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Abstract

Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Ca-N bond (Phi) and the
Ca-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the
backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence
information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion
ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level
support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from
amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted
secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When
evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the
Phi and Psi angle prediction are 27.8u and 44.6u, respectively, which are 1% and 3% respectively lower than that using one of
the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random
predictor that was built on the amino acid-specific basis, with the p-value,1.46e-147 and 7.97e-150, respectively by the
Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE
should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the
predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/,sjn/
TANGLE/.
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Introduction

As a result of the completion of whole-genome sequencing

projects, the sequence-structure gap is rapidly increasing. In this

context, the accurate prediction of protein structure and function

from sequences remains a challenging task. An useful intermediate

way to address this is to predict one-dimensional structural

properties of proteins including secondary structure, solvent

accessibility, residue contact number/order, residue depth, and

dihedral torsion angles [1–12]. For a comprehensive review of

recent progress on the development of one-dimensional predictors,

refer to Kurgan and Disfani [13]. In the past two decades, most

efforts have been made to predict the former three properties of

proteins, leading to ongoing improvements in prediction perfor-

mance [14–16]. However, with respect to torsion angles, there is

increasing interest in the field of structural bioinformatics in

developing efficient algorithms that are capable of accurately

predicting protein backbone torsion angles from amino acid

sequences. This is because they can provide more detailed

description of the backbone conformations, which, if known, can

significantly reduce the conformational search and contribute

towards the final prediction of protein three-dimensional structure

predictions. For example, predicted torsion angles have been

applied to improve protein secondary structure prediction [17,18],

protein fold recognition [19–21], multiple sequence alignments

[22,23] and fragment-free tertiary-structure prediction [10].

There are three different backbone torsion angles along with

protein polypeptide chains: Q (Phi), y (Psi) and v (Omega), which

involve the backbone atoms C-N-Ca-C, N-Ca-C-N and Ca-C-N-

Ca, respectively. Due to the planarity of the linked rigid peptide

bonds, the two angles Phi and Psi can essentially determine the

backbone geometry of proteins. The third angle Omega does not

need to be specified as it is almost always fixed at 180u [11]. This

means protein local structures can be unambiguously described by
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their backbone torsion angles [10]. Therefore, if the real values of

Phi and Psi of all residues of a given protein are known, it will be

more straightforward to re-construct the protein structure using

the standard bond length [11]. In addition, protein backbone

torsion angles are closely correlated with protein secondary

structures [24]. Particularly, different secondary structure types

are clustered in different regions in the Ramachandran Phi-Psi

diagram [25], so it is therefore possible to predict protein

secondary structures based on the predicted torsion angle

probabilities. Accordingly, predicted torsion angles have been

used as a replacement or supplement to secondary structure for

refined local-structure predictions and have also been used to

construct simplified protein models for sampling efficiency [9,10].

Conventionally, torsion angles were predicted as a few discrete

states based on the backbone conformation distributions and

various computational algorithms were developed to predict the

discrete states of Phi/Psi angle values [26–32]. Machine learning

techniques are typically used to train and build prediction models,

including neural networks [3,11,24], support vector machines

[11,24,32] and hidden Markov models [28,30]. In this direction,

Helles and Fonseca have recently developed an artificial neural

network framework to predict torsion angle probability distribu-

tion of coiled residues [33]. Their method achieved prediction

accuracy comparable to that of secondary structure prediction

(80%) and was significantly better (4–68%) than the baseline

statistics. More recently, Kountouris and Hirst have created an

SVM-based predictor called DISSPred of multi-state torsion

angles and three-state secondary structures. It has achieved a

more competitive predictive performance compared with other

previously developed classifiers [34]. As a result of the free

movement of proteins in the three-dimensional space, however,

protein backbone torsion angles are actually continuously varying

variables. Although these earlier methods have achieved predic-

tion accuracy of up to 80% [24,32,34] based on the arbitrarily

defined discrete states, such predictions cannot specify the actual

Phi/Psi values for each state, and therefore have limited value in

protein structure prediction.

In view of this, in recent years more attention has been given to

real-value prediction of both Phi and Psi torsion angles. The first

real-value prediction approach, DESTRUCT, was proposed by

Wood and Hirst [35]. In their work, they used the PSI-BLAST

program [36] to generate position-specific scoring matrices

(PSSM), which was further taken as input to train the iterative

neural network models and predict one of the two major torsion

angles Psi. Nevertheless, the correlation coefficient between

predicted and actual values of the Psi angles was only 0.47.

Berjanskii et al. developed a web server, named PREDITOR for

predicting protein torsion angles [37]. It combines sequence

alignment methods with advanced chemical shift data to generate

the predicted torsion angles. 88% of Phi/Psi predictions by

PREDITOR are located within 30u of the correct values. Wu and

Zhang proposed the ANGLOR predictor based on the composite

machine-learning algorithm using support vector machines and

neural networks, which has achieved a mean absolute error (MAE)

of 28u/46u using built models trained on only 500 protein chains

[11]. Dor and Zhou developed a method called Real-SPINE that

predicts the real values of structural properties of proteins

including residue solvent accessibility and backbone torsion angles,

based on integrated neural networks [3]. Trained on a large

dataset of 2,640 protein chains, Real-SPINE substantially

improved the correlation coefficient to 0.62 between the predicted

and actual Psi angles (10-fold cross-validation) through large-scale

learning with a slow learning rate and over-fitting protection.

Real-SPINE 2.0 server [12], Real-SPINE 3.0 [9] and SPINE X

[10] were further developed by Zhou’s group, with the prediction

accuracy continuously improved by guided learning through

neural networks and other refinement techniques. In addition,

using a database of 997 non-redundant NMR structures, they

have further developed a neural-network based predictor for the

real-valued prediction of Phi and Psi angle fluctuations [38] based

on sequence information only. This predictor achieved ten-fold

cross-validated Pearson correlation coefficients (CC) of 0.59 and

0.60, and mean absolute errors of 22.7u and 24.3u for the angle

fluctuation of Q and y, respectively [38]. Altogether, the consensus

of these studies has been that real-valued torsion angle predictions

by state-of-the-art algorithms have the potential to be employed as

a replacement of or supplement to secondary-structure prediction

tools, and are expected to substantially improve the quality of

protein structure prediction when high-confidence predicted

torsion angles are applied as constraints.

More recently, Ahmad et al. proposed a novel approach for the

simultaneous prediction of eight one-dimensional structural

features (including solvent accessibility, helix-helix contact and

backbone torsion angles) for helical membrane proteins by using

an integrated prediction system called HTM-One [39]. The

performance of HTM-One has been shown to outperform

respective models that were separately trained on individual

features, which was evaluated using rigorous leave-one-out

jackknife tests based on a non-redundant dataset of 286 helical

membrane proteins [39]. The results indicate that compared with

previous practice of training models individually, the performance

of one-dimensional predictors can be significantly improved using

this prediction system in an integrated manner. This is clearly an

important step in the right direction for addressing the issue of how

to improve the prediction performance of one-dimensional

structural features of proteins from amino acid sequences.

In this study, we propose a new complementary approach to

predict the Phi/Psi angles by support vector regression (SVR)

learning from sequence information only. We want to take

advantage of the excellent ability of SVR to generalize learning

rules and predict the raw values of the given samples. The

developed TANGLE (Torsion ANGLE) predictor works by

integrating multiple local sequence profiles and global sequence

features within a two-level SVR learning framework. Features

used by TANGLE include multiple sequence alignment profiles

retrieved from the position-specific scoring matrix (PSSM),

predicted secondary structure, predicted solvent accessibility and

predicted native disorder information. Moreover, other global

sequence information such as amino acid contents, sequence

length and sequence weight are used as the inputs to TANGLE.

To improve the prediction accuracy, various combinations of

different feature types with different local window sizes are

systematically examined and compared. Finally, TANGLE

achieves a significantly better prediction accuracy compared to

the ANGLOR predictor [11] and a random amino acid-specific

predictor when trained and evaluated on a large dataset with

1,989 protein chains. As an implementation of this approach, we

have developed the TANGLE webserver for protein backbone

torsion angle prediction. This is freely available at http://

sunflower.kuicr.kyoto-u.ac.jp/,sjn/TANGLE/.

Materials and Methods

Datasets
In order to objectively compare our approach with other

available approaches developed previously, we used the same

datasets as originally developed by Wu and Zhang [11], where the

PDB entries with any broken chains or missing residues were

Predicting Protein Torsion Angles from Sequences
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excluded. In this dataset, every two sequences in the dataset had a

pair-wise sequence identity of less than 25%. Among them, 500

proteins were used as the training set, while the rest 1,026 proteins

were used as the independent testing set. The total residues in the

training and testing sets were 70,646 and 142,091, respectively.

The experimental values of Phi and Psi torsion angles were

calculated by the DSSP program [40]. Because the four residues in

the N- and C-terminus lacked four consecutive atoms that were

required to form the torsion angles, they were neglected and not

included in the prediction analysis. The calculated Phi/Psi angles

by DSSP can be downloaded from our TANGLE website: http://

sunflower.kuicr.kyoto-u.ac.jp/,sjn/TANGLE/links.

We normalized the original Phi and Psi angles using their average

and standard deviations based on the whole training datasets, to

make most of their values fall within the range between 0 and 1, as

suggested previously [5–7]. In the training stage, the prediction

models were trained based on the normalized values of Phi and Psi,

instead of the original values. In the prediction stage, we first

predicted the normalized Phi and Psi angles from primary sequences

in the independent test set, and then recovered the absolute Phi and

Psi angles from their respectively predicted normalized values. The

calculated Phi and Psi angles in the training set of 500 proteins chains

can be found in Datasets S1 and S2, respectively, while the

calculated Phi and Psi angles in the testing set of 1,026 protein chains

can be found in Datasets S3 and S4, respectively.

Performance Evaluation
To measure the performance of real-valued torsion angle

predictions, we calculated three different measures, the Pearson

correlation coefficient, the mean absolute error and root mean

square error between predicted and observed Phi and Psi torsion

angles.

The Pearson’s correlation coefficient (CC) between the

predicted and observed torsion angle values is defined as:

CC~

PN
i~1

(xi{�xx)(yi{�yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

(xi{�xx)2

� � PN
i~1

(yi{�yy)2

� �s ð1Þ

where xi and yi are the observed and predicted torsion angle values

of the i-th residue, respectively, �xx and �yy are their corresponding

means and N is the total number of residues in a protein sequence.

CC = 1 indicates that the two sets of values are fully correlated,

while CC = 0 indicates that they are completely uncorrelated.

The mean absolute error (MAE) is defined as the average

difference in angle degrees between the predicted and the

observed torsion angles of all residues, i.e.

MAE~
1

N

XN

i~1

yi{xij j ð2Þ

The root mean square error (RMSE) is given by:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1

(yi{xi)
2

vuut ð3Þ

Two RMSE measures were calculated in this study: RMSE_norm

and RMSE_raw. The former was calculated based on the

normalized values of Phi/Psi angles, while the latter was calculated

based on the original (raw) values of Phi/Psi angles. In addition,

the CC, RMSE_norm, RMSE_raw and MAE measures were

calculated on both the protein chain and residue level,

respectively.

Support vector regression (SVR)
Support vector machine (SVM) is a sophisticated supervised

machine learning technique based on statistical learning theory

[41,42]. SVM is especially effective when the input data is not

linearly separable and the kernel function is required to map the

data into a higher dimensional space to find the optimal separating

hyperplane. In practice, SVM has two modes: support vector

classification (SVC) and support vector regression (SVR). Due to

its excellent regression ability, SVR has been applied to predicting

accessible surface area [43], contact number [5,44], B-factor [45],

residue depth [8], disulfide connectivity [46], caspase cleavage site

[47], gene expression level [48], missing value estimation in

microarray data [49], peptide-MHC binding affinity [50], siRNA

efficacy [51], gene selection [52], domain boundary [53], and

antigenic epitope [54].

In the present study, we use SVR (implemented in the

SVM_light package, available at http://svmlight.joachims.org/)

to predict torsion angle values from amino acid sequences. We

selected radial basis kernel function (RBF) at e= 0.01, c= 0.01 and

C = 5.0 to build the models for both the first-level and second-level

SVR in TANGLE. This combination of parameters has been

shown to provide the best prediction performance in the

preliminary analysis through selecting and comparing different

combinations of C and e and examining their respective prediction

performances. In the following analysis, we constantly set e as

0.01, c as 0.01 and C as 5.0 to evaluate the prediction

performance of other sequence encoding schemes. Selection of

SVM parameters and features using a sliding window size were

done using only the training dataset.

Two-level support vector regression approach of TANGLE
In this section, we will describe the design of our two-level

TANGLE approach that uses two SVR predictors in cascade for

predicting protein backbone torsion angles from protein primary

sequences. In TANGLE, the first-level accepts all the sequence-

derived features as inputs to SVR and outputs the initially

predicted torsion angles. The second-level accepts the initially

predicted torsion angles by the first-level SVR predictor and

outputs the final refined torsion angles. As the torsion angles of a

residue at a particular position in the sequence depend on the local

structure of its neighboring residues, introducing another layer of

SVR predictor that incorporates the contextual relationship of

torsion angles in the proximal neighborhood can potentially

enhance the torsion angle prediction of that residue [55]. The idea

of designing a two-level SVR approach has been proposed in

previous studies of predicting protein solvent accessibility [55–57],

residue B-factors [58], as well as analyzing condition-specific

regulatory networks [59], where use of two-level SVR has been

demonstrated to improve the robustness of the prediction system

and enhance prediction accuracy.

In this study, we are interested in investigating the influence of

various sequence features and their combinations on the

prediction performance of torsion angles, within the two-level

SVR framework. Figure 1 illustrates the flowchart of our two-level

TANGLE approach. As can be seen, there are six different types

of sequence-derived features that will be used as inputs to the first-

level SVR. These features include (1) position-specific scoring

matrices (PSSM) [36]; (2) PSIPRED-predicted secondary structure

Predicting Protein Torsion Angles from Sequences
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[60]; (3) SCRATCH-predicted solvent accessibility [61]; (4)

DISOPRED2-predicted native disorder [62] and two other global

features including (5) sequence length and (6) sequence weight [5–

8]. Detailed description of these features and their extraction and

encoding procedures are provided in the following ‘‘Sequence

encoding schemes’’ Section.

The second-level SVR takes the predicted output of the first-

level SVR with the purpose to further enhance the prediction of

torsion angles. Previous studies have indicated that the use of a

second-level SVR in cascade can improve the prediction accuracy

by capturing the contextual relationships underlying protein

structural property values like solvent accessibility and B-factors

from the output of the first-level SVR [55–58]. Notice that in both

in the first- and second-level SVR predictors, the sequence features

for a residue of interest are encoded into input vectors of SVR

using a sliding local window approach. This will be briefly

discussed in the following section.

Sequence encoding schemes
Selecting appropriate sequence encoding schemes is an

important step as it determines the quality of feature extraction

of SVR models and thus has a significant impact on the prediction

performance. In this section, we describe in more detail how to

extract and encode different types of sequence feature.

Figure 1. The architecture of TANGLE for protein backbone Phi and Psi angle predictions. Six different types of sequence and structural
features are generated and used as input to build the two-level SVR models of TANGLE. These features include position-specific scoring matrix
(PSSM), PSIPRED-predicted secondary structure, SCRATCH-predicted solvent accessibility, DISOPRED2-predicted native disorder, sequence length and
sequence weight.
doi:10.1371/journal.pone.0030361.g001
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Position-specific scoring matrices (PSSMs) in the form of
PSI-BLAST profiles

Position-specific scoring matrix (PSSM) of a residue in the form

of PSI-BLAST profile contains important evolutionary informa-

tion that determines whether this residue is conserved in its family

of related proteins. Each element in the PSSM represents the

probability of each residue position in the multiple sequence

alignment. Numerous previous studies have shown that multiple

sequence alignments in the form of position-specific scoring

matrices (PSSMs) can significantly improve overall prediction

performance [63–77].

In this study, we obtained the PSSM profile for each sequence

in the datasets by running PSI-BLAST search and encoded each

residue using a local sliding window approach based on the PSSM

profiles. PSI-BLAST was run for three iterations against the non-

redundant NCBI nr database using a default E-value cutoff to

obtain the PSSMs profiles. All the elements in the PSSM profiles

were divided by 10 for normalization, so that most of the values

fell with the range of 0 and 1. For a given residue, its local

sequence fragment was extracted and encoded as a 206(2l+1)-

dimensional vector using a sliding window scheme where l denotes

the half window size and L = 2l+1 is the full window length (See

Figure 2 for extraction and encoding). In order to select the

optimal local window size L for the Phi and Psi angle prediction,

we evaluated prediction performance of a variety of different local

window sizes L, ranging from 3 to 21. In summary, in this

encoding scheme, a residue was encoded by a 206L = 206(2l+1)-

dimensional vector.

Predicted secondary structure information by PSIPRED
The PSIPRED program was chosen to predict the secondary

structure information. PSIPRED is an accurate neural network-

based predictor for the prediction of secondary structure with an

accuracy of up to 80% [60]. The output of PSIPRED includes

three-state (helix/strand/loop) prediction and probability scores

for each secondary structure type. The users can submit a protein

sequence and receive the prediction result both textually via e-mail

and graphically via the webserver. In our previous work, we have

shown that incorporation of PSIPRED-predicted secondary

structure information can significantly improve the prediction

performance [6–8].

Similarly, for a given residue, its three-state secondary structure

profile was extracted and encoded using a sliding window of

L = 2l+1 (l = 1, 2, 3, …, 10) consecutive residues. Therefore, in this

encoding scheme, a residue was encoded by a 36L = 36(2l+1)-

dimensional vector.

Predicted solvent accessibility information by SCRATCH
The SSpro program in the SCRATCH software package [61]

was used to predict the solvent accessibility of each residue in the

Figure 2. A sliding window approach is employed to extract and encode local profiles into the first-level SVR model of TANGLE. The
sequence-encoding scheme ‘‘PB+PP+SC+DISO’’ is taken as an example to illustrate how to extract the local profiles. Here, window size L is set up at
L = 21 for a residue of interest (Residue F, position 11 in this example).
doi:10.1371/journal.pone.0030361.g002
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datasets. SSpro yields the predicted solvent accessibility status for a

residue, in a binary format- either as ‘‘exposed’’ or ‘‘buried’’. The

predicted solvent accessibility has been shown to be able to

improve the prediction accuracy for predicting natively unstruc-

tured regions [78,79] or loops [80], DNA-binding sites [66], as

well as protein interaction hotspots [67]. In this encoding scheme,

a residue was encoded by a 26L = 26(2l+1)-dimensional vector.

Predicted native disorder information by DISOPRED2
In recent years, researchers have realized that natively

disordered regions are commonly responsible for important

protein function. As such, there has been an increasing interest

in studying such regions in proteins. Natively disordered or

unstructured regions are found to be associated with molecular

assembly, protein modification and molecular recognition [81–

83]. Therefore, inclusion of this feature into the SVR models could

potentially improve the performance of torsion angle prediction.

In previous work, native disorder features have been used to

enhance the prediction performance on caspase cleavage sites [46]

and phosphorylation sites [84].

In this study, we used the DISOPRED2 server, which was

developed using neural networks and is considered to be one of the

best predictors for predicting natively unstructured or disordered

region [62]. DISOPRED2 outputs the predicted possibility of each

residue being natively disordered or ordered, which will be

extracted and input into the SVR models. In this encoding

scheme, a residue was encoded by a 26L = 26(2l+1)-dimensional

vector.

Other global sequence features
In addition to the sequence and structural features discussed

above, we also included some representative global sequence

features like the compositions of twenty amino acids, sequence

length and sequence weight (Figure 1) and incorporated them into

the SVR models of TANGLE. These complement local features.

Previous studies have indicated that inclusion of these global

sequence features can help to further improve prediction

performance in a number of different real-value prediction tasks,

i.e. prediction of residue contact number [5], residue-contact order

[7], disulfide connectivity pattern [46], half-sphere exposure [6]

and residue depth [8]. Incorporation of these global features has

been shown to be helpful for improving the prediction perfor-

mance [6–8].

To comprehensively investigate the influence of each feature

type and improve the prediction performance, we train SVR

models using six different sequence encoding schemes. For brevity,

we refer to the encoding schemes based on PSI-BLAST profile,

PSIPRED-predicted secondary structure, SCRATCH-predicted

solvent accessibility, DISOPRED-predicted native disorder and all

the combined sequence features, as ‘PB’, ‘PP’, ‘SC’, ‘DISO’ and

‘ALL’, respectively. With the increasing complexity of considered

features, the dimensionality of input vector will increase

accordingly. In the case of sequence encoding scheme

‘‘PB+PP+SC+DISO’’, the total number of vector dimension is

(206L+36L+26L+26L) = 27L. For example, for a local window

size of L = 9, there are in total 243-dimensional vector designed to

characterize each residue.

The Sliding window approach to extract the local
sequence and structural profiles

For residue encoding, a sliding window approach was used to

extract the local sequence profile of each residue in the datasets.

For sequence encoding schemes based on feature combinations,

the extracted local profiles of various feature types will be further

concatenated to generate the SVR inputs. Figure 2 illustrates how

to extract local sequence profiles using this sliding window

approach in TANGLE, taking sequence encoding scheme

‘‘PB+PP+SC+DISO’’ as an example.

Results

Statistical distribution of Phi and Psi angles
The distribution of Phi and Psi angles are displayed using the

Ramachandran plot, as shown in Figure 3. This distribution is

calculated using the training set with 500 PDB structures

containing 70,646 residues. It is apparent that Phi and Psi angles

have different distribution patterns: the former only has one peak

around 270u, while the latter has two peaks around 250u and

130u, respectively. As discussed previously, the single-peak

distribution of phi angles and double-peak distribution of psi

angles in the Ramachandran plot, result in the different degrees of

uncertainty and therefore the different prediction accuracy for the

phi and psi angles [11]. This leads to different prediction difficulty

for these two types of torsion angles. Due to their double-peak

distribution, it is more difficult to predict Psi angles than the single-

peak Phi angles, which is reflected by higher MAE and RMSE

values for Phi angles but lower values for Psi angles.

The distribution of Phi/Psi torsion angles shows strikingly

different patterns between different secondary structure types. As

can be seen from Figure 3, most residues in alpha-helices are located

within a narrow range of Phi and Psi angles. The populated area of

alpha-helix residues is in the range of 2150u,Phi,220u and

2100u,Psi,45u. While in the case of beta-strand residues, the two

most populated areas are in the range of 2150u,Phi,220u and

2100u,Psi,45u, and the range of 2150u,Phi,220u and

2100u,Psi,45u, respectively. In contrast to alpha-helix and

beta-strand residues, coil residues populate a much broader and

diverse area, indicating that torsion angles of coil residues are very

flexible and there are no apparent recurrent patterns like those in

alpha-helices and beta-strands. This makes it more difficult to

predict their Phi and Psi angles [33]. In the case of proline residues,

the majority of them are found in the most populated area with

torsion angles (Phi, Psi) of roughly roughly (275u, 150u),
corresponding to polyproline II helix. In summary, the distribution

patterns of torsion angles reflect their roles of internal steric

constraints that form different types of secondary structures.

Effect of different local window size on the prediction
performance

In this section, we chose different local window sizes and

calculated the resulting prediction performance in order to

examine the effect of various local window sizes using PSI-BLAST

profiles. The performance achieved is shown in Table 1. As

increasing the local window size provides more local information,

it is reasonable to expect that prediction performance would

increase with the enlargement of the window size. It is also

expected that prediction performance would begin to decrease

beyond a certain window size, as increasing the local window size

also leads to the inclusion of more noise on the other hand. From

Table 1, we find that this is indeed the case. At a local window size

L = 9, the SVR model achieved the best prediction performance

for the Phi angle prediction, with a CC of 0.486 and MAE of

29.92. In the case of Psi angle prediction, using local window size

L = 13 led to the best prediction accuracy of CC = 0.581 and

MAE = 55.38. However, L = 9, 11 and 13 have very similar effect

on the prediction performance in terms of CC, RMSE and MAE

measures. Consequently, in the following analysis, we selected all
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the three window sizes for comparing the performance of different

sequence encoding schemes.

Effect of different sequence encoding schemes on the
predictive performance

Based on the extracted sequence and predicted structural profiles,

we further developed two-level SVR models using different

combinations of these profile features, as described in the Methods

Section. The prediction performance of Phi and Psi angles by this

two-level TANGLE approach on the testing set of 1,026 proteins

can be found in Datasets S5 and S6, respectively.

Table 2 compares the prediction performance between six

different sequence encoding schemes on the testing dataset with

1,026 protein chains. As shown in Table 2, we see that the sequence

encoding scheme ‘‘PB+PP’’ that combines evolutionary information

in the form of PSI-BLAST profiles (‘‘PB’’) along with predicted

secondary structure information by PSIPRED (‘‘PP’’) achieved the

best overall results for Phi angle prediction. The TANGLE model

based on this encoding scheme achieved an overall CC of 0.529,

RMSE of 46.72 and MAE of 27.85. This is better than other

sequence encoding schemes. In addition, another two sequence

encoding schemes ‘‘PB+PP+SC’’ and ‘‘PB+PP+DISO’’ achieved

similar results, with the same CC values of 0.528, and slightly

different MAE values of 27.87 and 27.89, respectively. These

results, however, are slightly worse than the best sequence encoding

scheme ‘‘PB+PP’’.

For Psi angle prediction, the sequence-encoding scheme

‘‘PB+PP+SC’’ that integrates the PSI-BLAST profile with predicted

secondary structure and solvent accessibility information, achieved

the best overall results. This encoding scheme achieved CC of

0.654, RMSE of 69.45 and MAE of 44.64 between the predicted

and observed Phi angles (Table 2). These results suggest that using

predicted secondary structure information in combination with PSI-

BLAST profiles greatly enhanced the prediction of Phi and Psi

torsion angles, which is reasonable considering that there are strong

correlations between torsion angle distribution and regular

secondary structure types such as alpha-helices and beta-strands.

In addition, compared with Phi angle, higher RMSE and MAE

values of Psi angle prediction again confirm that they are more

difficult to predict.

We further incorporated the predicted solvent accessibility

profile (‘‘SC’’) into the two-level SVR models. We found that

usage of this information is particularly helpful for improving the

prediction performance of Psi angles. However, it is not very useful

for Phi angle prediction. We also investigate whether inclusion of

predicted native disorder information (‘‘DISO’’) would further

improve the prediction performance of torsion angles. It is

somewhat surprising to see that usage of this information actually

decreases the prediction accuracy, as reflected by lower CC and

higher MAE values after incorporation of such features into two-

level SVR models. This suggests that the predicted native disorder

profile is not helpful in improving the prediction quality of the

Phi/Psi angles.

To measure the prediction performance at the protein chain

level, we calculated the CCs between the predicted and observed

Phi/Psi angles for each protein chain in the testing dataset, as

shown in Figure 4. We can see that more than 50% of protein

chains have a CC of 0.6 or more, and no less than 70% of proteins

have CC of at least 0.5. We further analyzed the distribution of

MAEs that were averaged on each protein chain, in relation to the

observed Phi/Psi angles. This is shown in Figure 5. We can see

Figure 3. The Ramachandran plot and histogram distributions of Phi and Psi angles for all residues in the training set of 500
proteins. (A) The Ramachandran plot; (B) histogram of Phi angles; (C) histogram of Psi angles. Alpha-helix, beta-strand, proline and coil are
represented by red, blue, green and black, respectively.
doi:10.1371/journal.pone.0030361.g003
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that residues with Phi angles in the range of 100u to 160u and

residues with Psi angles in the range of 2180u to 2100u have

relatively large MAEs, indicating that the predicted Phi/Psi angels

for these residues have greater errors. This is both because higher

magnitude values will tend to have higher magnitude MAEs and

because these residues are under-represented in the current

datasets. It is also due to the fact that the SVR models cannot

be well trained given that inadequate numbers of data points are

fed into SVR. In comparison, residues in the most populated areas

in the Ramachandran plot (Figure 3) have the smallest MAEs, e.g.

those with Phi angles in the range of 2140u to 260u and those

with Psi angles in the range of 260u to 120u (Figure 5).

In Table 3, we provided the MAEs of Phi/Psi angle prediction

results for residues according to twenty residue, three secondary

structure and two-state solvent accessibility types. It is generally

accepted that that coils are much more flexible and tend to adopt a

greater variability of torsion angles. Accordingly, the MAE values

of the coil residues are much higher than that of alpha-helix and

beta-strand residues (Table 3). Overall, alpha-helix residues have

the smallest MAEs (9.9u for Phi and 18.7u for Psi angle), while coil

residues have the largest MAE values (40.8u for Phi and 66.0u for

Psi angle). The difficulty of torsion angle prediction for different

secondary structure types, as evaluated by MAE values, is closely

related with the complexities of the torsion angle distribution

(Figure 3) [11].

Moreover, because of the various degrees of steric collisions

between the side-chain and main-chain of different amino acids,

it is expected that different amino acid types have different levels

of MAEs. In turn, this could reflect the various degree of

difficulty for torsion angle predictions [11]. Taking this into

consideration, we examined the prediction performance of

TANGLE for twenty amino acid types and calculated their

MAE values, as shown in Table 3. Among them, glycine has the

largest prediction error, with MAE of 84u for Phi and 77u for

Psi, respectively. This is not surprising because glycine has no

side chain atom except for a proton, meaning that this amino

acid has little geometrical restriction to its backbone torsion

angle rotations. Proline is a special amino acid due to the

presence of a distinctive cyclic structure in its side chain. Its Phi

angle, which is almost locked at approximately 275u, restricts

the backbone rotation in the direction of Phi angle. This gives

proline an exceptional conformational rigidity compared to

other amino acids. On the other hand, because it does not have

an amide proton, the inclination of its side-chain towards the

nitrogen atom results in nearly no steric restriction in the

direction of Psi angle. As a result, proline has the least MAE

error for Phi angle (13.6u), but the second largest MAE of 59u
for Psi angle.

We further divided the residues into two types (buried or

exposed) according to the conventional two-state solvent accessi-

bility. The assignment of two-state solvent accessibility was based

on the prediction results by the SCRATCH program [61]. From

Table 3, we found that the buried residues have relatively smaller

MAE values (24.1u for Phi and 40.2u for Psi, respectively) than

exposed residues (30.7u for Phi and 47.0u for Psi, respectively).

This indicates that the torsion angles of the exposed residues are

more difficult to predict than the buried residues. It is worth

mentioning that this result is consistent with previous work [11].

The reason might be that residues buried in the core regions of

protein structures have less flexibility and more rigid structural

constraints compared with exposed residues located on protein

surfaces.

Table 1. Predictive performance of Phi and Psi angles based on different local window sizes using the PSI-BLAST profile.

Torsion angles Local window size Number of features Number of support vectors CC RMSE MAE

Phi 3 60 69370 0.455 49.25 31.44

5 100 69358 0.478 48.57 30.44

7 140 69299 0.484 48.33 30.05

9 180 69285 0.486 48.24 29.92

11 220 69243 0.483 48.27 29.94

13 260 69343 0.478 48.42 30.04

15 300 69382 0.472 48.55 30.25

17 340 69350 0.466 48.73 30.46

19 380 69369 0.459 48.90 30.71

21 420 69344 0.451 49.13 30.99

Psi 3 60 69955 0.469 80.79 63.33

5 100 69923 0.537 76.85 58.84

7 140 69855 0.563 75.27 56.91

9 180 69712 0.575 74.55 55.96

11 220 69738 0.581 74.18 55.43

13 260 69718 0.581 74.24 55.38

15 300 69736 0.580 74.44 55.43

17 340 69724 0.577 74.70 55.68

19 380 69719 0.573 75.08 56.04

21 420 69665 0.569 75.43 56.41

The results were obtained using an independent test set of 1,026 proteins from the set of PDB data compiled by Wu and Zhang [11], where the rest 500 proteins were
used for training.
doi:10.1371/journal.pone.0030361.t001
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Performance comparison with other approaches
The work that was most closely related to the present study was

recently developed by Wu and Zhang, who presented a neural

network and support vector machine-based predictor called

ANGLOR to predict real values of torsion angles from primary

sequences [11]. We compared the prediction performance of our

TANGLE predictor with ANGLOR. This is a predictor built

using support vector machines and neural networks, based on

three different types of sequence-derived features including

position-specific scoring matrices (PSSMs), predicted secondary

structure and solvent accessibility information.

Another state-of-the-art predictor HTM-One is an integrated

model that was specifically developed to predict eight one-

dimensional structural features (including Phi and Psi torsion

angles) for membrane proteins only [39], while TANGLE is a two-

stage model that was trained to predict protein backbone torsion

angles. Due to the different properties of membrane proteins, it is

infeasible to make a fair comparison of the predictive capabilities

of HTM-One and TANLGE. In terms of the advantages and

disadvantages of integrated model versus two-stage model, the

integrated model is more likely to avoid overfitting because it uses

various kinds of training data. Further, the integrated model may

Table 2. Prediction performance of Phi and Psi angles using the SVR predictors based on eight different sequence encoding
schemes that incorporate various combinations of different types of sequence and structural features.

Torsion
angles

Sequence encoding
schemes

Number of
features

Number of support
vectors Window Size CC RMSE MAE

Phi PB 180 69284 9 0.486 48.24 29.92

220 69242 11 0.483 48.27 29.94

260 69342 13 0.478 48.42 30.04

PB+PP 207 68913 9 0.529 46.72 27.85

253 68982 11 0.524 46.88 28.08

299 69040 13 0.518 47.08 28.35

PB+PP+SC 225 68948 9 0.528 46.74 27.87

275 69041 11 0.522 46.94 28.18

325 69096 13 0.515 47.17 28.52

PB+PP+DISO 225 68928 9 0.528 46.72 27.89

275 69054 11 0.523 46.91 28.13

325 69082 13 0.516 47.14 28.44

PB+PP+SC+DISO 243 69075 9 0.527 46.78 27.92

297 69098 11 0.52 47 28.25

351 69163 13 0.513 47.24 28.63

ALL 277 68929 9 0.525 46.82 27.99

331 69019 11 0.518 47.05 28.33

385 69099 13 0.511 47.31 28.71

Psi PB 180 69711 9 0.575 74.55 55.97

220 69737 11 0.581 74.18 55.43

260 69717 13 0.581 74.25 55.39

PB+PP 207 68613 9 0.652 69.61 44.72

253 68743 11 0.65 69.75 45.09

299 68772 13 0.648 69.99 45.64

PB+PP+SC 225 68672 9 0.654 69.45 44.64

275 68857 11 0.652 69.65 45.15

325 68961 13 0.649 69.94 45.79

PB+PP+DISO 225 68704 9 0.649 69.94 45.79

275 68811 11 0.65 69.82 45.24

325 68866 13 0.647 70.07 45.84

PB+PP+SC+DISO 243 68681 9 0.653 69.51 44.73

297 68805 11 0.651 69.73 45.29

351 68971 13 0.648 70.03 46.00

ALL 277 68779 9 0.654 69.48 44.82

331 68854 11 0.652 69.68 45.38

385 68977 13 0.648 70.02 46.10

Prediction performance of three different window sizes L = 9, 11 and 13 is provided. The results were obtained using an independent test set of 1,026 proteins from the
set of PDB data compiled by Wu and Zhang [11], where the rest 500 proteins were used for training.
doi:10.1371/journal.pone.0030361.t002
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be particularly useful when the availability of protein data is

limited because it can use various features for training. However,

in the case of two-stage model learning using SVM or SVR, it is

difficult to use SVM or SVR for integrated model learning because

standard SVM/SVR is designed for prediction of a single feature.

Thus, it is difficult to apply the integrated approach to solve

problems for which SVM/SVR is very useful.

We note that rigorous comparison with other available tools is

meaningful only when they are developed and tested based on the

same training and testing datasets. As we used exactly the same

training dataset and testing dataset as the ones used in developing

ANGLOR, we could directly make a performance comparison

between the two tools. In addition, we also compared TANGLE

with a random amino acid-specific predictor, which was built by

randomly assigning the Phi/Psi angles to a residue from amino

acid-specific pool collected from 500 protein chains in the training

dataset, as suggested by [11]. Intuitively, this amino-acid-specific

random predictor is able to provide more accurate torsion angle

prediction than a complete random predictor which did not take

into account amino acid type information. The randomization

process for assigning Phi/Psi angles for each predicted residue in

the testing dataset of 1,026 protein chains is repeated 10,000 times

to achieve a stable predicted angle distribution [11]. The

performance comparison between these three predictors is

presented in Table 3.

Overall, for Phi angle prediction, the performance of TANGLE

is higher (with MAE = 27.8u for all residues) than that of the

random amino acid-specific (with MAE = 33.8u for all residues)

and also outperforms ANGLOR (with MAE = 28.2u for all

residues). In particular, the prediction of TANGLE is significantly

better than a random predictor that was built on the amino acid-

specific basis, with the p-value ,1.46e-147 and 7.97e-150 for Phi

and Psi angle prediction, respectively, by the Wilcoxon signed rank

test. In contrast to the Phi prediction, the Psi prediction accuracy

of TANGLE (with MAE = 44.6u for all residues) is significantly

higher than that of the random amino acid-specific predictor (with

Figure 4. The distributions of correlation coefficients (CCs) of the Phi and Psi angle prediction for 1,026 protein chains in the
testing dataset.
doi:10.1371/journal.pone.0030361.g004

Figure 5. The mean absolute errors (MAEs) between the predicted and observed Phi and Psi angles, as a function of the observed
angles, divided into bins with equal size of 206.
doi:10.1371/journal.pone.0030361.g005
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MAE = 80.9u for all residues) and also higher than that of

ANGLOR predictor (with MAE = 46.4u for all residues). At

specific amino acid residue level, the MAE of TANGLE is

significantly smaller than that of the random predictor for all the

twenty amino acid types. At the second structure level, the MAE of

TANGLE is also smaller than the random predictor for all the

three-second structure types.

Compared with ANGLOR, the MAE of TANGLE is smaller

than that of the ANGLOR predictor in terms of both Phi and Psi

angle prediction, except for glycine, for which the MAE of

TANGLE (84.1u for Phi and 76.7u for Psi) is higher than that of

ANGLOR (75.1u for Phi and 66.9u for Psi). The improvement of

real-value prediction of torsion angles by TANGLE can be

attributed to a combination of multiple factors. While ANGLOR

used neural networks to train the predictors for Phi angle

prediction and SVM and three types of sequence-based features

to train the models for Psi angle prediction, TANGLE used a two-

level support vector regression system to refine the prediction

results, based on more integrated multiple sequence and predicted

structural features. In addition to the difference of optimal local

window sizes used by the two predictors, the performance

improvement may be attributed to the design and implementation

of the two-level support vector regression-learning framework in

TANGLE.

The TANGLE server
For the implementation of this work, we have constructed an

online server to provide a free academic service of torsion angle

prediction from primary sequences, which is available at http://

sunflower.kuicr.kyoto-u.ac.jp/,sjn/TANGLE/webserver.html.

TANGLE requires the user to submit a single amino acid sequence

in the FASTA format of the query protein as input, and an Email

address to send out the prediction result. When the query sequence

is submitted, several third-party programs including PSI-BLAST,

PSIPRED, SCRATCH and DISOPRED2 will be executed to

generate the respective PSSM, predicted secondary structure,

solvent accessibility and native disorder profiles. These will be

subsequently used as an input for the trained TANGLE models to

Table 3. Prediction performance comparison of TANGLE with ANGLOR and the random amino acid-specific predictor.

Phi angle (6) Psi angle (6)

MAETANGLE MAEANGLOR MAErandom MAETANGLE MAEANGLOR MAErandom

AAa ALA 21.9 22.5 27.4 38.2 42.7 79.7

CYS 25.5 27.7 32.5 45.0 48.7 85.3

ASP 29.7 30.8 32.2 48.7 48.9 73.5

GLU 22.3 23.3 27.4 39.1 43.1 75.2

PHE 23.6 24.2 32.0 39.4 40.8 85.8

GLY 84.1 75.1 95.1 76.7 66.9 79.2

HIS 29.6 31.8 35.7 46.4 48.2 76.4

ILE 17.5 18.1 26.4 32.1 35.3 84.4

LYS 24.8 25.6 30.6 41.8 45.6 79.0

LEU 17.8 18.3 24.4 35.2 38.1 81.4

MET 22.0 22.4 29.5 36.5 40.9 81.6

ASN 37.1 37.6 42.3 45.2 45.9 68.2

PRO 13.6 15.2 19.5 59.3 61.3 86.3

GLN 23.9 25.1 30.0 39.4 43.0 76.9

ARG 23.5 25.0 30.4 40.9 44.1 80.5

SER 30.6 32.3 35.3 53.5 55.4 87.0

THR 23.9 26.0 29.9 50.4 51.1 88.6

VAL 19.1 20.1 28.5 34.8 37.6 83.1

TRP 22.8 23.1 29.8 41.6 43.5 86.4

TYR 23.7 25.3 32.4 40.1 42.3 85.5

All 27.8 28.2 33.8 44.6 46.4 80.9

SSb H 9.9 11.0 19.0 18.7 28.2 29.3

E 26.1 27.9 28.1 38.9 39.9 36.1

C 40.8 41.8 51.5 66.0 63.9 81.3

SAc E 30.7 31.2 55.7 47.0 49.9 84.6

B 24.1 24.1 52.0 40.2 41.5 84.0

Prediction performance is categorized according to twenty amino acid types, three secondary structure types (H, helix; E, beta-strand; and C, coil) and two-state solvent
accessibility (E, exposed and B, buried), evaluated by the mean absolute error (MAE). The results were obtained using an independent test set of 1,026 proteins from the
set of PDB data compiled by Wu and Zhang [11], where the rest 500 proteins were used for training.
aTwenty amino acid types.
bThree secondary structure types. H: alpha-helix; E: beta-strand; C: coil.
cTwo-class solvent accessibility: E: exposed; B: buried.
doi:10.1371/journal.pone.0030361.t003
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make the prediction. As soon as the submission task is completed,

the prediction result will be sent to the user via Email.

The TANGLE server is implemented in HTML+Perl and the

prediction webpage is shown in Figure 6A. Figure 6B illustrates an

example of the prediction results by TANGLE. Basically, there are

two sections of the prediction results: the first section is the primary

sequence information of the submitted sequence; in the second

section, columns 1–4 correspond to the residue position, residue

name, the predicted Phi and Psi angles, respectively. Furthermore,

the plots of the predicted Phi and Psi angles are accessible by

clicking the link at the bottom of the result webpage. To facilitate

the method developers, the training dataset, testing dataset, and

the calculated Phi/Psi angles for all residues in the training/testing

dataset used in this work are downloadable in the links webpage.

The TANGLE server is currently hosted by a four-CPU Linux

system with 16 GB of main memory. The computational time is

mainly dependent on the execution of PSI-BLAST, PSIPRED,

SCRATCH and DISOPRED2 programs. A typical job of a

sequence with 500 residues will take approximately 5 minutes to

accomplish.

Case study
To understand from where the difficulties of torsion angle

prediction arise and illustrate the significance of CC, RMSE and

MAE measures used in this study, we presented three illustrative

examples of TANGLE prediction of Phi and Psi angles and

compared the predicted and observed torsion angle profiles for

three proteins (Figure 7): the beta1-subunit of the signal-

transducing G protein heterotrimer (PDB ID: 1b9x, chain A)

[85], the enzyme IIAlactose from Lactococcus lactis (PDB ID:

1e2a, chain A) [86] and the bee venom hyaluronidase in a

complex with hyaluronic acid tetramer (PDB ID: 1fcv, chain A)

[87]. To investigate the prediction performance with respect to

three secondary structure types, the selected three proteins are

classified as beta, alpha, alpha and beta. These are abundant in

beta-strands, alpha-helices and mixed with alpha-helices and beta-

strands, respectively. The predicted and observed Phi/Psi torsion

angles of these three proteins are displayed in Figure 7.

The first example is the beta1-subunit of the signal-transducing

G protein heterotrimer with 336 residues and 25 beta-strands [85].

As an all beta-protein, this protein was predicted with a CC of

0.75, a RMSE of 41.6u and a MAE of 25.5u for the Phi angle, and

a CC of 0.74, a RMSE of 57.1u and a MAE of 35.9u for the Psi

angle. From Figure 7A, we can see that the majority of its regions

are in good agreement with the corresponding observed Phi/Psi

values, except for several separate positions like residue positions

53, 141, 182, 224 and 306 for the Phi angle, and residue positions

3, 111, 116, 153 and 306 for the Psi angle.

The second example is an all alpha-protein, the enzyme

IIAlactose from Lactococcus lactis [86]. It contains 3 alpha-helices

with 98 residues. In contrast, this protein was predicted with better

accuracy (CC = 0.72, RMSE = 18.0u and MAE = 10.2u for Phi,

and CC = 0.77, RMSE = 18.0u and MAE = 16.3u for Psi, respec-

tively). The MAE values of this protein are much better than the

first and third examples (See discussion below). Most of the

predicted torsion angles are in good agreement with the

corresponding observed values. Only the region between residue

positions 68 and 73 has the worst prediction with relatively large

MAE values (Figure 7B).

The third example is an alpha/beta-protein, the bee venom

hyaluronidase. It has 9 alpha-helices, 8 beta-strands, and 320

residues [87]. Compared with the former two examples, it is

poorly predicted with a CC of 0.58, an RMSE of 40.9u and an

MAE of 21.5u for Phi angle, and a CC of 0.69 and an RMSE of

62.8u and an MAE of 32.4u for Psi angle. The prediction errors, as

evaluated by MAEs, are particularly large for residues with the

highest or lowest peak torsion angle values (Figure 7C). For this

protein, the prediction performance for alpha-helix residues

(RMSE = 15.3u and MAE = 13.5u for Phi angle, and

RMSE = 80.0u and MAE = 79.5u for Psi angle, respectively) is

better than beta-strand (RMSE = 52.4u and MAE = 38.9u for Phi

angle, and RMSE = 96.5u and MAE = 91.8u for Psi angle,

respectively) and coil residues (RMSE = 57.6u and MAE = 36.7u
for Phi angle, and RMSE = 88.3u and MAE = 76.3u for Psi angle,

respectively). These results again suggest that the prediction

difficulty of torsion angles becomes higher with the increasing

degree of irregularity.

Discussion

Support vector regression (SVR) is a powerful machine learning

technique for addressing real-valued prediction tasks in bioinfor-

matics and computational biology, as its strong theoretical basis in

statistical learning makes it possible to minimize the generalization

error in the prediction [41,42]. Compared with other traditional

techniques, SVR has several advantages such as the handling of

data that are non-regularly distributed or have unknown

distribution patterns based on kernel functions, the dealing with

high-dimensional data, the provision of robust out-of-sample

generalization given the approximate choice of parameters, the

generation of a solution encompassed by support vectors, the

proper balance between bias and variance, etc. Additionally, two-

level SVR approach is appropriate for constructing optimal

predictors for predicting raw values of samples, as the second-stage

predictor is introduced to minimize the generalization error

produced in the first stage [55–58].

Accurate prediction of protein structural properties such as

residue contact number (CN) [5], contact order (CO) [7], solvent

accessible surface area (ASA) [9], half-sphere exposure (HSE)

[6], residue depth (RD) [8,16,73] and so forth can provide

valuable information for protein tertiary structure prediction. In

previous studies, incorporation of the evolutionary profile in the

form of position-specific scoring matrices and predicted struc-

tural features such as secondary structure, solvent accessibility

and native disorder in the machine learning framework has been

shown to be useful for improving the prediction accuracy of

protein structural properties. In this study, we have developed

a new SVR-based approach TANGLE for the real-valued

prediction of protein backbone torsion angles from protein

primary sequences. Based on a large benchmark dataset of non-

homologous proteins, TANGLE has outperformed an amino

acid-specific predictor and one of the state-of-the-art tools

ANGLOR [11].

Nevertheless, the further improvement of the prediction

accuracy of these structural properties is still a challenging

problem. More recently, Ahmad et al. proposed novel computa-

tional frameworks to predict a variety of structural features of

proteins in an integrated manner and the performance of their

integrated system was significantly better than that of the models

trained separately on individual features [39]. This represents an

important step towards developing next-generation of one-

dimensional predictors and have important implications in better

understanding of how these predictable structural features

correlate with each other and collectively dictate the dynamics

of the protein structures. In future work, it would be particularly

interesting to explore the possibility of applying this integrative

framework to develop more accurate predictors and comprehen-

sively compare the integrated models, individual models and two-
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stage models in terms of computational cost, performance and

parameters that need to be optimized.

In general, the Psi angles are more difficult to predict than the

Phi angles. We found that the distribution of Phi/Psi angles shows

different diversities between different secondary structure types,

thereby resulting in different degrees of prediction difficulties.

Among the three secondary structure types, the prediction error

for alpha-helix residues is the smallest, followed by beta-strand

residues, while coil residues have the largest MAE values. Also, the

torsion angles of the exposed residues are more difficult to predict

than the buried residues. Due to the various degrees of steric

collision effects on side-chains with backbones, different amino

acids also have different degrees of prediction difficulties. All these

results indicate that the training specific predictors for various

residue types and secondary structure types might be helpful for

the further improvement of the prediction performance. More-

over, incorporation of more relevant features that complement the

current feature sets and proper selection of more informative

features by powerful feature selection techniques will also be useful

for improving prediction accuracy in future. Further improvement

can be also achieved by better dealing with the under-represented

residues that have less adequate numbers of data points fed into

the prediction models. All these issues constitute the subject of

future studies.

In this article, we have developed a new approach TANGLE to

predict real-valued torsion angles from primary sequences by using

a two-stage support vector regression approach. TANGLE used a

variety of multiple sequence-derived features, including the

evolutionary profiles in the form of position-specific scoring

matrices, predicted secondary structure, solvent accessibility and

natively disordered region as well as other global sequence

features. We have comprehensively assessed the effects of different

sequence encoding schemes on the prediction performance of

torsion angles. When evaluated based on a large benchmark

dataset of 1,526 non-homologous proteins, the prediction

performance of TANGLE has been shown to outperform a

state-of-the-art predictor ANGLOR and an amino acid-specific

predictor. Our work provides a complementary and useful

approach towards the more accurate prediction of protein

backbone torsion angles and complements the current torsion

angle prediction algorithms. We hope that by applying the

predicted torsion angles as useful restraints, TANGLE will provide

significant assistance in facilitating protein structure prediction and

protein fold recognition.

Figure 6. An example of the prediction results by the TANGLE web server. There are two sections: the first section is the primary sequence
information of the submitted sequence; in the second section, column 1 is the residue position, column 2 the residue name, while column 3 and 4
correspond to the predicted Phi and Psi angles. In addition, the plots of the predicted Phi and Psi angles are also provided at the bottom of the result
webpage.
doi:10.1371/journal.pone.0030361.g006

Figure 7. The predicted and observed torsion angles for three typical alpha-, beta-, and alpha/beta-proteins. The three proteins are:
(A) the beta1-subunit of the signal-transducing G protein heterotrimer (PDB: 1b9x, chain A) [85]; (B) the enzyme IIAlactose from Lactococcus lactis
(PDB: 1e2a, chain A) [86] and (C) the bee venom hyaluronidase (PDB: 1fcv, chain: A) [87]. Secondary structure annotations of these proteins by DSSP
[40] are shown at the bottom of each panel, with alpha-helix, beta-strand and coil residues represented by red curves, yellow arrows and black lines,
respectively. The observed and predicted torsion angle values are represented by blue-solid and red-dashed lines, respectively.
doi:10.1371/journal.pone.0030361.g007
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Supporting Information

Dataset S1 The Phi angles in the training set of 500 protein

chains. The first, second, third, fourth and fifth columns in this file

correspond to the residue name, the chain name in PDB

structures, the original residue position in the PDB ATOM

records, the observed Phi angle calculated by DSSP [40], and the

normalized Phi angle which will be used as input to TANGLE,

respectively. The last three columns correspond to the annotations

of secondary structures by DSSP [40], predicted solvent

accessibility by SCRATCH [61] and predicted native disorder

by DISOPRED2 [62].

(TXT)

Dataset S2 The Psi angles in the training set of 500 protein

chains. The description for each column in this file is similar as the

above Dataset S1.

(TXT)

Dataset S3 The Phi angles in the testing set of 1,026 protein

chains. The description for each column in this file is similar as the

above Dataset S1.

(TXT)

Dataset S4 The Psi angles in the testing set of 1,026 protein

chains. The description for each column in this file is similar as the

above Dataset S1.

(TXT)

Dataset S5 The prediction performance of Phi angle by

TANGLE on the testing set. The prediction performance of Phi

angle by TANGLE on the testing set of 1,026 protein chains, as

evaluated by four measures: CC, RMSE_norm, RMSE_raw and

MAE. These measures were calculated at the protein chain level.

The first to fourth columns in the file correspond to CC,

RMSE_norm, RMSE_raw and MAE, respectively.

(TXT)

Dataset S6 The prediction performance of Psi angle by

TANGLE on the testing set. The prediction performance of Psi

angle by TANGLE on the testing set of 1,026 protein chains, as

evaluated by four measures: CC, RMSE_norm, RMSE_raw and

MAE. These measures were calculated at the protein chain level.

The description for each column in this file is as the above Dataset

S3.

(TXT)
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