shortcuts can be detected in a recruitment process using the

GRM. The initial distribution fi is crucial for the detection of these

transitions. A synchronized, peaked initial distribution for a cell

population obtained at the time of transcription initiation does not

directly allow to infer the existence of shortcuts. The cm(t)’s show

oscillations in both cases. Given the oscillating cm(t) alone

therefore does not allow to infer whether the source of the signal

is SR or PR. However, a de-synchronized initial condition

represents the equilibrium distribution of the SR process but not

the equilibrium distribution of a PR process. With this type of

initial condition oscillations can only be observed for PR.

To demonstrate this fact, we consider three types of initial

conditions in our in silico experiments: (i) A de-synchronized cell

population with a randomly distributed initial condition (Fig. 3b),

(ii) an (imperfectly) synchronized cell population represented by a

Gaussian initial condition (Fig. 3c), and (iii) a de-synchronized cell

population with a uniform initial condition (Fig. 3d).

In simulations we consider three different proteins in a

hypothetical recruitment process. By linking these proteins to

specific states using the Smk matrix (e.g. Fig. 1a), we can calculate

the resulting concentration cm(t) for these proteins that are

measured in the in silico ChIP experiment.

Lemaire et al. (2006) argue that more than 100 histone and

protein modifications occur during the recruitment process and

transcription complexes can contain more than 50 proteins and

estimated that about 200 distinct protein complexes that form on

the promoter. With this in mind, we use N~1000 for the

discretization in our simulations for the recruitment process, while

M is considered to be large. The transition rates from a state i to

its successor state j~iz1 are chosen to be aji~1=N (Fig. 1d). A

different value would trivially rescale the period n as discussed

above.

Figure 3 shows the three initial conditions (Fig. 3b,c,d) and the

time series cm(t) of the hypothetical proteins (Fig. 3e,f,g: short-

term dynamics, Fig. 3h,i,j: long-term dynamics). The circular

recruitment network is shown in Fig. 3a in black, where the blue,

green and red bars indicate the protein binding patterns defined

by the matrix Smk. The ChIP signal exhibits cyclical behavior for

the Gaussian initial condition. No decay of amplitudes is

detectable. In case of the randomly distributed initial condition

the ChIP signal shows recurrent noisy characteristics. For the

uniform initial condition the predicted ChIP signal remains

constant, as expected.

Next, we consider a PR process that is obtained from a SR

process by adding many random transitions with low transition

rates (aji uniformly distributed in ½0,10{4=N�, Fig. 4). The ChIP

signal for all three initial conditions is indistinguishable from the

Figure 3. Results for the SR model for the three initial conditions and no shortcuts. (a) Recruitment network of circularly linked states
(black), the binding of the proteins associated with the states by the matrix Smk are visualized in blue, green and red. The columns indicate different
initial conditions. 1st column: randomly distributed initial condition, 2nd column: Gaussian distributed initial condition, 3rd column: uniform initial
condition. (b-d) The three types of initial conditions. (e-g) Predicted ChIP signal for three proteins (arbitrary time unit). (h-j) The same ChIP signal for a
longer time interval. While the Gaussian initial condition (synchronized cell population) results in periodic dynamics for the ChIP signal (e,f), initial
conditions that represent the de-synchronized cell populations show a constant ChIP signal.
doi:10.1371/journal.pone.0055046.g003
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ChIP signal of the SR process. This changes if the recruitment

process includes shortcuts, that is long-range transitions. In Fig. 5

we show an example with one shortcut that branches backward

(with a transition probability of ashortcut
ji ~0:4=N ). For the Gaussian

initial condition, the ChIP signal exhibits cyclical behavior with

decaying amplitude. With this initial condition the process would

Figure 4. Results for the PR with 100 transitions with low transition rates (same setup as in Fig. 3). (a) The transitions branching
backward and forward are shown in blue and orange, respectively. A distinction with the ChIP signal of a SR process (Fig. 3) is practically not possible.
doi:10.1371/journal.pone.0055046.g004

Figure 5. Results for the PR with one shortcut (same setup as in Fig. 3). (a) The shortcut (branching backward, aji~0:4=N) is shown in blue.
(f) In case of a synchronized cell population (Gaussian initial condition) the ChIP signal exhibits periodical dynamics similar to the case of SR (Fig. 3f).
(h,j) The initial conditions that represent de-synchronized cell populations show initial oscillating dynamics.
doi:10.1371/journal.pone.0055046.g005
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therefore not be distinguishable from a SR process with non-

negligible diffusion constant, i.e. where M is not large. As we see in

the pS2 example below, it is also possible to have processes with

shortcuts that do not show notable decay. As a consequence

notable decay of the ChIP signals can already hint at shortcuts but

it does not prove their existence. In contrast to the recruitment

scenario without shortcuts (Figs. 3 and 4), the two de-synchronized

initial conditions (random and uniform) also show an oscillating

(and decaying) ChIP signal. This allows to distinguish the SR

processes with diffusion from the PR processes with shortcuts by

using a de-synchronized initial condition.

The results for a PR process with two shortcuts (one of the

transitions branches forward and the other backward) and the

scenario with one shortcut behave similarly (Fig. 6,

ashortcut
ji ~0:4=N). Uniform initial conditions show an oscillating

signal in the beginning and decay quickly to the steady state. Note

that the final steady state of the ChIP signal does not depend on

the initial condition. Only in the transient phase informative

dynamics can be observed.

Next, we consider a PR process that contains 100 randomly

drawn shortcuts (ashortcut
ji [ 0:1=N,0:4=Nf g). As seen in Fig. 7 the

ChIP signals reach a stationary state almost immediately for all

initial conditions. This indicates that highly random recruitment

processes like this do not show cyclical ChIP signals in any initial

condition.

Finally, we present an example which shows that interpretation

of ChIP data can be ambiguous, by assuming a certain

characteristic of the underlying recruitment process. The example

demonstrates that for this experimental set-up it is not possible to

decide whether a SR or a PR process is present using only the

synchronized initial condition. The analysis of the ChIP data by

Metivier et al. (2003) for the transcription of the pS2 gene was

based on the assumption that the recruitment process is strictly

sequential. According to their interpretation of the data, after an

unproductive initiation cycle there is an alternation between even

and odd transcription cycles: In odd cycles the promoter is cleared

completely, whereas in even cycles two general transcription

factors (TFII A and TBP) remain bound to the promoter. To test

whether this strict distinction between even and odd cycles is the

only possible interpretation of the data, we simulate recruitment

with a PR process using the GRM: A shortcut enables the cell to

clear the promoter completely after an odd cycle by chance

(ashortcut
ji ~0:2=N, Fig. 8a) or the cell can proceed with an even

transcription cycle with bound TFII A and TBP. The aim is to

analyze if the alternation of the transcription cycles needs to be

deterministic or can be probabilistic. As illustrated in Fig. 9 the

experimental ChIP data by Metivier et al. (2003) and the resulting

synthetic ChIP data based on probabilistic promoter clearance

show the same characteristics: The periodicity of the TBP

concentration is twice as long as the periodicity for hERa.

Another feature that both ChIP signals exhibit is the alternating

periodicity in the hsp70 ChIP signal. Thus a distinction whether

this process is SR or PR is not possible from the ChIP data with

synchronized initial condition. However, with a de-synchronized

initial condition this distinction is possible (compare Fig. 8).

Discussion

The interpretation of ChIP time-series data and the resulting

order of protein binding in complex formation relies on the correct

assumption of the characteristics (SR/PR) of the underlying

recruitment process. An incorrect assumption about this charac-

teristics will result in false or distorted protein binding patterns.

We showed that in a recruitment process many random

transitions with low transition rates do not notably change the

ChIP signal. Short-range transitions in circular recruitment

Figure 6. Results for the PR with two shortcuts (same setup as in Fig. 3). (a) The shortcuts branching backward and forward are shown in
blue and orange, respectively. (f) The periodicity of the recruitment process is reflected in the ChIP signal for a synchronized cell population. (e,g) The
de-synchronized cell populations show initial oscillatory dynamics with decaying amplitude.
doi:10.1371/journal.pone.0055046.g006
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Figure 7. Results for the PR with 100 shortcuts (same setup as in Fig. 3). (a) The shortcuts branching backward and forward is shown in blue
and orange, respectively. The thickness of the lines corresponds to the transition rate of the shortcuts (aji[f0:4=N,0:1=Ng). (e-g) The ChIP signal
converges rapidly to a constant value for all initial conditions.
doi:10.1371/journal.pone.0055046.g007

Figure 8. Results for the PR for transcription of the pS2 gene (same setup as in Fig. 3). (a,e–j) hsp70 (red), hERa (green), TBP (blue).
The predicted ChIP signal (f) and the experimental ChIP (see Fig. 9a for details) have the same characteristics.
doi:10.1371/journal.pone.0055046.g008
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processes – in particular reversible transitions – merley change the

frequency of such processes (if M is large). This shows that

hypotheses explaining random binding events of proteins observed

in GFP experiments as ‘‘non-functional’’ [17,24] are compatible

with short-range modifications of SR processes which do not

interfere with the sequential characteristic of the recruitment

process on average.

If random transitions are sufficiently long-range, this implies a

non-negligible value for the diffusion constant of the process. Yet,

non-negligible diffusion could still mean that the number of

intermediate states M in a sequential scenario is not sufficiently

large. Signals showing diffusive decay may therefore either

indicate long-range transitions or a low number of intermediate

states between landmark states.

Our examples show that by using synchronized initial condi-

tions SR processes and PR shortcut processes are hardly

distinguishable. To distinguish these two possibilities from each

other one may note that for PR processes a de-synchronized initial

condition does not represent the stationary state. However, this

initial condition does represent the stationary state for SR

processes. Thus, for a de-synchronized initial condition, oscilla-

tions in the ChIP signal indicate the presence of a PR process with

shortcuts. Whether de-synchronized initial conditions produce

oscillations or not is an indicator to distinguish between these two

types of recruitment processes as long as the number of shortcuts is

not too large. If the number of shortcuts is large, any initial

condition will decay to the steady state extremely fast.

Note, that this method requires a sufficient temporal resolution

for the ChIP measurement to ensure the detection of oscillations in

the initial transient phase. The accuracy and signal-to-noise ratio

of the ChIP measurement also affects the reliability of this method.

If the transition rate of shortcuts in a PR process is too low or the

transition is too close to short-range the presented method to

distinguish SR from PR processes will yield no conclusive result.

Yet, under those conditions the process can effectively be regarded

as ‘‘SR’’.

The de-synchronized initial condition can be implemented

experimentally for example by splitting a cell population into

many sub-populations. The transcription of each sub-population is

then triggered randomly (i.e. varying amounts of estradiol are

applied to the sub-populations at random times in case of the pS2
gene). When mixing the sub-populations again, the resulting cell

population has approximately the desired de-synchronized distri-

bution.

In previous work [10,27] we showed that sequentially linear

models are able to reproduce the characteristics of SR processes.

The GRM presented in this paper enables us to formulate an

interpretation of the interaction rates in these gene regulatory

network models: These interaction rates do not describe the

characteristics of the direct interaction of proteins. Instead these

interaction rates must be perceived as ‘‘affinity rates’’ in a broader

sense. This affinity does not necessarily mean a direct physical

interaction of proteins. Instead, they describe how a protein affects

the affinity of another protein to the protein complex on the

promoter site.

Conclusions
In this paper we introduced a generalized recruitment model

that is capable of representing various recruitment scenarios

ranging between strictly sequential recruitment (SR) and com-

pletely probabilistic recruitment (PR). In our analysis we have

shown that for a wide range of probabilistic transitions (short-

range transitions and transitions with sufficiently low rates) the

results of GFP and ChIP experiments can be reconciled. These

Figure 9. Result of ChIP experiments for hERa-induced transcription of the pS2 gene. (a) ChIP signal of in vitro experiment (data extracted
from Metivier et al. (2003)) (b) ChIP signal in silico experiment using the GRM (see Fig. 8). The ChIP signals of both experiments exhibit the same
characteristics.
doi:10.1371/journal.pone.0055046.g009
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transitions do not fundamentally change the sequential character-

istic of the recruitment process. Where PR and SR scenarios

cannot be reconciled (shortcuts), they also are distinguishable.

We have proposed an experimental test that makes it possible to

check the characteristic of the recruitment process. A low number

of shortcuts can be detected by observing oscillatory signals when

using de-synchronized initial conditions. If the probabilistic

characteristics of the recruitment processes dominates (many

shortcuts), then the ChIP signals converge quickly to a steady state

for all initial conditions.

We have illustrated this problem for the hERa-induced

transcription of the pS2 gene. We have shown for this recruitment

process that the available data can be explained by either

alternating or probabilistic promoter clearance. The proposed

experimental test using de-synchronized initial conditions could be

used to decide between both possibilities.
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