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Abstract

We study the properties of the dynamical phase transition occurring in neural network models in which a competition
between associative memory and sequential pattern recognition exists. This competition occurs through a weighted
mixture of the symmetric and asymmetric parts of the synaptic matrix. Through a generating functional formalism, we
determine the structure of the parameter space at non-zero temperature and near saturation (i.e., when the number of
stored patterns scales with the size of the network), identifying the regions of high and weak pattern correlations, the spin-
glass solutions, and the order-disorder transition between these regions. This analysis reveals that, when associative
memory is dominant, smooth transitions appear between high correlated regions and spurious states. In contrast when
sequential pattern recognition is stronger than associative memory, the transitions are always discontinuous. Additionally,
when the symmetric and asymmetric parts of the synaptic matrix are defined in terms of the same set of patterns, there is a
discontinuous transition between associative memory and sequential pattern recognition. In contrast, when the symmetric
and asymmetric parts of the synaptic matrix are defined in terms of independent sets of patterns, the network is able to
perform both associative memory and sequential pattern recognition for a wide range of parameter values.
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Introduction

Neural networks were originally developed to model the

behavior of the brain. However, due to the great complexity of

the brain’s neural circuitry and of the synaptic interactions, it was

necessary to propose simplified models, such as the McCulloch-

Pitts model [1] and the Hopfield model [2] which, although

simple, still capture some important characteristics of the neuronal

dynamics. One important question in this field is how and when a

neural network is able to memorize a given set of patterns. Two

main different mechanisms to store information in a neural

network have been identified, to wit, the Associative Memory

(AM) on the one hand, and the Sequential Pattern Recognition

(SPR) on the other hand. The neural network performs AM when

its dynamical attractors are fixed points, each corresponding to

one of the patterns that we want to store in the network. This type

of dynamic behavior is characterized by a symmetric interaction

matrix that contains the connection strength between the neurons.

Some examples of this dynamics are the Hopfield model and the

Little model [2],[3], [4], [5]. Contrary to the above, in SPR the

network memorizes a fixed set of patterns which are retrieved in

certain order in time. From a dynamical point of view, this

corresponds to a cyclic attractor consisting of the sequence of

patterns stored in the network in a given order. A necessary

condition for SPR to occur is that the matrix of neuron-neuron

interactions has to be asymmetric. A well known example of this

type of dynamics is the asymmetric Hopfield model [2], [6].

Several dynamical phases have been identified in both the AM

and SPR models. Broadly speaking, these phases characterize how

well the network can recognize its set of patterns, and the type of

memory, i.e., whether AM or SPR. Both AM and SPR have been

widely studied separately. Nonetheless, there is evidence showing

that in real neural networks the synaptic connections are neither

fully symmetric nor fully asymmetric [7], [8]. Rather, they can be

considered as a mixture of these two cases, generating an

interaction network with a complex topology. Additionally, there

is evidence that the brain is capable to perform both AM and SPR

[8], [9]. For instance, recalling the color of a simple object would

be an example of AM, whereas recalling the digits in a phone

number in the proper order would constitute an example of SPR.

Since these two types of pattern retreival coexist in the brain,

several authors have introduced modifications to the Hopfield

model in order to obtain both types of pattern retrieval within the

same network [10], [11], [12]. One approach to this problem was

proposed by Coolen and Sherrington in Ref. [10]: They

introduced a model in which the interaction matrix has two parts,

PLOS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e42348



one symmetric and one asymmetric. These two parts are weighted

by a mixture parameter l, in such a way that the interaction matrix

W, (also called the synaptic matrix), can be written as

W~lWsz(1{l)Wa, ð1Þ

where Ws and Wa are symmetric and asymmetric matrices,

respectively. For l~1 only the symmetric part is present (the

classical Hopfield Model) and therefore the network performs AM,

while for l~0 only the asymmetric part survives (the asymmetric

Hopfield Model) and the network performs SPR. For intermediate

values of l, there is a competition between the symmetric and

asymmetric parts of the synaptic matrix. One of the main

questions in this model, which we will refer to as the Coolen-

Sherrington model, (or the CS model for short), is how the network

dynamics transit from AM to SPR as l varies from 1 to 0. The

point is that for l~1 all the patterns are stored as independent

attracting fixed points, whereas for l~0 the patterns are stored as

part of a single large cyclic attractor. Is this transition from AM to

SPR continuous or discontinuous? Can some of the patterns be

stored in a cyclic attractor whereas some other patterns are stored

as fixed point attractors? As we will see, the answer to these

questions depends on the definition of the symmetric and

asymmetric parts of the synaptic matrix.

In the original CS model the symmetric part Ws and the

asymmetric part Wa are correlated because they are defined in

terms of the same set of patterns (see the definition of the model in

the next section). Additionally, Coolen and Sherrington studied

this model for the particular case where the number of patterns

stored in the network is smaller that the number of neurons

(p%
ffiffiffiffiffi
N
p

). In terms of the load parameter a~p=N, the above

condition corresponds to a~0 in the thermodynamic limit N??
(this regime is termed non saturated.) Within this regime, Coolen and

Sherrington found that for parallel updating and for l&1, the

network dynamics exhibit only fixed point attractors, i.e. the

network performs AM. However, when l is decreased, a first order

phase transition appears: Below a certain critical value lc(T) that

depends on the temperature T , the dynamical trajectories end up

either in cyclic attractors (the networks exhibits SPR), or in stable

mixed states that consist of combinations of the desired patterns.

However, no coexistence of AM and SPR was found.

Afterwards, in Ref. [13] the authors studied the CS model using

correlated patterns. They found that it is possible to have SPR (the

stable cycle limit is still present) when the correlation between the

patterns is small. In the case of AM the network goes to a fixed

point attractor but this attractor does not coincide with any of the

desired patterns. Metz and Theumann [14], [15] presented a full

study of the stability of the patterns in a multi-layered neural

network with competition between AM and SPR, finding the

phase space regions where the network performs AM, SPR and

the region for the spin-glass solutions (SGS), but no coexistence

between AM and SPR was found either. By ‘‘coexistence’’ of AM

and SPR we mean that some of the patters are stored as fixed

point attractors while other patterns are stored in larger cyclic

attractors. When such a coexistence does not exist, then all

patterns are stored either as independent fixed point attractors or

as a single large cyclic attractor. Recently, the same authors in [16]

studied a model similar to the CS model by means of the

generating functional technique. They present a study of the

stationary states and the different regions on the phase space

where either fixed points or cyclic attractors are attained.

It is important to note that the lack of coexistence of AM and

SPR in the original CS model is not a trivial result. The synaptic

weights are a weighted mixture of symmetric and asymmetric

matrices. Therefore, especially for intermediate values of the

mixture parameter l, it could have happened that some of the

patterns were recognized as fixed-point attractors whereas some

other patterns were recognized in sequential order. But this was not

the case: either all the patterns are fixed point attractors or all of

them form a huge cyclic attractor (remember that we are working in

the saturated regime where the number of stored patters is a finite

fraction of the number of neurons: p~aN, which becomes infinite

in the thermodynamic limit N??). This all-or-none behavior

was not expected for the original CS model and deserved a careful

study carried out by several authors.

Using the generating functional formalism developed in Refs.

[17], [18], [19], [20–21] we investigate how the network transits

from pure AM to pure SPR for the CS model, first in the case in

which the symmetric and asymmetric parts of the synaptic matrix

are correlated (defined in terms of the same set of patterns) and

then when they are independent (defined each in terms of different

sets of patterns). Both cases are studied for systems in which the

number of patterns p is a finite fraction of the total number of

neurons N , namely, in the saturated regime for which a~p=Nw0
even in the thermodynamic limit N??. We compute the phase

space over the parameters l, a and the temperature T , finding the

regions where the networks performs AM and/or SPR, as well as

the spin-glass region, for different values of the mixing parameter

l. As might have been expected, we find that when Ws and Wa

are correlated, the network either performs AM or SPR, but it is

incapable to perform both for the same set of parameter values. In

contrast, when Ws and Wa are independent of each other, AM

and SPR coexist within a large region of the parameter space. We

present a complete explicit characterization of the different phases,

as well as the transition between AM and SPR when these

behaviors coexist.

In the next section we present the two versions of the CS model

we study in this work. In Sec. we compute the dynamical

equations that determine the temporal evolution of the network

using the generating functional formalism developed in Refs. [17],

[18], [19], [20]. In Sec. we present the results for the original CS

model and determine the structure of the parameter space

identifying the regions of highly correlated, weakly correlated

and spin-glass solutions. We do this for the AM and SPR dynamics

and show that these two types of pattern retrieval do not coexist.

In Sec. we present analogous results but for the modified version of

the CS model, and we show that in this case AM and SPR

dynamics do coexist. Finally, in Sec. we summarize our results.

Materials and Methods

Model Definition
The network under consideration consists of N binary neurons,

fs1,s2, . . . ,sNg, each acquiring the values si~+1. We will

denote as ~ss(t)~(s1(t),s2(t), . . . ,sN (t)) the dynamical state of the

entire network at time t. The interaction between the neurons is

determined by the function

hi(t)~
XN

j~1

Wijsj(t)zhi(t), ð2aÞ

where the Wij , the components of the synaptic matrix W, are

defined in terms of the patterns that we want to store in the

network. The variables hi(t) represent external fields. We will

come to the precise definition of the synaptic weights Wij in a

moment. For the time being, let us assume that these synaptic

weights have already been defined. Then, the network dynamics

Coexistence of Punctual and Cyclic Attractors
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are given by the synchronous updating of all the network elements

in such a way that

si(tz1)~

z1 with prob: 1ze{2bhi (t)
� �{1

{1 with prob: 1zez2bhi (t)
� �{1

8><>: ð2bÞ

where T~b{1 is the statistical ‘‘temperature’’. The above

updating rule is equivalent to saying that the transition probability

W(~ss(tz1)j~ss(t)) for the entire network to change from the state

~ss(t) at time t to the state ~ss(tz1) at time tz1 is

W(~ss(tz1)j~ss(t)):PN
i~1

1

2
½1zsi(tz1) tanh (bhi(t))� : ð2cÞ

In order to define the synaptic weights Wij , we will assume that

they consist of a symmetric part W s
ij and an asymmetric part W a

ij

as

Wij~lW s
ijz(1{l)W a

ij , ð3Þ

where l[½0,1� is the mixture parameter. In the original CS model,

each of these parts are defined in terms of a unique set of p

uncorrelated patterns, X~f~jj1,~jj2, . . . ,~jjpg, as

W s
ij~

1

N

Xp

m~1

jm
i jm

j , ð4aÞ

W a
ij ~

1

N

Xp

m~1

jmz1
i jm

j : ð4bÞ

where each pattern ~jjm is a distinct vector of N binary digits;
~jjm~(jm

1,jm
2, . . . ,jm

N ), and each entry can take the values jm
i ~+1.

For the purpose of this work, these binary sequences are generated

randomly. In the last expression, the sum over the patterns is

modulo p, i.e. ~jjpz1~~jj1.

In order to make the two types of pattern retrieval AM and SPR

coexist in the same network, in this work we introduce a variation

of the CS model by using two different sets of uncorrelated patterns,

X~f~jj1,~jj2, . . . ,~jjpg and Z~f~ff1,~ff2, . . . ,~ffpg. Each pattern is

uncorrelated with all the other patterns in its own set and also

with all the patterns in the other set. We can use these two

independent sets of patterns to define W s
ij and W a

ij independently

of each other as

W s
ij~

1

N

Xp

m~1

jm
i jm

j , ð5aÞ

W a
ij ~

1

N

Xp

m~1

fmz1
i fm

j : ð5bÞ

Use of independent patterns in Eq. (5) has been studied

previously for the special case of 2p|2p matrices [21], [20]. Here,

we extend these calculations for general matrices and compute the

whole phase space.

The quantity that determines how close the state ~ss(t) is from a

given pattern, say ~jjm, is the overlap function mt
m, defined as

mt
m:

1

N

XN

j~1

jm
j sj(t) : ð6Þ

Thus, if mt
m&0, then ~ss(t) and ~jjm are very different and

uncorrelated, whereas if mt
m&1 then ~ss(t) and ~jjm are almost

identical. Finally, if mt
m&{1 then ~ss(t) and~jjm are specular copies

of each other (i.e. they are fully anticorrelated).

In what follows, we analyze the models given in Eqs. (2)–(5) both

numerically and by the generating functional approach, from

which we derive the equations that rule the dynamical evolution of

each system and determine the structure of their respective phase

spaces.

Results

Numerical simulations
Before introducing the mathematical formalism to analyze the

different models presented in the previous section, we illustrate

here the coexistence of the two types of dynamics, SPR and AM,

with a numerical simulation. For this, we constructed a neural

network that can store 10 patterns X~ ~jj1,~jj2, . . . ,~jj10
n o

as

independent fixed points (for the AM recognition), and 10 patterns

Z~ ~ff1,~ff2, . . . ,~ff10
n o

in a single cyclic attractor (for the SPR). Each

pattern is a grayscale digitalized image 200|200 pixels in size,

and each pixel has a depth of 8 bits in order to encode 256 shades

of gray needed for the black and white image. Fig. 1 shows the 20

patterns used in our numerical simulations. The neural network

thus consists of N~8|200|200~320000 binary variables.

Furthermore, although in theory one assumes that each neuron

is connected to each other neuron in the network, in our case this

would give a very large connectivity matrix with N2*1011

independent entries. Such a large synaptic matrix is not necessary

to store 20 patterns. Hence, in our simulations we worked with

networks where each neuron receives inputs only from K~200
other neurons randomly chosen with uniform probability from the

entire network. Once the K~200 input connections of each

neuron have been randomly assigned, they do not change

throughout the dynamics of the network. Thus, the synaptic

matrix W is a sparse matrix constructed according to Eq. (1),

where Ws and Wa are given as in Eq. (4), or as in Eq. (5),

depending on whether X~ ~jj1,~jj2, . . . ,~jj10
n o

and

Z~ ~ff1,~ff2, . . . ,~ff10
n o

are the same set of patterns, or two different

independent sets, respectively.

For the AM dynamics, we initialize the network in a state that

differs 10% from a given pattern ~jjm[X, as illustrated in Fig. 2a.

Then we run the dynamics for a transient time of 35 time steps,

after which we compute the overlap m(~jjm) between the network

state and the pattern~jjm. We do this for every pattern in the set X

and compute the average overlap mam~
1

10

X10

m~1
m(~jjm). For the

SPR dynamics we proceed in a similar way (see Fig. 2b), starting

the network in a state that differs 10% from a given pattern~ffm[Z

and then running the dynamics for a transient time of 30 time

steps. Then, we run the dynamics for another 10 time steps, which

Coexistence of Punctual and Cyclic Attractors
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would be the length of the cycle formed by the patterns

~ff1,~ff2, . . . ,~ff10
n o

, and sequentially compute the overlap m(~ffm)

between the network state and each of the corresponding patterns

in the set Z, assuming that these patterns are retrieved in the order

from ~ff1 to ~ff10. The overlap is again the average

mspr~
1

10

X10

m~1
m(~ffm).

Fig. 3a shows the results of the simulation for the case when X

and Z are different sets of patterns (X consists of the patterns 1 to

10 whereas Z contains the patterns 11 to 20 of Fig.1). It is clear for

this case that in the interval l[(0:45,0:55) the network can

perform both associative memory and sequential pattern recog-

nition almost perfectly (mam&mspr&1). Depending on the initial

condition, the network will retrieve one of the fixed point patterns
~jjm in X, or it will retrieve all the patterns~ff1, . . . ,~ff10 in Z in a cyclic

order. Thus in this case AM and SPR coexist for l[(0:45,0:55). By

contrast, Fig. 3b shows that when the sets X and Z contain the

same set of patterns (patterns 1 to 10 of Fig. 1), namely, when
~jjm~~ffm for m~1,2, . . . ,10, then there is no value of l for which

mam&1 and mspr&1 at the same time. Therefore, in this case the

network cannot perform AM and SPR and these two types of

dynamics do not coexist.

Finally, it is worth mentioning that the relatively high values of

the overlap observed in the interval l[(0:35,0:65) in Fig. 3b are

due to the fact that in this region the network invariably falls into a

‘‘frustrated’’ state consisting of a random superposition of different

patterns, as the one shown in the inset. Therefore, in this region

the network always has a non negligible overlap with any of the

stored patterns, producing a relatively high value of the overlap.

Generating functional approach
We use the standard generating functional approach [17], [18],

[19], [20], [21] to derive the dynamical mapping that determines

the temporal evolution of the average of the overlap mm(st). This

formalism allows us to derive state equations for the macroscopic

variables of the system at finite temperature T§0. For the sake of

completeness, we outline the procedure following [17]. Thus, we

define the generating functional Z½y� as:

Z½~yy�~
X

~ss(0),...,~ss(t)

p½~ss(0), . . . ,~ss(t)�e{i
P

tvt
~ss(t):~yy(t)

where ~yy(t)~(y1(t),y2(t), . . . ,yN (t)) is a set of auxiliary variables

used to derive the macroscopic parameters that characterize the

system, and p½~ss(0),~ss(1), . . . ,~ss(t)� denotes the probability of taking

the path with initial condition ~ss(0) and final condition ~ss(t).

(~ss(t):~yy(t) denotes the usual dot product.)

Since Eq. (2c) defines a Markov process, the probabilities

p½~ss(0),~ss(1), . . . ,~ss(t)� can be expressed as a product of the

transition probabilities W(~ss
0 j~ss), which leads to

Z½~yy�~
X

~ss(0),...,~ss(t)

p½~ss(0)�

| P
t{1

s~0
e

b
PN

i~1
si(sz1)(

PN

j~1
Wij sj (s)zhi(s))

|e
{
PN

i~1
ln 2 cosh b

PN

j~1
Wij sj (s)zhi(s)

n o� �h i
|e{i

P
tvt

~ss(t):~yy(t):

To uncouple the terms si(sz1)sj(s), auxiliary variables

h(s)~(h1(s),h2(s), . . . ,hN (s)) are introduced, representing the

local fields hi(s)~
PN

j~1 Wijsj(s)zhi(s) at each neuron at each

time step. In terms of these, the generating functional acquires the

form ([17]):

Figure 1. Twenty patterns used in the numerical experiments. Each pattern is a digitalized image with 200|200 pixels, each with 8 bits of
depth. The binary strings directly reproducing these images were stored in the synaptic matrix W without any previous randomization. In the case
when X and Z are two independent sets, patters 1 to 10 were used for X and patterns 11 to 20 for Z. When X and Z are the same set, patterns 1 to
10 were used for both.
doi:10.1371/journal.pone.0042348.g001
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Z½~yy�~
X

~ss(0),...,~ss(t)

p½~ss(0)�|
ð

dhd ĥh
n o

P
svt

exp (b~ss(sz1):h(s)

{
X

j

ln 2 cosh (bhj(s))
� �

ziĥh(s): h(s){~hh(s)
� �

{i~yy(s):~ss(s){iN{1ĥh(s):W:~ss(s))

ð7Þ

where the conjugate fields ĥh(s) arise from the integral represen-

tation of the delta functions that enforce the values of the hi(s).

To continue we must assume that one stored pattern is

condensed at each time-step, that is, only one pattern can be

highly correlated with the network. Thus, the overlap between this

condensed pattern and the network state should be of order O(1),
whereas for the non-condensed patterns, which play the role of

quenched disorder, the overlap must be of order O(1=
ffiffiffiffiffi
N
p

). In the

thermodynamic limit N?? one can use Coolen’s mean-field

approach to average Eq. (7) over the non-condensed patterns.

Eq. (7) contains all the dynamical properties of the system. In

particular, one can obtain all the relevant average quantities from

the generating functional by differentiation (see Ref. [17]):

m(s)~i lim
y?0

1

N

XN

i~0

js
i

LZ½y�
Lyi(s)

~
1

N

XN

i~0

js
i Ssi(s)T,

ð8aÞ

G(s,s
0
)~i lim

y?0

1

N

XN

i~0

L2Z½y�
Lyi(s)Lhi(s

0
)

~
1

N

XN

i~0

LSsi(s)T
Lhi(s

0
)

,

ð8bÞ

C(s,s
0
)~{ lim

y?0

1

N

XN

i~0

L2Z½y�
Lyi(s)Lyi(s

0
)

~
1

N

XN

i~0

Ssi(s)si(s
0
)T,

ð8cÞ

where m(s) is the overlap, G(s,s0) is the response function and

C(s,s0) the correlation function.

Analytic solutions for one set of patterns
As reference, we start by considering the case given in Eqs. (4),

which corresponds to the original CS model where the symmetric

and asymmetric parts of the synaptic matrix are correlated due to

the fact that the same set of patterns X~f~jj1,~jj2, . . . ,~jjpg is used to

define these two parts. Using the generating functional formalism,

we determined the dynamical equations of the system and found

Figure 2. Schematic representation of the AM and SPR
dynamics in the numerical simulations. (a) For the AM dynamics,
we start the network with a state that differs 10% from one of the
stored patterns ~jjm in X (noisy image on the left). Then, we evolve the

network 35 time steps and compute the overlap m(~jjm) between the

final network state and the pattern ~jjm. We do this for each of the 10
patterns in X and compute the average overlap over these 10 patterns.
(b) For the SPR dynamics we proceed in a similar way, starting the

network from a state that differs 10% from one of the stored patterns~ffn

in Z. We let the system evolve for a transient time of 30 time steps
(three periods of the supposedly cyclic attractor). After that, we run the
dynamics for 10 time steps (one period of the supposed cycle) and, as

the network traverses the cycle, compute the overlaps m(~ffn) of the
network state with each one of the 10 patterns in Z (retrieved in the

order from~ff1 to~ff10). The final overlap in this case is the average of the
overlaps throughout the cycle.
doi:10.1371/journal.pone.0042348.g002

Figure 3. Pattern recognition measured by the overlap. This
figure shows the graph of the overlap for the AM dynamics (black
curve) and SPR dynamics (red curve) as a function of the mixture
parameter l in two cases: (a) when the two sets X and Z consist of
different and independent patterns, and (b) when X and Z consist of
exactly the same set of 10 patterns. It is clear that in (a) the network can
perform both AM and SPR dynamics almost perfectly within the interval
l[(0:45,0:55). However, in (b) there is no value of l for which the
network can perform both AM and SPR. By contrast, in the intermediate
region l[(0:35,0:65) the network always invariably falls into a
‘‘frustrated’’ state consisting of a random superposition of the patterns
stored in the network, as the one shown in the inset.
doi:10.1371/journal.pone.0042348.g003

Coexistence of Punctual and Cyclic Attractors
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the conditions for the existence of fixed points (associative

memory) and limit cycles (sequential pattern recognition) for

different values of the load parameter a, the mixing parameter l,

and the ‘‘temperature’’ T~b{1. The detailed computations are

shown at the Appendix S1.

Associative memory solutions. In order to find the regions

of the parameter space where the patterns ~jjn (and the

corresponding anti-patterns) are fixed point attractors of the

network, we look for solutions in which the final state of the

network is strongly correlated with one of the patterns, say ~jj1.

Following the procedure presented in Ref. [10], leads to the

following equations for the observables:

mtz1
1 ~

1

2

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 |tanh b mt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
art l2z 1{lð Þ2
� �r	 
� �

z
1

2

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanh b 2l{1ð Þmt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
art l2z 1{lð Þ2
� �r	 
� �

,

ð9aÞ

rt~
qt

1{b(1{qt)½l2z(1{l)2�
� �2 , ð9bÞ

qt~
1

2

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanh2fb½mt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
art(l

2z(1{l)2)

q
�gz

1

2

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanh2fb½(2l{1)mt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
art(l

2z(1{l)2)

q
�g:
ð9cÞ

In the above equations, mt
1~m1(t) is the overlap with the first

pattern, qt the variance of the overlap, and rt the correlation

between two network states.

AM spin-glass solutions. We start the analysis of Eqs. (9) by

computing the spin-glass solutions, which are characterized by

mt
1~0, qt=0, and rt=0. These are easily obtained at zero

temperature (b??), and then one can investigate the existence of

spin-glass solutions at non-zero temperature by a series-expansion

technique around the zero temperature solution. Since mt
1~0, we

can disregard Eq. (9a) and focus our attention only on the other

equations (putting mt
1~0). For non-zero temperature (finite b), it is

known that in the Hopfield model, which is obtained here for

l~1, the spin-glass solutions disappear continuously as b
decreases via a second order phase transition. A similar behaviour

is observed for l=1, as is shown in Fig. 4, where a vertical line

indicates the continuous transition from the spin-glass region SG

to another region TS where only the trivial solution

mt
1~qt~rt~0 exists. Note that close to this transition rt and qt

are very small. Therefore, in order to find the critical temperature

at which this transition occurs, we can expand Eqs. (9c) and (9b)

up to the first order in rt and qt, keeping mt
1~0. Solving the

resulting equation for T~b{1 in terms of a and l, we obtain

Tsg~l2z(1{l)2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
al2za(1{l)2

q
, ð10Þ

where we have used Tsg to denote that this value corresponds to

the spin-glass transition temperature. The above equation is well

defined for every a and l values and therefore, there is always a

critical temperature at which the spin-glass phase appears.

AM regions. The regions in which associative memory exists

(AM-regions hereafter) are characterized by mt
1&1. Note that the

transition between the AM-region and the spin-glass region (SP-

region hereafter) must be discontinuous, since in the latter mt
1&0.

This occurs for some values of l and a, as is apparent from Fig. 4.

However, for other values of the parameters the spin-glass region

disappears and mt
1, qt, rt all vanish continuously, as shown in

Fig. 5. It is still possible to define a region of high correlation

Figure 4. Phase transitions in the model with l~~0:9 and
a~~0:05. Note the existence of two phase transitions, one discontin-
uous (T&0:48) and the other continuous (T&1:07). The discontinuous
transition characterizes the transit from highly correlated patterns
(mt

1&1) to uncorrelated ones (mt
1&0) as the temperature T increases.

The vertical line indicates the continuous transition from the spin-glass
solutions to another region where only the trivial solution exists.
Regions HC, SG and TS defined in the text are also indicated. The curves
were obtained by solving numerically Eqs. (9).
doi:10.1371/journal.pone.0042348.g004

Figure 5. Phase transitions in the model with l~~0:8 and
a~~0:025. In this case the three parameters mt

1, qt and rt change
continuously in the whole range of temperatures. As in Fig. 4, there is a
continuous transition around T&0:8 from the non-zero spin-glass
solutions to only trivial solutions. However, there is another transition
around T&0:5 from highly correlated patterns with mt

1w0:75, to
weakly correlated ones for which 0vmt

1v0:75. The two vertical lines
enclose region WC of weak correlations defined in the text. The curves
were obtained by solving numerically Eqs. (9).
doi:10.1371/journal.pone.0042348.g005
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(region HC) and another region of weak correlation (region WC)

by defining thresholds to the values of the overlap mt
1. We choose

the highly correlated patterns as those for which mt
1w0:75,

whereas for the weakly correlated patterns 0ƒmt
1ƒ0:75.

The whole structure of the parameter space for the AM

dynamics, shown in Fig. 6 for different values of l, can be found by

numerically solving the system of Eqs. (9). Four regions are found,

which will be referred to as regions HC (high correlations), WC

(weak correlations), SG (spin glass), and TS (trivial solution).

Region HC is characterized by the existence of non-trivial highly

correlated solutions (mt
nw0:75). Although in this region spin-glass

solutions might also exist, the network performs AM since the

highly correlated solutions are always preferred. In region SG the

network is not capable to perform AM. Rather, it always falls into

spin-glass solutions. In region TS only the trivial solution exists.

Finally, region WC is a transition region where the highly

correlated patterns continuously become weakly correlated. Even

when there are non-trivial solutions in region WC, it is not possible

to have AM because the final pattern has at most 75% of its

neurons correct with respect to the desired final state. It is worth

emphasizing that in the transition from region HC to SG the

overlap mt
n varies discontinuously from & 1 to &0, see Fig. 4,

whereas in the transition from region HC to WC to TS the overlap

varies continuously from &1 to &0, see Fig. 5).

Sequential pattern recognition solutions
Now we find the regions of the parameter space where

sequential pattern recognition exists. In these regions, the patterns

X~f~jj1,~jj2, . . . ,~jjpg, form a cyclic attractor with period p, i.e.
~jjpz1~~jj1. We will look for solutions of Eq. (7) in which the state of

the network at time t is strongly correlated only with ~jjm, at time

tz1 it is strongly correlated only with ~jjmz1, and so on until the

time step tzp, at which the state of the network is strongly

correlated only with ~jjmzp, and the cycle starts over again. The

condition that at each time the network state is correlated with

only one pattern can be written as

mm(t)~mt
m~dt

memmt, ð11Þ

where dt
m is the Kronecker delta function and emmt is a quantity such

that emmt*O(1). The calculation again follows along the lines

presented in Ref. [10]. The final set of equations for eqqt, errt, and emmt

is

emmtz1
1 ~

1

2

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanhfb½emmt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aerrt(l

2z(1{l)2)

q
�gz

1

2

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanhfb½(2l{1)emmt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aerrt(l

2z(1{l)2)

q
�g,
ð12aÞ

errt~
1

1{b2(1{eqqt)
2½l2z(1{l)2�

� � , ð12bÞ

eqqt~
1

2

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanh2fb½emmt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aerrt(l

2z(1{l)2)

q
�gz

1

2

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanh2fb½(2l{1)emmt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aerrt(l

2z(1{l)2)

q
�g:
ð12cÞ

The system of equations above is always satisfied by the trivial

solution emmtz1~0, eqqt~0 and errt~0. However, depending on the

values of the parameters a, l and T , the trivial solution can be

stable or unstable. We are of course interested in the regions of the

Figure 6. Structure of the phase space for different values of l and for the AM dynamics. The top panel corresponds to the well known
Hopfield model [22], [23], [24]. Note that as l decreases, region HC of highly correlated patterns decreases, whereas region WC of weakly correlated
patterns increases.
doi:10.1371/journal.pone.0042348.g006
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parameter space where the set of patterns X~f~jj1,~jj2, . . . ,~jjpg is

retrieved in the specified order. This corresponds to solutions for

which mt
m~dt

memmt*O(1) with no restrictions on eqqt and errt. The

spin-glass solutions are also important in the phase diagram. They

are obtained from the system of Eqs. (12) by imposing the

conditions emmt~0, eqqt=0. Before presenting the different regions of

the phase space, in the next section we focus on the calculation of

the critical value of the capacity a in the deterministic case of zero

temperature (T~0, b??), and for purely asymmetric synaptic

weights, i.e. l~0.

SPR dynamics at zero temperature. For l~0 the system

of Eqs. (12) becomes

eqqt~

ð
dz

e
{z2

2ffiffiffiffiffiffi
2p
p tanh2 b emmtzz

ffiffiffiffiffiffi
aerrt

ph in o
ð13aÞ

errt~
eqqt

1{b2(1{eqqt)
2

ð13bÞ

emmtz1~

ð
dz

e
{z2

2ffiffiffiffiffiffi
2p
p tanh b emmtzz

ffiffiffiffiffiffi
aerrt

ph in o
ð13cÞ

The last three equations coincide with the ones found in Ref.

[6]. Let us define eCC~b(1{eqqt). Note from Eq. (13a) that in the

limit b??, the eCC remains finite and is different from zero. Thus,

using the saddle point approximation in the limit b??, the

system of equations (13) reduces to

eCC~

ffiffiffiffiffiffiffiffiffi
2

paerrt

s
exp {

emm2
t

2aerrt

 �
,

errt~
1

1{eCC2
,

emmtz1~erf
emmtffiffiffiffiffiffiffiffiffi
2aerrt

p
 �

:

By defining y~emmt=
ffiffiffiffiffiffiffiffiffi
2aerrt

p
, the above equations can be solved

for y, which gives

erf 2(y)~2y2 2

p
exp ({2y2)za

	 

, ð14Þ

which is equivalent to

F (y,a):erf 2(y){2y2 2

p
exp ({2y2)za

	 

~0 : ð15Þ

The preceding equation has non trivial solutions as long as a is

smaller than a critical value ac (see Fig. 7). This critical value gives

the maximum storage capacity of the network. Beyond that value,

SPR cannot occur. By solving numerically Eq. (15) one finds

ac&0:26909, which is in agreement with the value found in Ref.

[17].
SPR spin-glass solutions. An analysis similar to that in Sec.,

but now using Eqs. (12), leads to the following expression for the

spin-glass transition temperature:

eTTsg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
al2za(1{l)2z2l2z(1{l)2

q
: ð16Þ

Again this transition temperature is well defined for all values of

the parameters, and therefore there is always a finite temperature

at which the spin-glass phase appears.
SPR regions. Fig. 8 shows the regions in the parameter space

where different types of solutions are obtained in the SPR case.

There are only three regions, which are referred to as HC, SG and

TS. Region HC is where highly correlated solutions, characterized

by emmt&1, coexist with Spin-Glass solutions. In region SG the

highly correlated states disappear and only the Spin-Glass

solutions exist. Finally, in region TS only the trivial solutions

exist. Note that in this case there is no region of weakly correlated

solutions, (as for AM). Therefore, the highly correlated solutions

always disappear discontinuously through a first-order transition

from region HC to region SG. In contrast, the spin-glass solutions

vanish continuously from region SG to region TS.

Coexistence of AM and SPR dynamics
The analysis presented so far shows that, unsurprisingly, the

original CS model is unable to perform both AM and SPR

dynamics for the same value of l. This is illustrated in Fig. 9 for

the case of zero temperature, but the same happens for T=0. This

is obviously due to the fact that the same set of patterns is used to

define both the symmetric and asymmetric parts of the synaptic

matrix. But the symmetric part W s
ij is responsible for the AM

dynamics, whereas the asymmetric part W a
ij is involved in the SPR

dynamics, and it is impossible for a given pattern jm to be a one-

state attractor (AM), and at the same time to belong to a cyclic

attractor (SPR). Thus both dynamics cannot coexist in the original

Figure 7. Family of curves F (y,a) defined in Eq. (15). For
avac&0:26909 there is a non-trivial solution of F (y,a)~0 (solid line).
For awac only the trivial solution exists (dashed line).
doi:10.1371/journal.pone.0042348.g007
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CS model. To circumvent this problem, we have modified the

original CS model by defining W s
ij and W a

ij using two independent

sets of patterns, as in Eq. (5).

Analytic solutions for two independent sets of patterns
In this section we present the results of the modified CS model

in which the symmetric part W s
ij of the synaptic matrix is defined

in terms of a set of patterns X~f~jj1,~jj2, . . . ,~jjpg, whereas the

asymmetric part W a
ij is defined using a different set of patterns

Z~f~ff1,~ff2, . . . ,~ffpg, as in Eq. (5). This gives the network the

possibility to perform AM and SPR dynamics independently of

each other. The mathematical formalism is completely analogous

to the one used in the previous section. As for the original CS

model, here we present first the AM solutions and afterwards the

SPR ones.

AM solutions. To obtain the AM solutions we again demand

that the network state is highly correlated with only one of the

patterns X~f~jj1,~jj2, . . . ,~jjpg, say~jj1. Thus, the overlap mt
1 between

the network state and j1 must satisfy that mt
1&1, whereas all the

other overlaps mt
m must be of order 1=

ffiffiffiffiffi
N
p

. Under such

circumstances, the equations that determine the stationary state

of the network, equivalent to Eqs. (9), are:

qt~

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanh2fb½lmt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
art(l

2z(1{l)2)

q
�g ð17aÞ

rt~
qt

1{b(1{qt)½ �2
ð17bÞ

mtz1
1 ~

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanhfb½lmt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
art(l

2z(1{l)2)

q
�g : ð17cÞ

Figure 8. Structure of the phase space for the SPR case and different values of l. In region HC the highly correlated solutions coexist with
the spin-glass solutions. In region SG only spin-glass solutions exist, and in region TS only the trivial solution exists.
doi:10.1371/journal.pone.0042348.g008

Figure 9. Regions in the a--l parameter space of highly
correlated solutions for the AM (top) and SPR (bottom)
dynamics in the original CS model at zero temperature. The
shaded areas are the regions where the highly correlated solutions
exist. The solid curves in black are the critical lines ac(l) at which these
solutions disappear. These curves were obtained by numerically solving
Eqs. (9) and (12). Note that there is no overlap between the shaded
region corresponding to AM and the one corresponding to SPR.
doi:10.1371/journal.pone.0042348.g009
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where all the variables have the same definition as in the previous

section. Clearly, the above equations are simpler than the

corresponding ones in the original CS model, Eqs. (9). In

particular, for T~0 the set of equations (17) can be written as a

single equation

erf (y){y
2ffiffiffi
p
p exp ({y2)z

ffiffiffiffiffi
2a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

1{l

l

 �2
s24 35~0 , ð18Þ

where y~lmt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2art l2z(1{l)2

� �q
. The preceding equation

determines the critical value ac of the load parameter below

which highly correlated solutions exist, namely, where the network

performs AM dynamics. This critical value, which is a function of

l, is the maximum value for which Eq. (18) has nontrivial

solutions. By solving numerically the above equation, we obtain

the regions depicted in Fig. 10 for several temperatures (top graphs

in each panel).

From Eqs. (17) it follows that at zero temperature the spin-glass

solutions always exist for any values of a and l. Indeed, it is easy to

see that in the limit b??, the set of Eqs. (17) has the non-trivial

solution

rt~ 1zl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pa½l2z(1{l)2�

s" #2

, qt~1, mt~0,

which is well defined for all values of aw0 and l[½0,1�. Now, to

find the transition temperature Tsg at which the spin-glass

solutions continuously disappear, we expand Eqs. (17a) and

(17b) in powers of qt and rt, retaining only the first order terms

and keeping mt~0, which gives

qt&b2art l2z(1{l)2
� �

rt&
qt

1{lb½ �2
:

From the above equations we obtain that the spin-glass

transition temperature is

Tsg~lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a l2z(1{l)2
� �q

: ð19Þ

The previous analysis, together with numerical solutions of the

system of Eqs. (17), allow us to determine the structure of the a-T
parameter space for different values of l. This structure in shown

in Fig. 11, which reveals the existence of only three regions:

Region HC is where the highly correlated solutions exist and are

stable, whereas in region SG the highly correlated solutions

disappear and only the spin-glass solutions exist. Finally, in region

TS only the trivial solution is found. Note that, contrary to what

happens in the original CS model, in this case there is not a region

WC of weakly correlated solutions. Note also that as the mixing

parameter l decreases, the region HC remains of considerable

size. Therefore, the network can perform AM in a wide range of

values of l.

SPR solutions. The SPR solutions are those for which the set

of patterns Z~f~ff1,~ff2, . . . ,~ffpg is retrieved in the specified order.

This corresponds to solutions for which the overlap between the

state of the network and the pattern fm satisfies mt
m~dt

m emmt, whereemmt*O(1). On the other hand, the overlap with the patterns

Figure 10. The critical value ac as a function of the mixing
parameter l for different temperatures. In each panel, the upper
graph corresponds to AM and the lower graph to SPR. The shaded
regions corresponds to the highly correlated solutions. The solid curves
for ac were obtained by solving numerically Eqs. (18) and (21),
respectively. Note that in each case the intersection of the highly
correlated regions for the AM and SPR dynamics is not empty, which
indicates the coexistence of AM and SPR even at non-zero temperature.
doi:10.1371/journal.pone.0042348.g010
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X~f~jj1,~jj2, . . . ,~jjpg will be of order 1=
ffiffiffiffiffi
N
p

. Taking these

considerations into account, the equations that determine the

cyclic behaviour of the network are

qt~

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanh2fb½(1{l)mt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
art(l

2z(1{l)2)

q
�gð20aÞ

rt~
1

1{ (1{l)b(1{qt)½ �2
ð20bÞ

mtz1
1 ~

ð
dzffiffiffiffiffiffi
2p
p e

{z2

2 tanhfb½(1{l)mt
1zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
art(l

2z(1{l)2)

q
�g : ð20cÞ

Through a calculation similar to the one used in Sec., it can be

shown that in the limit T?0 the system of Eqs. (20) reduces to

erf 2(eyy){2eyy2 2

p
exp ({2eyy2)za 1z

l

1{l

 �2
" # !

~0 , ð21Þ

where eyy~(1{l)emmt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aerrt l2z(1{l)2

� �q
. This equation has non-

trivial solutions as long as a is smaller than a critical value ac(l)
that depends on l. By numerically solving Eq. (21) we obtain the

curve ac(l) plotted in the bottom graphs in each panel of Fig. 10,

in which the shaded area corresponds to the region of highly

correlated solutions. Note from this figure that the shaded regions

corresponding to AM and SPR do intersect over a large region of

parameter values. This indicates that in the modified CS model,

AM dynamics do coexist with SPR dynamics for a wide range of

values of the mixture parameter l.

On the other hand, the spin-glass solutions at zero temperature

are given by

errt~1z
2(1{l)2

pa½l2z(1{l)2�
, eqqt~1, emmt~0,

which shows that the spin-glass solutions at zero temperature

always exist for any aw0 and l[½0,1�. For non-zero temperature,

the first order series expansion of Eqs. (20) with emmt~0 gives

eqqt&b2aerrt l2z(1{l)2
� �

errt&
eqqt

1{(1{l)2b2
:

From the above equations it follows that the spin-glass transition

temperature eTTsg is

eTTsg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{l)2za l2z(1{l)2

� �q
: ð22Þ

Figure 12 summarizes the structure of the a-T space in the SPR

case for different values of l. The usual three regions HC (high

correlations), SG (spin-glass solutions only), and TS (trivial

solution) are indicated. The boundary between regions SG and

TS is given by Eq. (22), whereas the curve separating regions HC

Figure 11. Structure of the AM phase space for different values of l in the modified CS model. The first panel for l~1 corresponds to the
well known symmetric Hopfield model. Note that as l increases, region HC of highly correlated patterns decreases. However, it remains of
considerable size even for l~0:5, where the AM and SPR dynamics equally compete. Note also that there is no region WC of weakly correlated
solution.
doi:10.1371/journal.pone.0042348.g011
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and SG was obtained numerically from Eqs. (20). Note that region

HC remains of considerable size for a wide range of values of l.

Discussion

We have obtained the complete phase diagram and analyzed

the transitions from AM to SPR in a neural network model

proposed by Coolen and Sherrington in which both types of

pattern retrieval compete, as well as in a simple modification of the

model in which both types of pattern retrieval may coexist. In

these systems, the AM and SPR dynamics are encoded in the

symmetric and asymmetric parts of the synaptic matrix, respec-

tively, and the contribution of each of these parts is weighted by a

parameter l in such a way that when l~1 only the symmetric

part survives, whereas when l~0 only the asymmetric part is

present. In the original Coolen and Sherrington model, the same

set of patterns are used to define the symmetric and asymmetric

parts of the synaptic matrix. Using the standard functional

generating formalism, we obtained the phase diagram of the

system which shows that in the original Coolen-Sherrington model

AM and SPR dynamics cannot coexist. This is simply due to the

fact that a given pattern jm cannot be a fixed point and part of a

larger cyclic attractor at the same time. Therefore, the original CS

model can retrieve patterns only for the limiting cases l&1 or

l&0. For intermediate values of l the network is ‘‘frustrated’’ and

can perform neither AM nor SPR.

To prevent the system from falling into a ‘‘frustrated’’ state as

mentioned above, we modified the CS model by using two

independent sets of patterns in order to define separately the

symmetric and asymmetric parts of the synaptic matrix. In doing

so we allow the possibility for the network to have fixed points

belonging to one set of patterns, and simultaneously cyclic

attractors constructed with the patterns that belong to the other

set. Our goal was to determine how the network transits from AM

to SPR as l varies from 1 to 0 in this new case where the two sets

of patters were independent. As expected, in this case the AM and

SPR dynamics coexist for a wide range of values of l. However,

some other aspects of the model can be analyzed. For instance,

quasi periodic states are known to occur in the original CS model

(with only one set of patterns) and it would be interesting to

determine to what extent these quasi periodic states exist in the

modified CS model (with two independent sets of patterns). Also, it

is possible to have an intermediate situation in which the two sets

f~jj1,~jj2, . . . ,~jjpg and f~ff1,~ff2, . . . ,~ffpg share some of the patterns. In

this case the two sets would not be fully independent and the

transition from AM to SPR dynamics could be more complicated.

Finally, the generating functional approach that we used to

determine the structure of the phase space works very well when

the patterns are uncorrelated and the network is fully connected. It

would also be interesting to extend the analysis to networks with

more realistic topologies, such as the small-world and scale-free

topologies, in order to determine how the network topology affects

the dynamics.
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Figure 12. Structure of the SPR phase space for different values of l in the modified CS model. The first panel corresponds to the well
known asymmetric Hopfield model. Note the remarkable symmetry with respect to Fig. 11.Detailed calculations of the path integral method for the
AM solutions with one set of patterns.
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Coexistence of Punctual and Cyclic Attractors

PLOS ONE | www.plosone.org 12 August 2012 | Volume 7 | Issue 8 | e42348



References

1. McCulloch WS, Pitts W (1943) A logical calculus of ideas immanent in nervous

activity. Bull of Math Biophys 5: 115–133.

2. Hopfield J (1982) Neural networks and physical systems with emergent collective

computational abilities. Proc Natl Acad Sci USA 79: 2554–2558.

3. Little W (1974) The existence of persistent states in the brain. Math Bioscience

19: 101–120.

4. Little W, Shaw GL (1975) A statistical theory of short and long term memory.

Behav Bio 14: 115–133.
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