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Abstract

Certain higher vertebrates developed the ability to reverse muscle cell differentiation (dedifferentiation) as an additional
mechanism to regenerate muscle. Mammals, on the other hand, show limited ability to reverse muscle cell differentiation.
Myogenic Regulatory Factors (MRFs), MyoD, myogenin, Myf5 and Myf6 are basic-helix-loop-helix (bHLH) transcription
factors essential towards the regulation of myogenesis. Our current interest is to investigate whether down-regulation of
MRFs in terminally differentiated mouse myotubes can induce reversal of muscle cell differentiation. Results from this work
showed that reduction of myogenin levels in terminally differentiated mouse myotubes can reverse their differentiation
state. Down-regulation of myogenin in terminally differentiated mouse myotubes induces cellular cleavage into
mononucleated cells and cell cycle re-entry, as shown by re-initiation of DNA synthesis and increased cyclin D1 and
cyclin E2 levels. Finally, we provide evidence that down-regulation of myogenin causes cell cycle re-entry (via down-
regulation of MyoD) and cellularisation through separate pathways. These data reveal the important role of myogenin in
maintaining terminal muscle cell differentiation and point to a novel mechanism by which muscle cells could be re-
activated through its down-regulation.
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Introduction

Vertebrates like zebrafish and salamanders can display unique

regenerative abilities through dedifferentiation or differentiation of

precursor cells [1]. After injury, these vertebrates are able to

induce reversal of the differentiation state, which leads to a series

of events that aim to generate proliferating regenerative progenitor

cells with the ability to restore in a precise way the lost tissue

[1,2,3]. In addition, recent studies showed that terminally

differentiated mammalian muscle cells are capable to reverse their

differentiation state. The course of myogenesis is a well

characterized example of terminal differentiation. Myoblasts are

capable of proliferation and upon demand to form skeletal muscle,

they exit the cell cycle and through the activation of muscle-

specific transcription factors they fuse into multinucleated

terminally differentiated myotubes [4,5]. Some research groups

have attempted to induce dedifferentiation of muscle cells by

exogenous genes or chemicals. Mouse C2C12 myotubes treated

with limb regeneration extracts were able to induce myotubes to

reenter the cell cycle, exhibited reduced levels of muscle

differentiation proteins and cleaved to produce smaller myotubes

or proliferating mononucleated cells [6]. In another study,

combination of growth medium and ectopic msx1 expression

caused the reduction of muscle-specific proteins and the cleavage

of these myotubes into proliferating mononucleated cells that were

able to redifferentiate into muscle or trans-differentiate into

various cell types [7]. In a similar way, overexpression of Twist,

a nuclear basic helix-loop-helix (bHLH) transcription factor

known to inhibit muscle cell differentiation, in terminally

differentiated myotubes caused their cleavage to mononucleated

cells and re-entry to the cell cycle [8]. Moreover, microinjection of

Barx2 cDNA into immature myotubes derived from primary cells

led to cleavage and formation of mononucleated cells that were

able to proliferate [9]. Using a chemical approach, terminal

differentiated myotubes were incubated with a triazine compound.

Myotubes were cellularized into smaller myotubes or mononucle-

ated cells, which were able to survive and divide [10]. Similarly,

myoseverin a trisubstituted purine was shown to induce reversible

fission of multinucleated myotubes into mononucleated cells,

which were able to enter the cell cycle [11]. Recently, mammalian

skeletal muscle cells were induced to dedifferentiate into

proliferating mononuclear cells, after treatment with myoseverin

and temporary p21 suppression. These cells were further induced

to act as multipotent stromal cells by further treatment with the

small molecule, reversine (2-(4-morpholinoanilino)-6-cyclohexyla-

minopurine) and simple chemical modifications of the culture

media [12]. When cell cycle inhibitors, p21 and p27 were depleted

from terminal differentiated mouse myotubes, incomplete DNA

replication and apoptosis was observed. In contrast, when p21 and

p27 were depleted from quiescent, non-terminal differentiated

fibroblasts and muscle cells, DNA replication was fully recovered

and apoptosis was no longer observed. These cells were able to
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proliferate in the absence of growth factors [13]. Recently,

evidence for natural dedifferentiation of muscle cells, following

injury was reported by using a Cre/Lox-b-galactosidase system

[14,15].

Myogenic regulatory factors (MRFs), myogenin, MyoD, MRF4

(Myf6) and Myf5 are basic-helix-loop-helix (bHLH) transcription

factors that regulate myogenesis [16,17,18,19,20,21,22]. MyoD is

absent during G0 phase of the cell cycle, but is highly expressed

during mid-G1 phase and between S to M phase. Myf5 is highly

expressed during G0 and decreases during G1 phase [23]. MyoD

was found to promote cell cycle arrest by inducing cyclin-

dependent kinase (CDK) inhibitor p21 [24,25], cyclin D3 [26] and

retinoblastoma (Rb) tumor suppression protein [27,28], all of

which have important functions towards cell cycle withdrawal.

Interestingly, overexpression of MyoD is able to promote

myoblasts to differentiate, while by overexpression of Myf5 fail

to differentiate [23]. MyoD is also expressed in myotubes and

collaborates with myogenin to regulate the expression of genes

necessary for terminal differentiation [29].

Myogenin and Myf6 are expressed upon the differentiation of

myoblasts to multinucleated myotubes [22,30,31,32]. Myogenin is

essential during differentiation. Mice lacking the myogenin gene

die at birth due to severe skeletal muscle deficiency, as myoblasts

are unable to fuse into multinucleated myofibers [33]. Further-

more, MyoD and Myf5 are unable to substitute myogenin’s

functions during differentiation [34]. Mice lacking the myogenin

gene express normal levels of MyoD and Myf5 [33].

Here we show that down-regulation of endogenous myogenin

gene expression in terminally differentiated mouse muscle cells

causes cleavage of myotubes into mononucleated cells and entry to

the cell cycle through down-regulation of MyoD, in two different

pathways. These results reveal yet another important role for

myogenin which is to prevent reversal of muscle cell differentia-

tion.

Results

Reduction of terminally differentiated myotubes after
down-regulation of endogenous myogenin expression

As a first step to determine whether MRFs are needed to

maintain terminal muscle cell differentiation, terminally differen-

tiated cells were transfected with individual siRNAs, specific for

each of the four MRFs (MyoD, Myf5, myogenin, Myf6). C2C12

cells, which are suitable for in vitro differentiation were grown to

confluency and induced to become multinucleated myotubes,

prior to transfections. Following transfections, RNA analysis

revealed the expected and specific reduction of mRNA of all

MRFs (fig. 1A).

Transfections with individual siRNAs for each of the four MRFs

was repeated and left for four days in growth medium in order to

determine whether down-regulation of MRFs could have any

effect on myotubes. Those cultures which expressed reduced

endogenous myogenin had significantly less myotubes (fig. 1B).

SiRNA-Myogenin transfected myotubes exhibited a significantly

reduced number of myosin heavy chain (MHC) stained myotubes,

a terminally differentiation marker, compared to cells, which

expressed reduced endogenous levels of MyoD, Myf5 and Myf6

(fig. 1B). Fusion Index (FI), a way to measure muscle cell

differentiation was also found to be significantly lower (12%) in

cells transfected with myogenin siRNA, compared to cells

transfected with MyoD (89%), Myf6 (75%), Myf5 (73%) siRNA,

negative siRNA (97%) and untransfected myotubes (100%)

(fig. 1C).

Down-regulation of myogenin in terminally
differentiated muscle cells induces myotube cleavage
into active mononucleated product cells

As a result of the large reduction in myotubes, due to down-

regulation of endogenous myogenin, experiments were carried out

to investigate in more detail the mechanism by which this occurs.

The first experiments aimed at looking at the morphological

changes which occur in myotubes, following myogenin siRNA

transfections. After differentiation of myoblasts into multinucleated

myotubes, cells were transfected with myogenin siRNA. Myotubes

transfected with myogenin siRNA cleaved into mononucleated

cells almost 70 h after transfection, as seen by time-lapse

microscopy (fig. 2).

This finding indicates that the induced reduction of myogenin

endogenous levels in differentiated multinucleated myotubes

initiates a cellular mechanism, which results in the cleavage of

these cells into mononucleated product cells. Furthermore,

product cells obtained from the cleavage of multinucleated

myotubes expressed significantly reduced myogenin levels com-

pared to uncleaved myotubes which express normal myogenin

levels (fig. 3).

In order to investigate whether product cells, which arise from

the down-regulation of endogenous myogenin gene expression,

can reenter cell cycle, cells were stained with 5-ethynyl-29-

deoxyuridine (EdU). Cells which derived from the cleavage of

myotubes incorporated high levels of EdU (fig. 4), indicating that

these cells have active DNA replication.

Down-regulation of myogenin in terminally
differentiated myotubes reactivates cell cycle through
MyoD

Down-regulation of myogenin caused cleavage of terminally

differentiated myotubes into mononucleated product cells, which

can reenter into the cell cycle. As a next step, a series of molecular

experiments was carried out to reveal changes of important

molecules which are implicated in cell cycle activation and

differentiation of muscle cells. MyoD levels were lower in cells

transfected with myogenin siRNA than control cells, indicating

that down-regulation of myogenin may cause the endogenous

down-regulation of MyoD (fig. 5A, B). Similarly, Myf6 levels were

lower compared to control cells (fig. 5A, B). Interestingly, down-

regulation of endogenous myogenin levels caused an increase in

Myf5 levels, which may be due to a compensatory effect of the

MyoD decrease (fig. 5A, B). Several previous reports showed that

MyoD and Myf5 might compensate for each other [35]. Down-

regulation of myogenin caused also the induction of cyclins D1

and E2 which are both involved in the G1-S transition of the cell

cycle (fig. 5A, B) [36].

SiRNA-mediated down-regulation of MyoD in terminally

differentiated myotubes, on the other hand caused similar

molecular changes, as those seen in cells transfected with

myogenin siRNA. More specifically, reduction of endogenous

MyoD levels in terminally differentiated cells resulted in increases

of Myf5 (probably to compensate for MyoD reduction), cyclin D1

and E2 levels (fig. 5A, B).

Apart from the increase in MyoD levels, which was caused by

the down-regulation of endogenous Myf5, both Myf5 and Myf6

siRNAs had no molecular effects on molecules which are

implicated in muscle cell differentiation and the cell cycle.

These molecular results show that down-regulation of myogenin

gene expression of terminally differentiated cells alters gene

expression which is involved both in muscle cell differentiation

and the cell cycle. The decrease in MyoD and the subsequent

Myogenin Reverses Muscle Cell Differentiation
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increases in cyclins D1 and E2 justify the reversal of muscle cell

differentiation, as seen by the cleavage of myotubes and the

creation of active mononucleated cells. The results also indicate

that down-regulation of myogenin leads cells to the cell cycle,

probably through the down-regulation of MyoD.

Cleavage of myotubes and cell cycle reactivation have
different pathways

Results so far showed that down-regulation of endogenous

myogenin levels caused the cleavage of myotubes into mononu-

cleated cells and lead cells into the cell cycle, probably through

down-regulation of MyoD.

In order to determine the way by which reduction of

myogenin drives cells to cleavage and cell cycle, terminally

differentiated myotubes were transfected with myogenin siRNA

in the presence of an adenovirus, expressing MyoD (AdMyoD).

The aim was to prevent cell cycle reactivation by preventing

MyoD levels from being reduced through myogenin down-

regulation. Overexpression of MyoD and down-regulation of

endogenous myogenin levels did not stop myotubes cleavage and

cellularisation (fig. 6A, B). No differences in their ability to

change morphologically into mononucleated cells were seen

compared to myotubes transfected only with myogenin siRNA

(fig. 6A).

In order to characterize molecularly the effect of overexpression

of MyoD in parallel with the down-regulation of myogenin, RNA

analysis was carried out for molecules which are implicated in

muscle cell differentiation and the cell cycle. Cells transfected with

AdMyoD and myogenin siRNA had reduced endogenous

myogenin RNA and protein levels and increased MyoD levels,

similar to those detected in control transfected cells (fig. 7A, B). As

a result of the repaired MyoD levels, no induction was observed in

cyclin D1 and E2 levels (fig. 7A, B). Overexpression of MyoD

successfully prevented cyclins from being induced from resting

levels. This result, in combination with the cellularisation seen in

cells transfected with AdMyoD and myogenin siRNA indicate that

down-regulation of myogenin can cause cell cycle reentry and

cleavage of myotubes into mononucleated cells possibly through

two different pathways (fig. 8). Overexpression of MyoD only was

also carried out in myotubes and showed increase in both MyoD

and myogenin endogenous levels (fig. 7A, B). It is well possible that

in the terminal differentiated state of myotubes, overexpression of

MyoD induces myogenin expression, as it has been shown by

others [37]. This does not happen in cells transfected also with

Figure 1. siRNA-mediated down-regulation of myogenin causes reduction of terminally differentiated myotubes. (A) Following
differentiation into myotubes, cells were transfected with myogenin, MyoD, Myf6 and Myf5 siRNAs and controls (d0). Growth medium was added to
cells two days later (d2) and left for two more days (d4). RNA analysis revealed a substantial reduction at the RNA levels of myogenin, MyoD, Myf6 and
Myf5, compared to controls (negative siRNA and control transfection) and untransfected C2C12 cells. GAPDH was used as an internal control. (B) MHC
immunostaining revealed a substantial reduction of myotubes in cells transfected with myogenin siRNA compared to cells transfected with MyoD,
Myf6, Myf5 and control cells (Scale, 200 mm). (C) Fusion Index was calculated from cells transfected with each siRNA and immunostained with MHC.
Fusion Index (FI) was defined as the number of nuclei present in myotubes in comparison over the total number of nuclei present in the observed
field. Data was selected from 10 different and randomly chosen microscopic fields. Cells transfected with myogenin siRNA showed significantly lower
FI (12%), compared to cells transfected with MyoD (89%), Myf6 (75%), Myf5 (73%), negative siRNA (97%), and untransfected cells set to 100.
doi:10.1371/journal.pone.0029896.g001

Myogenin Reverses Muscle Cell Differentiation

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e29896



Figure 2. Myogenin siRNA transfection in terminally differentiated myotubes causes their cleavage into active mononucleated
cells. Following myotube differentiation, cells were transfected with myogenin siRNA. Growth medium was then added to the cells and placed for
time lapse microscopy. (I) (0 h), myotubes just after myogenin siRNA transfection. (0 h–68 h), uncleaved myotube (field 2) and cleaved myotubes
(field 1) after myogenin siRNA transfection (Scale, 250 mm). (II) Myotube in field 1 in higher magnification from 0 h–68 h displayed significant

Myogenin Reverses Muscle Cell Differentiation
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siRNA myogenin, perhaps because reduction of endogenous levels

of myogenin initiates reversal of differentiation first and does not

allow induction of its expression by the overexpressed MyoD.

Furthermore, cells which originated from the cleavage of

myotubes transfected with myogenin siRNA, showed high EdU

incorporation: almost all cleaved cells exhibited EdU incorpora-

tion (fig. 7C).

Discussion

During this work, an attempt was made to investigate the role of

the four MRFs in maintaining terminal differentiation in muscle

cells. Down-regulation of myogenin in C2C12 mouse myotubes

caused cleavage into mononucleated cells and entry into the cell

cycle through down-regulation of MyoD. Results from this study

show also that down-regulation of myogenin causes cleavage of

myotubes through a mechanism which is independent of the cell

cycle reentry.

MRFs and especially myogenin were shown to regulate fusion of

myoblasts into multinucleated muscle cells. In myogenin-null

mice, very few myoblasts are able to fuse even when these

myoblasts are specified and position correctly in order to fuse

[38,39]. In vivo, targeted mutation in the myogenin gene caused the

severe reduction of all skeletal muscle, showing its importance

towards skeletal muscle development [33]. The fusion of myoblasts

is one of the key steps of muscle cell differentiation. Myogenin,

MyoD and Myf5 were shown to express in fusing myoblasts, with

each having as targets a distinct subset on muscle specific genes at

the on-set of fusion. Downregulation of these MRFs during fusion

period showed that particularly myogenin significantly inhibited

the fusion of myoblasts [40]. Our experiments show that down-

regulation of myogenin in terminally differentiated myotubes

induced cleavage of multinucleated myotubes into mononucleated

cells, the opposite of fusion of myoblasts. This is an important

finding with respect to the function of myogenin in myoblast

fusion. Regarding the reversal of muscle cell differentiation, it is a

novel finding that myogenin down-regulation initiates an unknown

mechanism which results to the fragmentation of myotubes into

mononucleated cells. It would be very important to indentify this

pathway in future studies.

MyoD is one of the key transcription factors responsible for

the differentiation of muscle cells. One of the main actions of

MyoD is the withdrawal of myoblasts from the cell cycle, in

order to initiate myogenesis [41]. As a result, MyoD is highly

expressed in undifferentiated muscle cells and continues to be

active during muscle cell differentiation [42]. Myf6 is highly

expressed during the last stages of muscle cell differentiation and

is only detectable in mature myofibers [42]. Molecular analysis

performed in our study revealed that down-regulation of

myogenin in terminally differentiated muscle cells reduced both

MyoD and Myf6 levels. This seems to be supported from the

fact that down-regulation of myogenin caused the reversal of

differentiation. In contrast to these changes, Myf5 was

upregulated. This is probably due to the compensation

mechanism between MyoD and Myf5 [43]. Mice and muscle

cells lacking MyoD are viable and fertile showing significantly

Figure 3. Mononucleated muscle product cells have reduced myogenin levels. Following myogenin siRNA transfection in terminally
differentiated myotubes and time lapse microscopy for 68 h (fig. 2), cells were fixed and immunostained with a specific myogenin antibody (Scale,
200 mm). Magnification of the myotube in field 2 showed normal myogenin expression (cleavage was not detected as observed by time lapse in
fig. 2). Magnification of the mononucleated product cells in field 1 (after cleavage of myotubes as observed in fig. 2), showed significantly reduced
myogenin expression levels (Scale, 200 mm).
doi:10.1371/journal.pone.0029896.g003

morphological changes and cleavage. During 15 h–30 h, myotubes began to morphologically change (arrows indicate the movement of the nuclei
and the areas of possible cleavage). During 36 h–68 h, myotubes were completely cleaved into mononucleated cells (arrows indicate cleaved cells)
(Scale, 200 mm). (III) Myotube in field 2 in higher magnification from 0 h–68 h showed no signs of cleavage (Scale, 200 mm).
doi:10.1371/journal.pone.0029896.g002

Myogenin Reverses Muscle Cell Differentiation
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elevated levels of Myf5 [44], while mice lacking both MyoD and

Myf5 reveal a complete absence of skeletal muscle [35]. These

findings suggest that either Myf5 or MyoD is required for the

determination of skeletal myoblasts.

Furthermore, our experiments reveal re-activation of cell cycle

as seen by DNA replication through EdU incorporation and the

upregulation of cyclin D1 and cyclin E2. These results point to a

mechanism whereby down-regulation of myogenin in terminally

differentiated muscle cells induces a process of reversal of

differentiation. As previously shown, down-regulation of myogenin

in myotubes induces the reduction of MyoD levels. By transfecting

these myotubes with an adenovirus expressing MyoD, endogenous

MyoD levels were brought back to normal. These myotubes were

able to cleave but re-entry to the cell cycle was not obtained.

Cyclin D1 and cyclin E2 levels were similar to those expressed by

normal differentiated myotubes. These results point to a

mechanism whereby myogenin down-regulation is responsible

for the cleavage of terminally differentiated myotubes into

mononucleated cells in a separate way from the cell cycle re-

entry. In support to these findings, mice expressing homozygous

mutated myogenin gene show major reduction in skeletal muscle.

In contrast, homozygous mutations of Myf5 or MyoD showed no

effect on skeletal muscles [33,45]. Moreover, myogenin is required

for myoblast fusion and differentiation but not for commitment to

the myogenic lineage [34].

Furthermore, cyclin D1 antagonizes the myogenic activity of

MyoD [46,47]. Cyclin E2 is highly activated during the G1 to S

phase progression, with significant effects on cell cycle activity and

Figure 4. Mononucleated muscle product cells are active in DNA synthesis. (A) Following myotube differentiation, cells were transfected
with myogenin siRNA. Growth medium was then added to the cells and placed for time lapse microscopy. 64 h after transfection with myogenin
siRNA, myotubes cleaved into mononucleated cells (arrows indicate cleaved cells). Cells were then stained with EdU. Cells which derived from the
cleavage of myotubes (indicated by arrows) incorporated high levels of EdU. (B) Following myotube differentiation, cells were transfected with
myogenin siRNA. Growth medium was then added to the cells. Following various incubation time points of transfected cells in growth medium, 10,
20, 40 and 60 hours, cells were then stained with EdU. The number of EdU-positive cleaved cells was counted in 5 random microscopic fields for each
time point (Scale, 200 mm).
doi:10.1371/journal.pone.0029896.g004
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DNA replication. This supports our findings, as cyclin E2 and

DNA synthesis were found up-regulated. Interestingly, scientific

evidence supports the hypothesis that cyclin E2 is in close

proximity to cyclin D1. In the absence of cyclin D1, cyclin E2 was

found to functionally replace cyclin D1 [48].

Our work with RNA interference has revealed that down-

regulation of endogenous myogenin gene expression in muscle

cells can lead to reversal of muscle cell differentiation and the

creation of mononucleated cells. There is growing evidence from

published findings from several groups that it is possible to reverse

Figure 5. Myogenin and MyoD siRNA transfection in terminally differentiated myotubes reactivates cyclin D1 and cyclin E2. (A)
Myoblasts treated with Ara-C and induced to differentiate into multinucleated myotubes were transfected with myogenin, MyoD, Myf6 and Myf5
siRNAs and controls. After transfections, growth medium was added to cells prior to RNA analysis by RT/PCR analysis. Cells transfected with myogenin
siRNA revealed reduction at the RNA levels of myogenin, MyoD, Myf6 and increase of cyclinD1, cyclinE2 and Myf5 when compared to controls and
untransfected C2C12 cells. Cells transfected with MyoD siRNA revealed reduction of the RNA levels of MyoD and substantial increase of cyclinD1,
cyclinE2 and Myf5. Cells transfected with Myf6 siRNA revealed reduction of the RNA levels of Myf6. Cells transfected with Myf5 siRNA revealed
reduction of the RNA levels of Myf5 and substantial increase of MyoD. (B) Graphs of the RNA analysis. Values were obtained as ratios of the RNA of
interest over GAPDH internal control.
doi:10.1371/journal.pone.0029896.g005
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muscle cell differentiation in mammalian cells [7,49,50]. This

report is based on manipulating endogenous levels in order to

achieve reversal of differentiation.

Materials and Methods

Tissue culture
C2C12 mouse myoblasts (ECACC) were grown to confluency

under 5% CO2 at 37uC in growth medium (GM), DMEM

medium (Gibco) supplemented with 10% (v/v) fetal bovine serum

(FBS) (Gibco), 2 mM glutamine (Gibco) and penicillin-streptomy-

cin (100 mg/ml–100 U/ml) (Gibco). In order to differentiate, cells

were then switched to differentiation medium (DM), DMEM

supplemented with 2% horse serum (v/v) (Gibco), 2 mM

glutamine and penicillin-streptomycin (100 mg/ml–100 U/ml)

for 4 days. During the first two days of differentiation, cytosine

b-D-arabinofuranoside (Ara-C) (Sigma) (4 mg/ml) was included in

order to eliminate all possible undifferentiated myoblasts. Medium

was then replaced with fresh DM medium without Ara-C. Ara-C

purified myotubes contained more than 90% of nuclei. For siRNA

transfections on differentiated myotubes 100 pmol of each siRNA

(MyoD, myogenin, Myf6 and Myf5) (Invitrogen) in complex with

Figure 6. Overexpression of MyoD does not prevent cleavage of siRNA – myogenin myotubes. Myotubes were transfected with
myogenin siRNA only, myogenin siRNA co-transfected with an adenovirus expressing MyoD (AdMyoD), AdMyoD only and a negative siRNA co-
transfected with a control adenovirus (AdC) (d0). After transfections, growth medium was added to cells (d2) and left for two more days (d4). Cells
transfected with myogenin siRNA and myogenin siRNA co-transfected with AdMyoD showed similar reduction of myotubes compared to cells
transfected with AdMyoD and negative siRNA co-transfected with AdC (Scale, 200 mm). (B) Time-lapse microscopy of cells co-transfected with
myogenin siRNA and AdMyoD showed cleavage of myotubes into mononucleated cells (indicated by arrows) similar to the cells transfected with
myogenin siRNA only (fig. 2.) (Scale, 200 mm).
doi:10.1371/journal.pone.0029896.g006

Myogenin Reverses Muscle Cell Differentiation
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10 ml of Lipofectamine RNAi/MAX (Invitrogen) dissolved in

Optimem solution (Gibco) were incubated in myotubes for

6 hours. Transfection mix was then substituted with fresh GM

medium. The following day, cells were re-transfected with each

siRNA and transfection mix was again substituted with fresh GM

medium.

Figure 7. Cleavage of myotubes and cell cycle reactivation have different pathways. (A), (B) RT/PCR and protein analysis on cells co-
transfected with myogenin siRNA and AdMyoD showed normal MyoD levels compared to cells transfected with myogenin siRNA only which showed
significantly reduced MyoD levels. Cells co-transfected with myogenin siRNA and AdMyoD showed normal cyclin D1 and cyclin E2 levels compared to
cells transfected with myogenin siRNA only, which showed to be substantially increased. Cells co-transfected with negative siRNA and AdC revealed
similar levels of cyclin D1 and cyclin E2. Cells transfected with AdMyoD showed to some extent higher myogenin and MyoD levels compared to cells
co-transfected with negative siRNA and AdC. GAPDH was used as an internal control. (C) Myotubes transfected as described above were treated with
EdU and detected by immunofluorescence. Cells transfected with siRNA myogenin showed significantly high levels of EdU, compared to the cleaved
cells co-transfected with myogenin siRNA and AdMyoD. Cells transfected with AdMyoD only or negative siRNA co-transfected with AdC showed no
signs of cleavage.
doi:10.1371/journal.pone.0029896.g007

Myogenin Reverses Muscle Cell Differentiation
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Immunofluorescent studies
Cells were incubated with various antibodies after siRNA

transfections and 0–3 days of growth medium incubation. Briefly,

cells were fixed in 4% paraformaldehyde in PBS for 20 min,

washed once with PBS and permeabilized with 0.2% Triton-X-

100 in PBS for 20 min. Cells were blocked with 1% BSA in PBS

for 10 min and then exposed to primary antibodies. Cells were

tested for MHC (1/200; MY32, Sigma) and myogenin (1/200;

Santa-Cruz) for 2 hours in a 37uC humidified incubator. The cells

were washed three times with PBS and then treated with a

secondary antibody (goat anti-mouse Texas Red; Jackson

Immunoresearch) for 1 hour at room temperature. Cells were

washed three times with PBS and observed with a Zeiss

AxioVision observer using Texas Red filters. Fusion Index (FI)

was calculated as the number of nuclei present in myotubes over

the total number of nuclei present in the observed field. Data was

selected from 10 different and randomly chosen microscopic fields.

Cell cycle studies
Myotubes transfected with myogenin siRNA and incubated in

GM for up to three days, were then supplemented with 5-ethynyl-

29-deoxyuridine (EdU) for 3 hours (following manufacturer’s

instructions) (Invitrogen). Cells were then fixed with 4%

paraformaldehyde in PBS for 20 min. Cells were washed twice

with 3% BSA in PBS, before and after permeabilization with 0.5%

Triton-X-100 in PBS for 20 min at room temperature. Cells were

then incubated for 30 min in a mixture containing Alexa fluor

647. Cells were then washed with PBS and observed under a

fluorescence microscope.

RNA analysis
Total RNA was extracted from transfected or untransfected

myotubes (Perfect RNAEukaryotic Mini kit, Eppendorf) and then

subjected to reverse transcription. For PCR, specific primers were

used for the analysis of expression for the following molecules: MyoD

F 59-GCCCGCGCTCCAACTGCTCTGAT-39, R 59- CCTACG-

GTGGTGCGCCCTCTGC-39. Myogenin F 59-CATCCAGTA-

CATTG AGCGCCTA-39, R 59-GAGCAAATGATCTCCTGG-

GTTG. Myf6 F 59-ATG GTACCCTATCCCGTTGC-39, R 59-

TAGCTGCTTTCCGACGATCT-39. Myf5 F 59-TGAAGGATG-

GACATGACGGACG-39,R 59-TTGTGTGCTCCGAAGGCTG-

CTA-39. Cyclin D1 F 59-GGCACCTGGATTGTTCTGCT-39, R

59-CAGCTTGC TAGGGAACTTGG-39. Cyclin E2 F 59-GGAA-

CCACAGATGAGGTC-39, R 59-CG TAAGCAAACTCTTG-

GAG-39. GAPDH F 59-TCATCATCTCCGCCCCTTCT-39, R

59- GAGGGGCCATCCACAGTCTT-39.

Experiments were repeated at least three times and gel bands

were measured using the Scion Image software.

Western blot
Cells were lysed using a protein lysis buffer including protease

inhibitor. 40–60 mg of protein extracts were incubated with

myogenin (1/200; BD), MyoD (1/300; Santa-Cruz), cyclin D1

(1/400; Abcam), cyclin E2 (1/200, Abcam) and GAPDH (1/2000;

Santa-Cruz) primary antibodies followed by incubation with goat

anti-mouse IgG or donkey anti-rabbit IgG secondary antibodies

conjugated to horseradish peroxidase (Santa-Cruz).
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