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Abstract

Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure
and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and
composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated
phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and
ecological analysis of a human gut-specific bacteriophage (designated wB124-14). In doing so we illuminate a fraction of the
biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and
uncharted bacteriophage gene-space in this community. wB124-14 infects only a subset of closely related gut-associated
Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and
human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host
bacteria. Comparative genomic analyses revealed wB124-14 is most closely related to wB40-8, the only other publically
available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any
homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature
of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by
analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and
Japan. Finally, ecological profiling of wB124-14 and wB40-8, using both gene-centric alignment-driven phylogenetic
analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-
specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape
within the human gut microbiome.
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Introduction

The human gut harbours a diverse microbial community which

in turn plays host to a variety of mobile genetic elements (MGE)

and bacteriophages, forming the gut mobile metagenome [1–4].

The role of this flexible gene pool in the development and

functioning of the gut microbial community remains largely

unexplored, yet there is emerging evidence that this mobile

metagenome reflects the co-evolution of host and microbe in this

community, and that some MGE may be unique to or enriched

within this ecosystem [1,4–8].

Identification and characterization of such elements will provide

much insight into fundamental aspects of development and

functioning of the gut microbiota, and provide the raw material

for the development of novel molecular tools. Furthermore, MGE

comprising the human gut mobile metagenome are also likely to

encode a range of functions of biotechnological or pharmaceutical

interest [9]. Bacteriophages in particular have the potential to

influence community structure and function [10–15], and are

regarded to be of considerable biotechnological value, exemplified

by the growing interest in their use as novel and highly selective

therapeutic agents (for review see [16]). Initial studies of the gut

virome have already provided evidence of distinct viral population

dynamics and gene content in this ecosystem, with a dominance of

apparently temperate phage and a relative lack of the predator-

prey phage-host relationship commonly observed in other

microbial communities [6].

Through selective elimination of species within the gut

microbiota, phage may alter community function, metabolic

output and subsequently impact on host health [17–19].

Furthermore, there is also scope for the direct interaction of

bacteriophage with the host immune system, which may be

important in the pathogenesis of some gut related disorders [17].

The observation that dense bacteriophage populations are
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associated with the gut mucosa, and numbers are elevated in

patients with Crohn’s disease, emphasizes the possible role of these

bacterial viruses in community function, interaction with the host,

and disease pathogenesis [19].

The characterisation of bacteriophage specific to the human gut

is also of considerable interest for the development of microbial

source tracking tools (MST), which permit determination of faecal

source in surface and ground waters [20–24]. Faecal contamina-

tion of surface waters poses a major risk to public health, and

bacteriophages specific to human faecal indicator bacteria (and the

human gut microbiome) have already been successfully employed

as water quality indicators that can specifically identify pollution

originating from human sources [20–22,25,26]. Bacteriophage

offer numerous advantages in these applications and are not only

thought to persist longer in the environment than host bacteria but

can often be found in higher numbers making them a more

sensitive source tracking tool [22]. In particular, the development

of rapid and sensitive culture-independent methods for detection

of human faecal indicator phage, directly in environmental

samples, offers significant advantages over classic culture-based

approaches, and there is presently much interest in developing and

implementing such strategies [27].

However, the development of culture-independent phage-based

MST tools, along with our improved understanding of bacterio-

phage in the gut community, is hindered by the lack of well-

characterized bacteriophage with defined host-ranges and avail-

able genome sequences, which infect prominent and important

species of human gut bacteria. A prime example is the availability

of only one complete Bacteroides spp. phage genome sequence in

public databases (as of Oct 2011), despite the prominence and

importance of this group of bacteria in the human gut microbiome

[28,29].

We have previously isolated bacteriophage infecting the human

faecal indicator bacteria Bacteroides sp. GB-124 from municipal

wastewaters, and found these to be present in human faecal

samples, but absent from faecal samples derived from a wide range

of domestic and wild animals, as well as from the general

environment, strongly suggesting these phage are human gut-

specific [20]. Because of the apparent gut-specific nature of these

phage, and the growing evidence of their usefulness as MST, in-

depth genomic characterization would not only begin to address

the current lack of knowledge regarding gut-associated bacterio-

phage (and Bacteroides phage in particular), but would also provide

the genetic information required for development of culture-

independent MST.

This motivated us to undertake an in-depth characterization of

one such phage designated wB124-14. This phage was selected as

it not only appears to be representative of a morphologically and

phenotypically homogenous group of human-specific phages, but

also displayed greater environmental stability than other phage

tested (particularly in terms of UV resistance), suggesting an

excellent environmental ‘‘half-life’’ (D. Diston Jan 2010, pers.

comm.). Here we have characterized the host range, complete

genome sequence and proteome of wB124-14. Using comparative

metagenomic analysis and genome signature-based approaches we

subsequently examined its ecological profile in relation to 611

other bacteriophage genomes available on GenBank, as well as

human gut-specific viral metagenomes [6].

Overall, these investigations support the human gut specific

nature of wB124-14 and indicate that this phage occupies a distinct

and largely unexplored ecological landscape within the human gut

microbiome. We also increase the available number of well-

characterized genomes of bacteriophage infecting prominent

members of the human gut microbiota. This will not only enhance

our fundamental understanding of this important microbial

ecosystem, but will facilitate the development of sensitive and

rapid culture-independent MST tools.

Results and Discussion

wB124-14 physical characteristics and host range
Transmission Electron Microscopy (TEM) shows wB124-14 has

a binary morphology with an icosahedral head and a non-

contractile tail (Figure 1A), placing it in the Caudoviriale order,

Siphoviridae family [30]. The phage produces small (0.7 mm 60.3),

clear plaques on a lawn of the original host Bacteroides sp. GB-124.

Structural dimensions are similar to the B. fragilis faecal pollution

indicator phage B40-8 (wB40-8; also referred to as phage ATCC

51477-B1; GenBank accession no. FJ008913.1) [31], with tail

length of 162 nm 621, tail diameter of 13.6 nm 61.6, and a

slightly smaller head diameter measurement of 49.8 nm 63.9

(versus wB40-8 measurements of 60 6 4.0 nm). The morphology

of the wB124-14 capsid is in keeping with metagenomic surveys of

human gut bacteriophage, in which the majority of identifiable

viruses were Siphophages [10].

Previous studies indicated that the host bacterium, Bacteroides sp.

GB-124, was most closely related to B. ovatus based on comparison

of 16S rRNA gene sequences (96% identity; [26]). However, since

97% identity between 16S genes is typically used as the cut off for

species level identification [32], and in light of the recent release of

many additional Bacteroides genome sequences from human gut

isolates (as part of the human microbiome project), we investigated

the identity of Bacteroides sp. GB-124 in more detail. This new

analysis revealed GB-124 to be a strain of B. fragilis (designated

here B. fragilis GB-124), with 16S rRNA gene sequences exhibiting

99% identity to a number of other B. fragilis strains, including those

isolated from the same municipal wastewater site as well as strains

HSP40, 683R, YCH46, JCM 17586 and JCM 17587 isolated

from various human body sites and human faeces (Table S1,

Figure 1B; accession numbers given on figure).

Investigation of the ability of wB124-14 to infect and lyse a

range of Bacteroides spp. commonly associated with the human gut

microbiota, demonstrated that this phage has a highly restricted

host range. wB124-14 was capable of infecting only a subset of B.

fragilis strains isolated from the same municipal wastewater site and

B. fragilis strain DSM 1396 (Figure 1B; Table S1), originally

isolated from human pleural fluid [33]. No activity was observed

against other Bacteroides spp. tested, or against strains of B. fragilis

isolated from geographically distinct municipal wastewaters,

namely, Galicia, Spain [20] and Hawaii, USA [34] (Figure 1B;

Table S1).

Overall, these observations indicate that Bacteroides spp. within

the human gut microbiota play host to bacteriophage with

extremely narrow host ranges, and in at least some cases these are

restricted to closely related strains. Such narrow host range may be

the result of the extreme niche specialization thought to occur at

short phylogenetic distances in gut bacteria [7], likely resulting in

strain-to-strain variation in surface proteins or other structures

exploited by phage as receptors. In this regard, it is notable that

horizontal gene transfer mediated by phage and other mobile

elements [35], as well as the selective pressure imposed on host

bacteria by phage themselves [6,36,37] can all promote modifi-

cation of surface structures and contribute to strain diversification.

In the case of surface structures, since these are often key to host-

microbe interactions, and may include those that are important to

nutrient acquisition and competition between strains, such

diversification also has the potential to influence the interaction

of bacteria with the human host [35]. Phage with such restricted

Comparative Metagenomic Analyis of Human Gut Phage
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host ranges are also unlikely to produce a significant impact on

overall microbial community structure and functioning due to

functional redundancy among members of the gut microbiome

[6,29].

Genome structure and sequence overvi. The dsDNA

genome of wB124-14 is 47,159 bp with an average G+C content

of 38.75%, and predicted to encode 68 open reading frames

(ORFs) with an average size of 212 aa. The genome exhibits the

high coding density typical of bacteriophage, with non-coding

sequence limited to 8.2% of the genome (Figure 2A). Restriction

fragment patterns are compatible with a circular genome

structure, and indicated that the wB124-14 is packaged as a

circular molecule (Figure 3), as has been described for

bacteriophages P2 and P4 [38,39].

Similar to the host bacterial species, B. fragilis, the majority of

putative ORFs detected are predicted to be initiated by an ATG

start codon, with one ORF (ORF10) presenting a CTG start

codon, and two initiated by GTG codons (ORF34, ORF44). A

number of ORF start and stop codons overlap (Table S2;

Figure 2A); a feature common to bacteriophage genomes, which

has been hypothesised to facilitate gene regulation and allow an

increased repertoire of proteins without a corresponding increase

in genome size [40,41]. Based on the protein BLAST algorithm

(BlastP; http://blast.ncbi.nlm.nih.gov/Blast.cgi) and proteomic

analysis, 18 of the predicted ORFs have an assignable function,

and 12 ORFs contain conserved domain signatures (Table S2;

Figure 2A). The majority of ORFs with an assigned function

encode proteins with predicted roles in DNA replication and

regulation, with the remainder predicted to encode functions

related to capsid structure, packaging, and host lysis (Table S2;

Figure 2A).

No function could be predicted for 50 ORFs which were all

designated as proteins of unknown function (Table S2;

Figure 2A,B). Of these, 29 were homologous to ORFs within the

wB40-8 genome or the genomes of Bacteroides spp., and a further 21

exhibited no significant homology to any sequences within the

public databases (Table S2; Figure 2A, B, C). This likely reflects

the general paucity of bacteriophage genome sequences within

public databases (only one other complete Bacteroides spp. phage

genome [31] is currently available in public databases, as of

October 2011), as well as the high level of uncharacterized

functions typically encoded by phage genomes [6,42].

Genome architecture and phage encoded functions
The clustering of functionally related genes and modular gene

architecture is a common feature of bacteriophage genomes.

Based on gene architecture, putative transcriptional coupling, and

the functional assignments of ORFs, the wB124-14 genome also

exhibits a modular organisation with functional gene clusters

related to packaging, capsid structure and assembly, as well as

DNA replication and regulation, and host lysis (Figure 2A,B;

Table S2). A comparable gene architecture and functional

clustering has also been described in wB40-8, which exhibits a

similar array of loosely defined gene modules containing high

levels of ORFs of unknown function [31]. However, many ORFs

assigned to particular modules in both wB40-8 and wB124-14

genomes cannot be assigned a specific function due to lack of

homology to any sequences in current databases, or any direct

experimental evidence.

Figure 1. Physical structure and host range of WB124-14. A. Transmission electron micrograph of WB124-14 showing phage capsid composed
of an icosahedral head and a non-contractile tail. Magnification 50,0006. Scale Bar, 20 nm. B. Phylogenetic characterisation of B. fragilis wB124-14
host strains. Consensus maximum likelihood trees were constructed from 16S rRNA gene sequences, with 1000 bootstrap resamplings using MEGA
v5. Bootstrap values of 40 or greater are shown adjacent to respective nodes. Accession numbers for bacterial 16S sequences are given in brackets
following species names on the tree. The ability of wB124-14 to replicate in a particular host species was tested in standard agar overlay assays, in
which replication of wB124-14 in a particular host was indicated by production of plaques in bacterial lawns. Species tested in host range assays are
denoted by open or filled circles. Filled red circles indicate strains which support wB124-14 replication, and open grey circles indicate strains in which
wB124 did not replicate.
doi:10.1371/journal.pone.0035053.g001
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Structure and packaging
The wB124-14 structure and packaging cluster potentially

comprises 24 ORFs, constituting 52% of the phage genome

(Figure 2A). Across this cluster seven ORFs could be assigned

putative functions based on sequence homologies and analysis of

the mature virion proteome (Table S2; Figures 2 and 4). ORFs 38,

41 and 42 are predicted to encode the main structural proteins

comprising the phage capsid, and exhibit high homology to

corresponding capsid proteins from wB40-8 at the amino acid level

(MP1 – Major Capsid Protein 1, MP3 – Major Capsid Protein 3,

and MP2 – Major Protein 2, respectively; Table S2). ORF20

encodes a putative tail fibre protein, which is thought to be

involved in host recognition and phage attachment [43]. However,

with the exception of the predicted tail fibre protein, which

exhibits homology with other proteins annotated in Bacteroides spp.

genome sequences, capsid proteins of both phage (wB124-14

ORF38, 39, 41, 42 and corresponding wB40-8 ORFS; Table S2)

show no significant homology to any other sequences in BlastP

searches of the nr dataset (e = 0.03 or greater), and all lack

conserved domains found in other phage capsid proteins.

The presence of ORF38 (wB40-8 Major Capsid Protein 1

homologue), and ORF42 (wB40-8 Major Protein 2 homologue) in

the mature virion was confirmed by analysis of the phage

proteome by tandem mass spectroscopy (Figure 4). Proteomic

analyses also identified an additional protein within the structure

and packaging cluster (encoded by ORF39) as present within the

mature virion, confirming a role for this previously hypothetical

protein in capsid structure (Figures 2 and 4). In contrast, ORF41

and ORF20 (wB40-8 Major Capsid Protein 3 homologue and Tail

Fibre homologues, respectively) were not detected in mature

Figure 2. Architecture and characteristics of wB124-14 genome. A. Physical map of WB124-14 genome. Outer track: Position and
orientation of each predicted ORF. Block arrows represent individual ORFs and indicate direction of transcription. ORF colour indicates functional
assignment based on BlastP and conserved domain searches (minimum 20% identity, and an e-value of 1e25 or lower), as well as analysis of the
phage proteome, as described in the figure legend. ORFs marked with purple triangles indicate ORF function has been confirmed through LC-MS/MS
analysis of the mature phage proteome (See Figure 4). Middle track: Bars represent location of proposed functional gene clusters and ORFs
belonging to each cluster. Colours of bars indicate putative role of each gene cluster in phage replication, based on predicted functions of member
ORFs. Inner track: G+C content: dark grey lines = above average genome G+C content; light grey lines = below average genome G+C content. B.
Percentage of ORFs assigned to each functional category, including unassigned ORFs. ORFs of unknown function are further broken down in a
secondary pie chart to illustrate those with homologues in the other available Bacteroides phage genome (wB40-8), and those with no significant
homology (nsh) to any sequences present in public databases encompassed by the nr dataset. C. Percentage of wB124-14 ORFs with highest
homology (based on top hits by bit score in BlastP searches) to sequences of various phylogenetic origin. Only hits generating e values of 1e25 or
lower were considered significant in this analysis. nsh – no significant homology. D. Illustrates the percentage of predicted ORFs assigned to each of
the three predicted functional modules in the wB124-14 genome.
doi:10.1371/journal.pone.0035053.g002
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Figure 3. Physical structure of wB124-14 genome. Left and middle panels show in silico digest and electrophoresis to visualise restriction
fragment profiles of wB124-14 expected for each permutation of the genome (linear or circular) generated by pDRAW32. Right panel shows results
obtained from digestion of 1.5 mg of wB124-14 DNA (3 h at 37uC) with restriction enzymes used in in silico analysis. Restriction enzymes tested are
indicated above each lane. MW = 1 kb Molecular Weight marker (Promega). UC = uncut wB124-14 DNA.
doi:10.1371/journal.pone.0035053.g003

Figure 4. Analysis of the mature wB124-14 proteome. Spectra of wB124-14 proteins identified by tandem mass spectrometry. Example peptide
spectra for each of the three proteins identified are shown. Table provides protein coverage and associated number of unique peptides matched and
the sequence of the top four matches (ranked by by XCorr score).
doi:10.1371/journal.pone.0035053.g004
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wB124-14 phage capsids, and their role in virus capsid structure

remains hypothetical.

The lack of identifiable products from ORF41 and ORF20 in

the proteome of mature wB124-14 virions may indicate that these

are present at relatively low levels that do not permit accurate

identification using the proteomic techniques employed here.

Although the theoretical sensitivity of the Orbitrap XL LC-MS

system utilised in this study implies proteins should be detected at

the low fmol range, subsets of comparatively rare proteins can be

‘‘masked’’ by the presence of highly abundant proteins in any

given sample [44]. Alternatively, ORF41 and ORF20 may be

non-functional in wB124-14 and could be dispensable for capsid

formation, or play only transient roles in capsid assembly,

potentially limited to aspects that occur in vivo in host cells.

In the case of ORF20, the assignment of this as a tail fibre

protein is based solely on its similarity to the homologous protein

annotated as a tail fibre in the wB40-8 genome sequence.

However, a closer examination of both wB124-14 and wB40-8

proteins revealed only low levels of homology to other tail fibre

proteins, with the highest homology observed with an Enterococcus

phage phiEF24C-P2 protein annotated as a tail fibre component

(32% identity, 10% query coverage, 6e210). The large size of

ORF20 is more typical of tail tape measure proteins, and given the

low homology to other tail fibre proteins, and the apparent

absence from the phage structural proteome, the possibility that

ORF20 encodes a tape measure protein rather than a tail fibre

should be noted. Nevertheless, in the absence of experimental

evidence demonstrating a specific function, the available genomic

data indicates wB124-14 ORF20 to be most closely related to the

wB40-8 putative ‘‘tail fibre’’ protein, and the wB124-14 genome

has been annotated to reflect this.

DNA replication and regulation. ORFs assigned to the

DNA replication and regulation cluster account for more than half

of all those encoded by wB124-14 but constitute only 35% of the

phage genome (Figure 2A,D). The devotion of a large number of

ORFs with roles in replication and DNA synthesis is concordant

with recent large-scale analyses of the human gut viral

metagenome in which genes involved in nucleotide replication

and synthesis were found to be enriched [6]. In addition, this is

also observed in the only other publically available complete

Bacteroides sp. phage genome, wB40-8 [31]. However, of the ORFs

affiliated to this putative cluster, as with phage encoded ORFs in

general, only a small proportion (25%) could be assigned a

putative function (Figure 2A, B, C).

Of particular interest in the regulation and replication cluster is

a predicted thymidylate synthase (TS; ORF8). TS is a ubiquitous

enzyme in bacteria that catalyzes the formation of deoxythymidine

59-monophosphate (dTMP) from deoxyuridine 59-monophosphate

(dUMP), which is essential for dTTP synthesis and DNA

replication [45]. Based on sequence homology and conserved

domain searches, the wB124-14 ORF8 appears to encode a ThyA

type enzyme which is predicted to be utilised by ,70% of

microorganisms [46], but seemingly rare in human gut viral

genomes and most likely acquired from host bacterial species [6].

However, conserved domain searches indicate that the wB124-14

TS may also exhibit dUMP hydroxymethylase activity and thus

constitute a bi-functional enzyme involved in the manufacture of

modified nucleotides (Table S2). This latter function is thought to

protect phage DNA from restriction-based host defence mecha-

nisms [47].

In addition, owing to the importance of TS activity for bacterial

survival, it has also been suggested that phage-encoded TS are of

benefit to host bacteria [48]. The provision of additional copies of

ThyA may enhance bacterial growth through gene dosing effects

as well as providing redundancy for a key activity and safeguarding

against its loss [48]. Furthermore, the efficiency of thymidylate

metabolism has also been implicated as a limiting factor in

prokaryote genome expansion and evolution, as well as cell

proliferation [46]. Overall, any enhancement in host survival

ability and replication rate is also of obvious benefit to

bacteriophage, since facilitating survival and replication of host

bacteria will contribute directly to phage survival.

The wB124-14 replication and regulation module also encodes

recombination proteins (ORF4) and phage antirepressors (ORF63

and 67) (Table S2; Figure 2). Phage encoded recombination

proteins are often involved in facilitating recombination between

the phage attP site and the attB site in the host chromosome

during formation of prophage insertions [49]. Phage antirepressors

are also often found in prophage elements [50], and these

regulators typically control the activation and de-repression of

genes required for re-entry into the lytic life cycle, often in

response to changes in the physiological status of the host cells

[50].

Host lysis. As with the previously characterised wB40-8 [31],

wB124-14 lacks a well-defined lytic module, and there is a relative

absence of ORFs encoding proteins with an obvious role in host

cell lysis. This lack of a well-defined lytic module is also a general

feature of other phages belonging to the Siphoviridae family [31,51].

Only one protein (ORF17), encoding a putative M15 type

metallopeptidase, could be assigned a clear function potentially

related to host lysis; phage-encoded peptidases are often involved

in disruption of the host cell envelope [52,53]. However, ORF17

appears to form part of a small gene cluster with several ORFs of

unknown function, which collectively constitute a putative lytic

module (Figure 2A). Two of these putative lytic module members

(ORFs 16 and 19) are predicted to encompass transmembrane

signal sequences and it is possible that these function to target the

encoded proteins to the cell wall or periplasm, as is often observed

with holin-endolysin systems [54].

Phage life cycle
Although the wB124-14 genome encodes some genes normally

related to temperate life cycles (recombinases, transcriptional

repressors and anti-repressors; Figure 2, Table S2), no evidence

for a lysogenic cycle was indicated in previous host range analyses.

The existence of wB124-14, or homologous elements, as prophage

was investigated within currently available Bacteroides genome

sequences using the nucleotide BLAST algorithm (Blastn).

Although lytic replication of wB124-14 appears to be confined to

only a few closely related strains of B. fragilis (Figure 1B), this

investigation encompassed 48 available complete and draft

genomes (Table S3), within the genus Bacteroides, including human

gut-specific species. A broad range of Bacteroides species was

included in this analysis to account for the possibility that an

alternate life cycle may occur in species other than B. fragilis, which

may not be detected under the laboratory conditions used to

elucidate host range in this study.

However, no evidence for a lysogenic life cycle or the existence

of wB124-14 as prophage was provided by this analysis, with all

chromosome sequences analysed devoid of any detectable wB124-

14-like prophage regions. Moreover, in addition to the production

of clear plaques and the absence of any identifiable integrase

genes, the large deviation between G+C content of the potential

bacterial host B. fragilis (G+C,43.3%) and wB124-14 (G+C

37.5%) is also fitting with a lytic rather than lysogenic lifestyle [55].

Although deviation in G+C content may also be evident in

lysogenic prophage, a propensity for a larger reduction in the G+C

content of lytic phage, as well as the resulting increases in genome

Comparative Metagenomic Analyis of Human Gut Phage
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signature differences (in terms of nucleotide repeat patterns), have

been used as indicators of a lytic lifestyle [55,56]. Thus, despite the

presence of genes often associated with a lysogenic cycle in other

phage, there is currently no evidence to indicate wB124-14

undergoes a temperate life cycle. Considering also the dynamic

and mosaic nature of phage genomes, in the case of wB124-14

genes such as anti-repressors could conceivably be remnants of

previous genomic incarnations, which no longer undertake their

original function.

Comparative genome analysis of available Bacteroides
phage sequences

Annotation and analysis of the wB124-14 genome sequence

indicated many ORFs were homologous to predicted proteins

from Bacteroides wB40-8 [31], also a member of the Siphoviridae

family and originally isolated from an urban sewage sample [57].

In order to examine the similarity between both phage in detail, a

comparative genomic analysis of the wB124-14 and wB40-8

complete genome sequences was undertaken.

Direct comparison of wB124-14 and wB40-8 complete genome

nucleotide sequences using the Artemis Comparison Tool (ACT;

[58]) (Figure 5A), as well as ORF-by-ORF comparison of

translated amino acid sequences (Figure 5B) revealed significant

homology over large areas of the phage genomes, encompassing

regions believed to be involved in structure and packaging, DNA

replication and regulation, and lysis, with a general conservation in

gene architecture and organisation evident (Figure 5). At the

nucleotide level, wB124-14 and wB40-8 are 57% identical across

the complete genome sequences, with the majority of ORFs in

each genome exhibiting homologues in the other (Figure 5).

Concordantly, Coregenes [59] analysis, which determines the core

set of genes common to two or more distinct genomes, showed that

39 of wB124-14 ORFs are shared with wB40-8 (BlastP identity of

75% or over), with structural genes displaying particularly high

levels of homology (96% identity or greater, Figure 5B).

Comparative metagenomic analysis of wB124-14 and
wB40-8

Due to the absence of phage infecting the host strain (B. fragilis

GB-124) from faecal samples derived from a wide range of

common domestic and wild animals, and from the general

environment, our previous work strongly suggested wB124-14 is

human gut specific [20]. wB40-8 has also been utilised as a marker

of human faecal pollution and is thought to be indicative of the

human gut microbiota [57]. To provide further insight into the

distribution of wB124-14 and wB40-8 in various microbiomes, and

evaluate their utility for the development of culture-independent

faecal source tracking methods, we undertook a comparative

metagenomic analysis using both complete bacteriophage genome

sequences.

The general distribution of sequences with homology to wB124-

14 and wB40-8 was investigated within all publically available

metagenomic datasets in the NCBI metagenome database (as of

June 2011, excluding those comprised solely of 16S rRNA gene

sequences), as well as the microbiomes of 124 individuals of

European origin which comprise the METAHIT dataset [28], 2

individuals of American origin [60], 13 Japanese individuals [8]

and the viromes of 12 individuals of American descent [6].

Searches using the full length phage nucleotide sequences failed

to identify metagenomic sequences with significant homology

(defined as a minimum of 80% identity over 100 nucleotides or

more, with an e-value of 1e25 or lower) to either phage in any of

the available non-human gut metagenomes searched, or within the

available environmental metagenomes of aquatic and terrestrial

origin. Interestingly, sequences with high homology to wB124-14

and wB40-8 were detected within the termite gut metagenome

[61], but these were below the 80% identity threshold considered

to be significant for the purposes of this survey (#71% identity in

the termite metagenome). However, it should be noted that no

dataset currently provides complete coverage of representative

microbial communities and associated MGE.

The lack of homology to both phage within non-human gut

metagenomes will almost certainly reflect the distribution of

bacterial hosts in various microbial habitats. In the case of wB124-

14, the narrow host range observed for this phage supports

previous findings that the B. fragilis host strains it infects (Figure 1B)

are specific to the human gut [20].

Concordantly, sequences with homology to wB124-14 were

present in 104 of 124 (83.8%) human gut metagenomes within the

MetaHIT dataset (comprised of Danish and Spanish individuals),

3 out of 13 (23%) Japanese individuals and 2 out of 12 human gut

viromes (16.6%) (Figure 6A). By contrast, homologous sequences

to wB40-8 were detected in only 11.1% of individual MetaHIT

metagenomes, in only one gut metagenome of Japanese origin and

no homologous sequences were found in the 12 human gut

viromes searched (Figure 6A). Importantly, the observed incidence

of sequences homologous to both phage was only very weakly

positively correlated to the size of metagenomes (r2 = 0.2;

P,0.0001; Figure 6B), indicating that observed differences in

incidence are unlikely to be an artifact of differing metagenome

size.

In contrast, homologous nucleotide sequences to both phages

were absent from the gut metagenomes of the two American

individuals [60] examined, with the search criteria employed. This

is perhaps unsurprising given the lack of sequences from Bacteroides

spp. within the metagenomic datasets generated by Gill and co-

workers [60]. However, a lack of homology to both phage was also

apparent in the American gut viral metagenomic dataset available

on GenBank at the time of study [62]. Given that this dataset

focuses on RNA viruses [62], a lack of homology to the DNA

viruses wB124-14 and wB40-80, was also not unexpected.

However, a general lack of homologous sequences was also

apparent in the gut viral metagenomes of American origin

generated by Reyes and colleagues (Figure 6A) [6].

Despite these caveats, the current observations indicate

potential geographic variation in the distribution of these phage,

and may also reflect inter-individual variation in actual levels of

bacteriophage resident in distinct human gut microbiomes. This

notion is congruent with observed differences in excretion of phage

amongst the human population; with Bacteroides HSP40 infecting

phages such as wB40-8 shown to be excreted by a lower number of

individuals than other B. fragilis phages [23,63]. These differences

are likely also indicative of the abundance of host strains within the

human gastrointestinal tract (GIT), as well as intra-individual

differences in gut viral community population structure.

wB124-14 ecological profiling
To further evaluate the potential utility of wB124-14 in broad-

scale MST applications, and the putative gut specific nature of this

phage (as indicated by previous studies [20,26,34] and our

comparative metagenomic analysis) the relationship of wB124-14

with the wider bacteriophage community was explored. This was

investigated using both conventional gene-centric alignment-

driven phylogenetic analysis, as well as gene-independent

alignment-free methodologies based on the pattern of tetranucle-

otide repeat frequencies encoded in the wB124-14 genome [51,64–

65]. In particular, the latter approach facilitates large-scale
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analyses of nucleotide sequence affiliation and relationships, which

permit a more expansive overview of wB124-14 ecology.

wB124-14 terminase based phylogeny. Since terminases

are thought to be the most highly conserved gene within phage

[66], conventional phylogenetic analysis was undertaken using the

putative wB124-14 terminase gene (ORF43) (Figure 7).

Homologous amino acid sequences from phage and bacterial

genomes (prophage), as well as from metagenomes of diverse

origin, were aligned with the predicted large subunit terminase of

wB124-14, and alignments used to construct phylogenetic trees.

This analysis further confirmed the close association of wB124-14

with wB40-8, and also revealed a strong association with predicted

terminase and terminase-like sequences originating from human

gut microbiomes [8,28] and viromes [6].

As expected, the closest association was observed with terminase

sequences originating from human gut-associated members of the

Bacteroidetes division, including B. fragilis (the host species of

wB124-14), and Alistipes spp. (Figure 7). In addition, the majority of

terminase sequences derived from human gut viral metagenomes

[6] represented in this tree appeared to be distinct from all other

sequences retrieved from other sources (Figure 7). This latter

observation suggests the existence of additional gut-specific

bacteriophage and hints at a close association between the human

host, its microbiome and components of the associated mobile

metagenome. However, this phylogenetic analysis was limited to

sequences possessing terminase genes closely related to that of

wB124-14, and also to those generating good alignments with the

wB124-14 sequence. By default this excludes the majority of

metagenomic virome sequences (due to the fragmentary nature of

such datasets), and provides only a limited view of wB124-14

ecology and evolution.

Gene-independent genome signature-based ecological

profiling.. In light of the narrow view offered by gene-centric

alignment-based phylogenetic methods for analysis of wB124-14,

and the problems associated with expanding such surveys when

analyzing bacteriophage genomes in general, we next explored the

broader ecological landscape occupied by wB124-14 using gene-

independent and alignment-free methods [51,64,65].

Since bacteriophage and other mobile genetic elements are

believed to reflect the genomic signatures of their host bacteria (in

terms of di-, tri-, and tetra-nucleotide repeat frequency (TRF)

patterns; [51,67]), it would be expected that bacteriophage with

Figure 5. Comparative genomic analysis of WB124-14 and WB40-8 (ATCC 51477-B1). A. Nucleotide sequences of wB124-14 and wB40-8
were compared using the Artemis Comparison Tool (ACT). Shaded areas between linear phage genome maps represent areas of high nucleotide
identity (90% or greater). Colour scale represents level of nucleotide identity at each region of homology. The ORF map for wB40-8 corresponds to the
annotations available in the GenBank submission (FJ008913.1). For the purposes of this analysis, the wB124-14 genome was linearised between ORFs
29 and 30 (Figure 2, Table S2), in order to compare the circular wB124-14 genome with that of wB40-8. Colours of ORFs correspond to functional
assignments as used in Figure 2. B. Comparison of amino acid sequences from wB124-14 ORFs with those annotated in the wB40-8 genome. Shading
between arrows indicates those sharing high amino acid sequence identity. Colour scale indicates level of amino acid identity between each
homologous ORF.
doi:10.1371/journal.pone.0035053.g005
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similar host ranges will exhibit comparable TRF signatures.

Therefore, comparison of these TRF genetic signatures may be

used to place wB124-14 in a wider ecological context with other

bacteriophage, bacterial host species, and sequences obtained from

metagenomic datasets.

To this end we compared the patterns of TRF in the genome of

wB124-14 to those encoded in the genomes of 611 other

bacteriophage, 48 chromosomal sequences from a range of

Bacteroides species, and all large fragments (.10 kb, n = 188

contigs) assembled from human gut meta-viromes generated by

Reyes et al. [6]. In light of the similarities observed between

wB124-14 and wB40-8 in other analyses undertaken here, TRF

scores for each bacteriophage were correlated to identify

ecological similarities or differences. This not only permitted the

evaluation of the effectiveness of this genetic signature-based

approach but also the exploration of the extent to which the

ecological landscapes populated by both phage overlap (Figure 8).

In general, results of this analysis were congruent with host

range studies, comparative genomic analyses, and trends observed

from construction of terminase phylogenetic trees (Figures 1, 5 and

7). As expected, wB40-8 was the most closely related bacterio-

phage to wB124-14 and sequences from B. fragilis strains were

found to be the most closely related chromosomal sequences

(Figure 8A; Figure S1). A high level of correlation was observed

between TRF scores derived from the comparison of each phage

(wB124-14 and wB40-8) against all other sequences analyzed

(r = 0.981 or above; Figure 8). This high level of correlation

indicates that both phage share closely related and highly similar

ecological niches, in keeping with known host ranges, and the close

phylogeny and evolutionary relationship observed in our other

investigations (Figure 8A).

The relationship of other complete bacteriophage genomes

(relative to wB124-14 and wB40-8) also exhibited a marked trend

based on the broad classification of bacterial host genera and its

association with the human gut microbiome (Figure 8A). The

genomes of phage infecting bacterial genera commonly found in

the human gut microbiome displayed a clear association relative to

Figure 6. Incidence of sequences homologous to WB124-14 and WB40-8 human gut metagenomes. Percentage of individual
metagenomes in which sequences homologous to wB124-14 or wB40-8 were identified ($80% identity over $100 nucleotides, 1e25 or lower). The
microbial metagenomes examined were derived from individuals of European (MetaHit) [28], Japanese [8] and American [60] origin, alongside the
combined viromes from 12 individuals of American descent [6]. MH MetaHit– All individuals represented in the MetaHit dataset; Jap – All
individuals of Japanese origin; AM – All individuals of American descent; Virome – All viromes from individuals of American origin. B. Scatter plots
illustrating the relationship between size of individual metagenomes searched and detection of sequences homologous to wB124-14. r2 = Pearson
correlation co-efficient. **P,0.0001.
doi:10.1371/journal.pone.0035053.g006
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Figure 7. Phylogeny of WB124-14 large subunit terminase. Amino acid sequences homologous to wB124-14 terminase (ORF43), based on bit-
score, were retrieved from GenBank and metagenomic datasets, including human gut microbiomes and viromes [6,8,28] and marine microbial
metagenomes [92], and aligned using ClustalW. The unrooted concensus neighbour joining tree (1000 bootstrap resamplings) was produced using
MEGA v5. Bootstrap values $40 are shown adjacent to respective tree nodes. Scale indicates amino acid substitutions. Colours indicate phylum level
grouping or origin of metagenomic sequences. Black triangles indicate wB124-14 or wB40-8 terminase sequences; white triangles represent other
phage sequences; white circles represent sequences originating from human gut metagenomes.
doi:10.1371/journal.pone.0035053.g007
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the wB124-14 and wB40-8 genomes, forming a distinct grouping

centered around the majority of gut virome sequences (Figure 8A).

In contrast, those exhibiting the least similar TRF profiles were

phage infecting bacterial genera predominantly associated with

terrestrial, aquatic or marine environments and not members of

the normal human gut microbiota (Figure 8A). Identical analyses

utilizing the wB124-14 genome, and that of Burkholderia wKS10

[68] (which generated the lowest TRF correlation to wB124-14 of

all phage analyzed; Figure 8A) displayed none of the trends

observed between wB124-14 and wB40-8, and exhibited only

negative correlation coefficients (r = 20.409 or below) with

wB124-14 in relation to sequence categories or groups used

(Figure 8B). However, even in this analysis, gut-associated phage

genomes, bacterial genomes, and gut virome fragments were

Figure 8. Comparison of tetranucleotide repeat frequency patterns in bacteriophage genomes and ecological profiling of wB124-14
and wB40-8. The tetranucleotide repeat frequency (TRF) correlation scores for wB124-14, wB40-8 and Burkholderia wKS10, were compared using
scatter plots and correlation of data examined using the Pearson coefficient. A complete list of genomes and sequences utilised in this analysis is
provided in Table S3. A. Comparison of TRF scores for wB124-14 (x-axis) vs wB40-8 (y-axis). B. Comparison of TRF scores for wB124-14 (x-axis) vs
Burkholderia wKS10 (y-axis). A, B. Upper charts plot scores for all phage genomes, viral metagenome fragments, and Bacteroides genomes. Phage
= TRF scores from comparisons to 611 phage and prophage genomes. Virome = TRF scores from comparisons to 188 large fragments (.10 Kb)
from human gut viral metagenomes [6]. Chromosome = TRF scores from comparison to 48 Bacteroides spp. genome sequences. Each sequence
type is represented by a different colour and symbol as indicated in the figure legends on each chart. The intensity of shading of data points reflects
the number of data points represented in a given area with a greater intensity indicating more overlapping data points. Values in parentheses
provide Pearson correlation scores for each sequence type. Lower charts plot TRF scores for sequences assigned to one of three categories based
on their relation to the human gut microbiome: Gut = comprises bacteriophage infecting bacterial genera commonly forming part of the normal
human gut microbiota. Gut Associated = comprises bacteriophage genomes infecting bacterial genera whose member species are associated with
the gut but not generally considered to be members of the normal gut microbiota (such as primary invasive gut pathogens), or where member
species are more commonly associated with environmental habitats. Non-Gut = contains bacteriophage infecting bacterial genera with member
species not considered to be part of the human gut microbiota or typically associated with this community, and primarily encompasses
bacteriophage infecting genera of environmental origin. Virome = All large fragments (n = 188, .10 Kb) assembled using CAMERA workflows (per
individual) from human gut viral metagenomic libraries [6,91]. Each sequence category is represented by a different colour and symbol as indicated in
the figure legends on each chart. For the purposes of this analysis phage infecting a particular host bacterial genus were only utilised if four or more
representative phage genomes were available (540 complete phage genomes, representing 31 bacterial genera). The intensity of shading of data
points reflects the number of data points represented in a given area with a greater intensity indicating more overlapping data points. Values in
parentheses provide Pearson correlation scores for each sequence type.
doi:10.1371/journal.pone.0035053.g008

Comparative Metagenomic Analyis of Human Gut Phage

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e35053



observed to be much more closely affiliated with wB124-14,

displaying a distinct trend towards the wB124-14 axis (Figure 8B).

Collectively, these observations confirm the usefulness of the TRF

approach to investigate bacteriophage ecology (Figure 8).

Despite the observed trends and phage groupings, much overlap

was observed between bacteriophage assigned to different

categories, an observation that is not unexpected in light of the

constant ingress of ‘‘contaminants’’ into the gut ecosystem through

consumption of food, the malleable nature of phage genomes, and

the broad categories to which phage genomes were assigned in this

analysis. Nevertheless, the relationships indicated here suggest that

wB124-14 and wB40-8 have a strong association with the gut

microbiota and occupy a distinct and largely uncharacterized

ecological niche in this community.

As well as facilitating the development of novel MST tools,

genomic characterization of phage infecting prominent members

of the human gut community also provides fundamental insight

into a fraction of the mobile metagenome that constitutes an

immense and largely unexplored gene-space. This fraction of the

gut microbiome is likely to encode novel activities relevant to

development and functioning of the human GIT, and be of

pharmaceutical or biotechnological interest in its own right [1,9].

This is particularly relevant for phages infecting members of the

Bacteroidetes which constitute a major component of the human

GIT microbial community [28], and have been implicated in both

the onset of and protection against the development of gut-related

disorders [69–71]. Given the potential for phage to shape

microbial community structure and function [10–15], coupled

with their highly selective nature, the isolation and characteriza-

tion of gut-specific phage offer numerous possibilities for the

therapeutic manipulation of the human gut microbiota, and a

range of biotechnological applications including the development

of novel MST tools.

In this regard the genetic characterization of wB124-14 has

provided an essential first step in the development of culture-

independent microbial source tracking tools. In particular PCR-

based tools that will permit sensitive detection and quantification

of human gut-specific indicators (such as wB124-14 DNA), will be

made possible by the availability of this, and other, genome

sequences of human gut-specific bacteriophage. In this regard,

current efforts in developing portable, self-contained ‘‘chip’’ style

PCR systems, for accurate and rapid diagnosis of bacterial

infections at point-of-care [72–73], will translate well for microbial

source tracking applications. Ultimately, such methods will

eliminate the need for anaerobic culture, permitting rapid and

sensitive monitoring of faecal pollution in a range of samples from

surface water to shellfish.

Our analyses have also provided insight into a novel and

uncharted ecological landscape within the human gut microbiome.

Comparative metagenomic analysis, along with ecological profil-

ing confirmed the gut-specific nature of wB124-14, corroborating

our previous findings [20]. Intriguingly, this analysis also indicated

that wB124-14 and wB40-8 genomes are distinct from other phage

genomes and the meta-virome sequences examined here,

seemingly occupying an ecological sphere of the human gut

virome not represented in currently available human gut meta-

viromes, and by only two phage genomes (wB124-14 and wB40-8)

in public sequence databases.

In conjunction with the apparent broad geographical distribu-

tion of sequences homologous to wB124-14 in human gut

microbiomes (observed in our comparative metagenomic analysis),

this observation points to a long-term association with the human

gut microbiome. In keeping with this hypothesis is the observation

that both wB124-14 and wB40-8 encode functions (namely TS)

previously found to be absent from extensive viral datasets, but

present in gut-associated viral metagenomes [6], and which are

likely to play a role in wider metabolism and fitness of bacterial

hosts. If so, such phage may also contribute to more subtle

mechanisms influencing community structure and help shape this

ecosystem not only through selective elimination of host species,

but also through effects on host fitness and inter-strain or inter-

species competition [74–76].

However, the relative lack of homologous sequences to these

phage observed in comparative metagenomic analysis of American

datasets, suggests that phage complements may vary between

geographically distinct populations; for source tracking applica-

tions region or population specific phage may be required, a

picture that is also emerging from other studies [20,26,34]. In

addition, the large degree of inter-individual variation in the

human gut microbiome almost certainly extends to the mobile

metagenome, including the virome [6]. In this regard the goal of

developing a truly universal MST will most likely require the

utilization of multiple gut-specific elements, such as bacteriophage,

to construct a multivalent tool capable of detecting a range of

human faecal indicators.

Although much of the bacteriophage genetic landscape is

exceedingly poorly characterized in the majority of microbial

ecosystems investigated to date, including the human gut, here we

provide a glimpse of this biological dark matter and its

corresponding ecological context. Our findings suggest that the

gene-space and ecological neighborhood populated by wB124-14

and related Bacteroides phage is even less well characterized than

other aspects of the gut virome, and may be almost entirely

uncharted at present. The availability of the complete genome

sequence of this and other such phage will now permit further

study of this aspect of the human gut mobile metagenome,

facilitate interpretation of metagenomic datasets, as well as the

development and application of novel, sensitive, and rapid culture-

independent MST tools.

Materials and Methods

Phage, host strains and growth conditions
wB124-14 was originally isolated from municipal wastewater

and is routinely propagated on Bacteroides sp. GB-124, as described

previously [20]. Phages were isolated by the double-agar protocol

(ISO 10705-4) [77] developed specifically for Bacteroides phages

using Bacteroides phage recovery medium (BPRM, per litre: meat

peptone, 10 g; casein peptone, 10 g; yeast extract, 2 g; NaCl, 5 g;

monohydrated l-cystein, 0.5 g; glucose, 1.8 g; MgSO4.7H2O,

0.12 g; CaCl2 solution (0.05 g/ml), 1 ml; hemin, 10 ml of a 0.1%

(w/v) solution made up in NaOH 0.02%; 1M Na2CO3, 25 ml;

pH 6.860.5).

To ensure purity of wB124-14 isolates, agar plugs containing

single wB124-14 plaques (zones of lysis) were picked from plates

using a sterile Pasteur pipette and incubated at 4uC for 4 h in

400 ml phage isolation buffer (19.5 mM Na2HPO4, 22 mM

KH2PO4, 85.5 mM NaCl, 1 mM MgSO4, 0.1 mM CaCl2), and

phage presence was retested using the double-agar method above

to generate fresh plaques. This process was repeated three times

and the final purified phage suspension used to generate high titre

phage stocks for sequencing and other assays.

To generate high titre phage stocks, pure wB124-14 phage

suspensions were added to 27 ml of an exponential Bacteroides sp.

GB-124 culture (OD620 0.33; cell density of approximately 26108

colony forming units; CFU) and incubated anaerobically (accord-

ing to [77]) overnight at 37uC to produce crude lysates. Phage

lysates producing plaques were subsequently added to 620 ml of
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GB-124 (OD620 0.33) and incubated overnight as before. Phage

suspensions were then purified and concentrated using polyethyl-

ene glycol 8000 [78] as follows: NaCl was added to a final

concentration of 1 M and phage suspensions were incubated for

2 h at 4uC, then centrifuged at 18006g for 10 min to remove

bacterial debris. Polyethylene glycol 8000 was added to a final

concentration of 10% (w/v), mixed for 30 min, and left overnight

at 4uC. Precipitated phage were collected by centrifuging at

11,0006g for 10 min at 4uC. Resulting supernatant was discarded

and 30 ml of phage isolation buffer (as above) was added.

Suspensions were stored at 4uC overnight, mixed gently to dissolve

pellet and centrifuged at 15006g for 10 min to remove remaining

debris. Phage suspensions were filtered through a 0.2 mM

polyvinylidene filter (Sartorius, UK). High titre stock suspensions

of 1011 plaque forming units (pfu)/ml were stored in glass vials in

the dark at 4uC.

Transmission Electron Microscopy (TEM)
Purified phage particles (109 pfu/ml) were immobilised on a

200 mesh Formvar/Carbon copper electron microscope grids

(Agar Scientific, UK), and negatively stained with 1% uranyl

acetate. Phage were imaged by TEM using an Hitachi-7100 TEM

at 100 kV. Phage dimensions were estimated from positively

stained micrographs and values reported are the mean value 6

standard deviation (SD) of five virion measurements.

Analysis of wB124-14 host range
Purified phage particles (103 pfu/ml) were tested for their ability

to infect and replicate within a selection of host strains using the

double agar method as previously described [77]. Plates were

incubated for 24 h at 37uC, under anaerobic conditions and

presence of plaques was used to indicate ability to replicate in a

particular Bacteroides species. A number of strains previously

isolated from municipal wastewaters from a variety of geograph-

ical locations [26] as well as typed Bacteroides spp. were tested (see

Table S1 for full list of strains and species used). Novel strains were

identified further by 16S rRNA gene sequencing, from 16S PCR

products amplified with universal primers 27f and 1492r [79]

using standard conditions. Purified PCR amplicons were

sequenced directly by GATC Biotech AG (Konstanz, Germany)

using Sanger sequencing, and are deposited in the EMBL database

under the following accession numbers: HE608156, HE608157,

HE608158, HE608159 and HE608160.

Bacteroides host species phylogeny
The relationship between the wB124-14 Bacteroides fragilis host

strain GB-124 and other Bacteroides species was examined in closer

detail by construction of phylogenetic trees based on 16S rRNA

gene sequences. In addition to those 16S sequences generated in

this study, sequences homologous to the wB124-14 host species

16S rRNA were retrieved from GenBank based on best-hit Blast

analysis and aligned using ClustalW [80]. Evolutionary histories

were inferred by constructing consensus maximum likelihood

phylogenetic trees based on the Tamura-Nei model using MEGA

v5 [81]. The reliability of tree nodes was evaluated using %-age of

1,000 bootstrap resamplings, with bootstrap values $40% used to

define well-supported clusters of 16S rRNA gene sequences.

DNA extraction and sequencing
DNA was extracted from high titre phage stocks (1010 pfu/ml),

as described previously [82], with minor modifications. Briefly,

each ml of phage stock was treated with DNAseI (1 mg/ml) and

RNAseA (100 mg/ml) to remove contaminating bacterial DNA,

before precipitating with 2M ZnCl2 (20 ml/ml) for 5 min at 37uC.

Precipitate was centrifuged (1 min, 5,0006g) and resultant

supernatant discarded. The remaining pellet was gently resus-

pended in TES buffer (0.1 M Tris-HCl, pH 8; 0.1 M EDTA;

0.3% SDS) and incubated at 60uC for 15 min. Proteins and

polysaccharides were precipitated using 3 M potassium acetate

(pH 5.2) on ice for 15 min, then centrifuged for 1 min at 8,0006g.

DNA in the resultant supernatant was precipitated with isopro-

panol and centrifuged. The resulting DNA pellet was washed with

70% ethanol, air dried at room temperature and resuspended in

20 ml Tris-EDTA buffer (10 mM Tris-HCl, pH 8; 1 mM EDTA).

The complete genome sequence of wB124-14 was obtained by

pyrosequencing using a Roche GS FLX with Titanium chemistry.

A total of 16,952 reads with an average length of 355 nt were

generated and assembled using the GS De Novo Assembler. The

final assembly provided average sequence coverage of ,1276 for

the wB124-14 genome. All sequencing and genome assembly was

conducted by GATC Biotech AG (Konstanz, Germany). Genome

size was confirmed by restriction digest and agarose gel

electrophoresis, and fragment sizes calculated using Gene Tools

software (Syngene, UK). The complete wB124-14 genome has

been deposited in the EMBL database under the following

accession number: HE608841.

Annotation and bioinformatic analyses of wB124-14
genome

Open reading frames (ORFs) encoded by wB124-14 were

predicted using Glimmer (v3) [83], and annotated using Artemis

[84]. The putative function of predicted ORFs were assigned

based on homologies to proteins and protein conserved domains

identified in BlastP and tBlastn [85] searches against the NCBI-nr,

and Conserved Domains Database (CDD; encompassing all NCBI

entries plus protein models from Pfam, SMART, COG, PRK and

TIGRFAM, and ACLAME databases), respectively.

For BlastP and tBlastn searches only homologous sequences

generating e-values of lower than 1e25 at $20% identity were

considered significant. For Conserved Domain searches, only hits

with an e-value of 0.01 or lower were considered significant.

Putative tRNA-encoding genes were searched for using tRNAs-

can-SE [86]. Transmembrane proteins and signal peptides were

predicted using the TMHMM v2 [87] and SignalP v3 [88] servers.

The presence of prophage with homology to wB124-14 and wB40-

8 in complete bacterial genome sequences were predicted using

Prophinder [89] and Blastn analysis of Bacteroides genomes

available within GenBank (See Table S3 for list of genomes).

Comparative analysis of bacteriophage genomes was carried out

using the Artemis Comparison Tool (ACT) [58]. Physical maps of

the annotated wB124-14 and wB40-8 genomes were generated

using Vector NTI Advance (v11.5).

Physical structure of phage genome
Phage genomic DNA was digested with HindIII, EcoRI

(Promega. UK), SwaI and SaII (NEB, UK), respectively, for 3 h

at 37uC and fragments resolved on a 0.8% Tris Acetate EDTA

(TAE) gel at 80 V for 3 h. Resulting restriction fragment profiles

were compared to in silico restriction profiles for linear or circular

permutations of the genome, which were generated by pDRAW32

(http://www.acaclone.com/).

Analysis of the wB124-14 proteome
wB124-14 lysate (1011 pfu/ml) was filtered through a sterile

0.2 mM low protein binding filter (HT Tuffryn, Pall Corp.) to

remove cell debris. Resulting crude protein extract was diluted
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with an equal volume of 2,2,2-Trifluoroethanol (Fluka), 20 mM

DTT, and denatured and reduced at 60uC for 60 min, before

alkylation with 30 mM IAA at room temperature in the dark for

45 min. The sample was diluted 6-fold with 50 mM ammonium

bicarbonate and digested with sequencing grade trypsin (Promega,

UK) overnight at 37uC. Tryptic peptides were fractionated on a

250 mm60.075 mm reverse phase column (Acclaim PepMap100,

C18, Dionex) using an Ultimate U3000 nano-LC system (Dionex)

and a 2 h linear gradient from 95% solvent A (0.1 % formic acid

in water) and 5% B (0.1% formic acid in 95% acetonitrile) to 50%

B at a flow rate of 250 nL/min. Eluting peptides were directly

analysed by tandem mass spectrometry using a LTQ Orbitrap XL

hybrid FTMS (ThermoScientific) and derived MS/MS data

searched against wB124-14 amino acid sequences using Sequest

version SRF v. 5 as implemented in Bioworks v 3.3.1 (Thermo

Fisher Scientific), assuming carboxyamidomethylation (Cys),

deamidation (Asn and Gln) and oxidation (Met) as variable

modifications. Filtering criteria used for positive protein identifi-

cations are Xcorr values greater than 1.9 for +1 spectra, 2.2 for +2

spectra and 3.75 for +3 spectra and a delta correlation (DCn) cut-

off of 0.1.

Comparative metagenomic analysis
Comparative metagenomic analysis were conducted as previ-

ously described [1,4,90]. The presence of wB124-14 and wB40-8-

like sequences among available metagenomes was investigated in

the first instance using the full set of microbial metagenomes of

diverse origin available within the NCBI database (158 metagen-

omes, June 2011). A more detailed investigation of the distribution

of wB124-14 and wB40-8-like sequences within the 124 human gut

microbial metagenomes from individuals of European descent

represented in the METAHIT dataset [28], 13 individuals of

Japanese origin [8], 2 individuals of American origin [60] and

within the viral metagenomes from 12 individuals of American

descent [6] was then carried out. To obtain assemblies of viral gut

metagenomes for these analyses, pyrosequencing reads for project

SRA012183 [6] were obtained from the NCBI Short Read

Archive and processed using CAMERA workflows [91]. Reads

were filtered to remove low quality reads and duplicates using the

454 QC and 454 Duplicate Clustering workflows, respectively,

with default parameters. The resulting high-quality, non-redun-

dant data sets were assembled using the CAMERA Meta-

Assembler which combines output from seven independent short

read assemblers run using pre-optimised parameters: Newbler,

Taipan, Celera, Velvet, SOAPdenovo, ABySS and SSAKE [91].

Individual metagenomes were processed separately. The com-

bined metagenomes from each dataset (MetaHIT, Japanese gut,

American gut and gut viral) were searched using Blastn for

nucleotide sequences with homology to wB124-14 and wB40-8.

Only sequences exhibiting an identity of 80% or greater over

100 bp or longer at 1e25 or lower were considered significant and

used to calculate incidence of positive metagenomes as described

previously [1,4]. Correlation analysis (Scatter plots and Pearson

correlation co-efficient) was carried out using Microsoft Excel.

Ecological profiling of wB124-14
Alignment-driven phylogenetics was undertaken using the

wB124-14 terminase gene amino acid sequence. Homologous

sequences, based on top bit scores, were identified in metagenomic

datasets of human gut and marine origin [6,8,28,60,92], as well as

through BlastP searches of the nr dataset. Sequences were aligned

using ClustalW and the Neighbour-Joining method with the Jones-

Taylor-Thornton matrix model for protein distance, used to

construct phylogenetic trees using MEGA v5 [81]. Alignment-free

analysis, based on the TRF patterns encoded in microbial and

bacteriophage genomes, was used to investigate the broader

relationship of wB124-14 with the wider phage community, and

host bacterial species. Correlations between frequencies of all 256

possible tetranucleotide sequences in all phage genome sequences

available in GenBank (611 phage genome sequences as of October

2011), a wide range of Bacteroides spp. genomes (48 genome

sequences, obtained from GenBank, The Broad Institute – http://

www.broadinstitute.org; and the Washington University Genome

Institute – http://www.genome.wustl.edu), as well as all large

metagenomic fragments (.10 kb) assembled from the human gut

viral datasets generated by Reyes and colleagues [6], were

calculated according to the method of Teeling and colleagues,

using the standalone TETRA 1.0 program [65]. Draft Bacteroides

chromosomal sequences were also included in this analysis and for

each draft genome contigs were first concatenated before

processing using TETRA (concatenation was confirmed not to

obscure the inherent tetranucleotide genomes signature in draft

genomes processed this way; Figure S2). All sequences entered

into the TETRA standalone program were extended by their

reverse complement and used by the program to calculate

observed and expected TRFs [65]. The divergence between

observed and expected frequencies for each tetranucleotide

pattern were subsequently converted to Z-scores which were

compared pairwise between all sequences to generate a Pearson

similarity matrix of TRF patterns.

Supporting Information

Figure S1 Details of closest sequences to wB124-14 by
tetra score. For each sequence type represented (phage, virome,

chromosome), the top six closest sequences to wB124-14 by

tetranucleotide repeat frequency (TRF) score are indicated by

numerals on the scatter plot, and colours correspond to sequence

types (as detailed in chart legend). The table provides the names

and TRF correlation values against the wB124-14 genome for

each sequence indicated, arranged by sequence type. In the case of

complete phage genome sequences, the closest sequence to wB124-

14 is wB40-8 and vice versa.

(TIF)

Figure S2 Comparison of tetranucleotide correlation
scores for complete and draft concatenated genomes.
To verify that concatenation of draft genomes, and the unfinished

nature of these datasets did not corrupt the tetranucleotide genome

signatures of these genomes, complete and draft genomes for several

Bacteroides species were compared. It is expected that such strains

would exhibit a high level of correlation between tetranucleotide

genome signatures. Scatter plots indicate that concatenated draft

genomes retain their tetranucleotide signature, with perfect

correlation observed in all comparisons, in contrast to negative

control plots between the distantly related Bacteroides vulgatus and

Bifidobacterium longum genomes. A. B. thetaiotaomicron VPI-

5483 complete genome vs B. thetaiotaomicron 3330-1 draft

concatenated genome. B. B. vulgatus ATCC 8482 complete

genome vs B. vulgates 1_0 draft concatenated genome. C. B.

fragilis YCH46 complete genome vs B. fragilis 3_1_12_1 draft

concatenated genome. D. Negative control plot, B. fragilis YCH46

vs Bifidobacterium longum DJO10A. Corr = Correlation score.

(TIF)

Table S1 Origin of species and strains used in wB124-14
host range assays1. 1 highly related B. fragilis strains used for

tree construction (Figure 1B) also included. NT – not tested.

(DOCX)
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Table S2. wB124-14 predicted ORFs and putative func-
tional assignments. 1 ORF numbers and functional assign-

ments correspond to those represent on genetic maps of the

FB124-14 genome presented in Figure 2. 2 ORFs were assigned

roles relating to broad functions based on results of BlastP and

conserved domain searches of translated ORF amino acid

sequences.

(DOCX)

Table S3 Bacterial chromosomes, phage genomes and
metagenomic fragments used in phage phylogenetic
analyses and ecological profiling (Figures 7 and 8). 1 –

Classification, refers to classification of genomes used for

ecological profiling in Figure 8B. Genomes from phage infecting

host bacteria belonging from a particular genus were assigned one

of three broad categories based on the relationship of bacterial

host genus with the human gut microbiota. For the purposes of this

analysis only bacteriophage with 4 or more representatives

infecting a particular genus of bacteria were included (540

complete phage genomes, representing 31 bacterial genera). G
= Gut, constitutes bacteriophage infecting genera commonly

forming part of the normal human gut microbiota as well as all

large fragments (.10 Kb) assembled using CAMERA workflows

from human gut viral metagenomic libraries (Reyes et al 2010,

Nature 466: 334–338 [6]). GA = Gut Associated, contains

bacteriophage genomes infecting genera with member species

associated with the gut but not considered to be members of the

normal microbiota (such as primary invasive gut pathogens), and/

or contain member species more commonly associated with

environmental habitats. NG = Non-Gut, contains bacteriophage

infecting genera with member species not considered to be

members of the human gut microbiota or typically associated with

this community. Primarily encompasses bacteriophage infecting

genera of environmental origin. 2 – Source, indicates the source

of bacterial and bacteriophage genomes utilised in this study:

NCBI – Complete bacteriophage genomes were obtained from

the NCBI Viruses home page (TaxID: 10239) and all genomes

present as of Oct 18th 2011 were downloaded using the Viral

homepage ftp. Complete finished Bacteroides genomes were

obtained from the NCBI Prokaryotes genome homepage and

downloaded individually. N NCBI Viral Homepage: http://www.

ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid = 10239; N
NCBI Viral FTP: ftp://ftp.ncbi.nih.gov/refseq/release/viral/; N

NCBI Prokaryote Homepage: http://www.ncbi.nlm.nih.gov/

genomes/lproks.cgi. NCBI SRA –Pyrosequencing reads generat-

ed from metagenomic libraries of virus-like particles by Reyes et al.

(2010) [6], were obtained from the NCBI Short read archive,

project SRA012183 (http://www.ncbi.nlm.nih.gov/sra). Reads

were subsequently processed for quality and assembled using

CAMERA workflows (https://portal.camera.calit2.net/

gridsphere/gridsphere). Broad Inst = Broad Institute. Draft

Bacteroides spp. genomes sequenced as part of the Human

Microbiome Project (Nelson et al 2010 Science 328 (5981):994–

999) at the Broad Institute were downloaded from the Bacteroides

group Sequencing project page: N Broad Institute homepage

(http://www.broadinstitute.org/); N Bacteroides Sequencing

Group Project Page (http://www.broadinstitute.org/annotation/

genome/bacteroides_group/MultiDownloads.html); N Human Mi-

crobiome Project Homepage (http://genome.wustl.edu/projects/

human_microbiome_project/human_gut_microbiome). WUGC
= Washington University Genome Centre. Draft Bacteroides

genomes sequenced as part of the Human Gut Microbiome Project

were also obtained from the Washington University Sequencing

Centre, Human Microbiome Project website. N HGM Home page:

http://genome.wustl.edu/projects/human_microbiome_project/

human_microbiome_project_description. N Genomes: http://

genome.wustl.edu/genomes/human_gut_microbiome_genomes.

(DOCX)

Acknowledgments

We thank Dr. Cormac Gahan and Dr. Caroline Jones for critical discussion

of the manuscript, and also wish to acknowledge and thank the research

groups whose data we have analysed as part of this study, for making this

publically available: Human gut viral metagenomes were generated by

Reyes and colleagues [6]; Draft genomes of Bacteroides species sequenced as

part of the Human Gut Microbiome project were obtained from the

‘‘Bacteroides group sequencing project’’ at the Broad Institute (http://www.

broadinstitute.org/), and the Washington University Genome Institute

(http://www.genome.wustl.edu).

Author Contributions

Conceived and designed the experiments: BVJ JC LO LB JE. Performed

the experiments: LO CD BVJ JE LB DD HT JC. Analyzed the data: LO

BVJ LB EC. Wrote the paper: LO BVJ.

References

1. Jones BV (2010) The human gut mobile metagenome: a metazoan perspective.

Gut Microbes 1: 415–31.

2. Jones BV, Marchesi JR (2007) Accessing the mobile metagenome of the human

gut microbiota. Mol Biosyst 3: 749–58.

3. Jones BV, Marchesi JR (2007) Transposon-aided capture (TRACA) of plasmids

resident in the human gut mobile metagenome. Nat Methods 4: 55–61.

4. Jones BV, Sun F, Marchesi JR (2010) Comparative metagenomic analysis of

plasmid encoded functions in the human gut microbiome. BMC Genomics 11:

46.

5. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, et al. (2010)

Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut

microbiota. Nature 464: 908–12.

6. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, et al. (2010) Viruses in

the faecal microbiota of monozygotic twins and their mothers. Nature 466:

334–8.

7. Zaneveld JR, Lozupone C, Gordon JI, Knight R (2010) Ribosomal RNA

diversity predicts genome diversity in gut bacteria and their relatives. Nucleic

Acids Res 38: 3869–79.

8. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, et al. (2007)

Comparative metagenomics revealed commonly enriched gene sets in human

gut microbiomes. DNA Res 14: 169–81.

9. Ogilvie LA, Firouzmand S, Jones BV (2012) Evolutionary, ecological, and

biotechnological perspectives on plasmids resident in the human gut mobile

metagenome. Bioengineered Bugs 3: 13–31.

10. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, et al. (2003)

Metagenomic analyses of an uncultured viral community from human feces.

J Bacteriol 185: 6220–3.

11. Barr JJ, Slater FR, Fukushima T, Bond PL (2010) Evidence for bacteriophage

activity causing community and performance changes in a phosphorus-removal

activated sludge. FEMS Microbiol Ecol 74: 631–42.

12. Roucourt B, Lavigne R (2009) The role of interactions between phage and

bacterial proteins within the infected cell: a diverse and puzzling interactome.

Environ Microbiol 11: 2789–805.

13. Gomez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil.

Science 332: 106–9.

14. Shapiro OH, Kushmaro A, Brenner A (2010) Bacteriophage predation regulates

microbial abundance and diversity in a full-scale bioreactor treating industrial

wastewater. ISME J 4: 327–36.
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(2006) Bacteriophage translocation. FEMS Immunol Med Microbiol 46: 313–9.

18. Rohwer F, Prangishvili D, Lindell D (2009) Roles of viruses in the environment.

Environ Microbiol 11: 2771–4.

Comparative Metagenomic Analyis of Human Gut Phage

PLoS ONE | www.plosone.org 15 April 2012 | Volume 7 | Issue 4 | e35053



19. Lepage P, Colombet J, Marteau P, Sime-Ngando T, Doré J, et al. (2008)
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a web-service and a stand-alone program for the analysis and comparison of

tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics 5: 163.

66. Casjens S (2003) Prophages and bacterial genomics: what have we learned so

far? Mol Microbiol 49: 277–300.

67. Suzuki H, Sota M, Brown CJ, Top EM (2008) Using Mahalanobis distance to

compare genomic signatures between bacterial plasmids and chromosomes.
Nucleic Acids Res 36: e147.

68. Goudie AD, Lynch KH, Seed KD, Stothard P, Shrivastava S, et al. (2008)
Genomic sequence and activity of KS10, a transposable phage of the Burkholderia

cepacia complex. BMC Genomics 9: 615.

69. Man SM, Kaakoush NO, Mitchell HM (2011) The role of bacteria and pattern-

recognition receptors in Crohn’s disease. Nat Rev Gastroenterol Hepatol 8:

152–68.

70. Kang S, Denman SE, Morrison M, Yu Z, Dore J, et al. (2010) Dysbiosis of fecal

microbiota in Crohn’s disease patients as revealed by a custom phylogenetic
microarray. Inflamm Bowel Dis 16: 2034–42.

71. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor
prevents intestinal inflammatory disease. Nature 453: 620–5.

72. Park S, Zhang Y, Lin S, Wang TH, Yang S (2011) Advances in microfluidic
PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29: 830–9.

73. Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for
infectious diseases Trends Biotechnol 29: 240–50.

74. Joo J, Gunny M, Cases M, Hudson P, Albert R, et al. (2006) Bacteriophage-
mediated competition in Bordetella bacteria. Proc. R. Soc. B 273: 1843–8.

75. Brockhurst MA, Fenton A, Roulston B, Rainey PB (2006) The impact of phages
on interspecific competition in experimental populations of bacteria. BMC

Ecology 6: 19.

76. Scott AE, Timms AR, Connerton PL, El-Shibiny A, Connerton IF (2007)

Bacteriophage influence Campylobacter jejuni types populating broiler chickens.

Environ Microbiol 9: 2341–53.

77. ISO (2001) ISO 10705-.4: Water quality. Detection and enumeration of

bacteriophages- Part 4: Enumeration of bacteriophages infecting Bacteroides

fragilis. International Organisation for Standardization, Geneva.

78. Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G (1970)
Rapid bacteriophage sedimentation in the presence of polyethylene glycol and

its application to large-scale virus purification. Virology 40: 734–44.

79. Lane, DJ (1991) 16S/23S rRNA sequencing. In: Nucleic acid techniques in

bacterial systematics. Stackebrandt, E., and Goodfellow, M., eds., John Wiley

and Sons, New York, NY, 115–175.

80. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673–80.

81. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5:

Molecular evolutionary genetics analysis using maximum likelihood, evolution-
ary distance, and maximum parsimony methods. Mol Biol Evol. 28: 2731–9.

Comparative Metagenomic Analyis of Human Gut Phage

PLoS ONE | www.plosone.org 16 April 2012 | Volume 7 | Issue 4 | e35053



82. Santos MA (1991) An improved method for the small scale preparation of

bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic
Acids Res 19: 5442.

83. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved

microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636–41.
84. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, et al. (2000) Artemis:

sequence visualization and annotation. Bioinformatics 16: 944–5.
85. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–10.

86. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–64.

87. Krogh A, Larsson B, Heijne G von, Sonnhammer EL (2001) Predicting
transmembrane protein topology with a hidden Markov model: application to

complete genomes. J Mol Biol 305: 567–80.

88. Emanuelsson O, Brunak S, Heijne G von, Nielsen H (2007) Locating proteins in

the cell using TargetP, SignalP and related tools. Nat Protoc 2: 953–71.
89. Lima-Mendez G, Helden J Van, Toussaint A, Leplae R (2008) Prophinder: a

computational tool for prophage prediction in prokaryotic genomes. Bioinfor-

matics 24: 863–5.
90. Jones BV, Begley M, Hill C, Gahan CGM, Marchesi JR (2008) Functional and

comparative metagenomic analysis of bile salt hydrolase activity in the human
gut microbiome. Proc Natl Acad Sci USA 105: 13580–5.

91. Sun S, Chen J, Li W, Altintas I, Lin A, et al. (2011) Community

cyberinfrastructure for Advanced Microbial Ecology Research and Analysis:
the CAMERA resource. Nucleic Acids Res 39: D546–51.

92. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, et al. (2007) The
Sorcerer II Global Ocean Sampling expedition: expanding the universe of

protein families. PLoS Biol. 5: e16.

Comparative Metagenomic Analyis of Human Gut Phage

PLoS ONE | www.plosone.org 17 April 2012 | Volume 7 | Issue 4 | e35053


