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Abstract

While there is a large body of work examining the effects of social network structure on innovation adoption, models to
date have lacked considerations of real geography or mass media. In this article, we show these features are crucial to
making more accurate predictions of a social contagion and technology adoption at a city-to-city scale. Using data from the
adoption of the popular micro-blogging platform, Twitter, we present a model of adoption on a network that places
friendships in real geographic space and exposes individuals to mass media influence. We show that homophily both
among individuals with similar propensities to adopt a technology and geographic location is critical to reproducing
features of real spatiotemporal adoption. Furthermore, we estimate that mass media was responsible for increasing
Twitter’s user base two to four fold. To reflect this strength, we extend traditional contagion models to include an
endogenous mass media agent that responds to those adopting an innovation as well as influencing agents to adopt
themselves.
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Introduction

In an increasingly digital and connected world, the processes by

which information is shared and consumed are changing rapidly.

Services and content are now distributed through on-line social

networks where the flattening effects of the Internet distort spatial

diffusion. These factors are quickly shifting the balance between

word-of-mouth and mass media advertisement and along with it,

changing the prominent spatiotemporal scales on which spreading

occurs. Aiding our ability to characterize and quantify this shift are

unprecedented amounts of data elucidating how people communi-

cate with each other and how that communication translates into

choices or behaviors such as adopting an innovation or technology.

In this article, we update and unify traditional models of

information spread and technology adoption to more accurately

reflect the novel economic and social environments in which

spreading now occurs. We expand on metapopulation models by

embedding social networks in real geography to reflect the spatial

distribution of social ties and better understand how local

demographics and topology affect contagion. Furthermore, we

introduce an endogenous media agent to our network simulation,

capturing the role of hyper-influential social forces. Our model is

informed by a case study examining the viral (as it is colloquially

referred) adoption of a social micro-blogging platform, Twitter,

where we focus on the accumulation of users in cities across the

US over a three year period.

Traditional models of contagion have generally focused on the

spread of disease [1] or the diffusion of innovation [2–4]. Simple

approaches such as the susceptible - infected (SI) model have

proven extremely informative, but suffer from overly simple

assumptions such as homogeneous mixing of populations. The

diffusion of innovations literature has had made use of similar

frameworks, such as the Bass model [5], to characterize the

adoption of technologies that feature considerable cost and risk.

We show, however, that these models perform poorly when

applied to goods and services that are nearly cost- or risk-free and

demonstrate massive positive externalities like social web applica-

tions.

These spreading processes have been placed on networks,

revealing how the topology of our social connections aids or

hinders outbreaks. The importance of this work continues to grow

as the world that becomes increasingly connected by the Internet

or cheap and fast travel by cars, trains, and planes [6–10]. Few,

however, have placed such networks in real geography while

preserving individual interactions, thinking carefully about prop-

erties such as homophily [11,12].

More recently, massive popular interest in social networks has

lead scholars to recognize the potential of using these platforms as

natural experiments on how word-of-mouth information spreading

occurs. For example, it has been shown that different types of

information, be it political or sports related, follow different

patterns as they are shared and consumed by millions of

individuals [13,14]. Some information even takes on a life of its

own, evolving into self-sustaining ‘memes’ [15]. In many cases,

however, predicting the outcomes of such processes has proven

extremely difficult [16].
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Social scientists have used similar frameworks to study collective

action in the form of binary decisions in order to understand a

wide variety of phenomena. Neighborhood segregation [17], riots,

technology adoption [18], and standards setting are just a few

examples of behavioral contagion studied [19–23]. Current events

have proven this work increasingly relevant as revolutions and

protests are coordinated through these online social networks.

Studies have also explored the many forces influencing the

speed and success of information spreading from blogs to

traditional news outlets [14,24,25]. Research revealed a number

of patterns whereby mass media drives conversation on social

networks or vice versa. In some instances, it has been found that

when advertising effects are controlled for, word-of-mouth

diffusion is a negligible force driving adoption [26]. Finally,

marketers and retailers have long been examining the various roles

of celebrity endorsements as well as spatial diffusion of information

about products and services in an attempt to optimize business

outcomes [5,27–32].

In this article, we address significant gaps in the above literature.

Namely, we show that the geographic distribution of individuals’

with differing propensities to adopt (such as early versus late

adopters), combined with a preference for friendship with others

who share similar tastes and geographic locations, are crucial

features to accurately describe micro (at the city level) and macro

(at the national level) adoption trends. Furthermore, we propose a

model that includes an endogenous mass media that responds to

adoption patterns of users while at the same time influencing

individuals to adopt an innovation. Based on adoption data from

the popular social blogging platform, Twitter, we present a model

of contagion to capture salient features. The remainder of this

article is organized into three parts: (i) we present analysis of the

spatiotemporal adoption of Twitter as a case study, examining the

roles of word-of-mouth spreading as well as mass media, (ii) we use

insights from the case study to construct a network model and

simulate adoption, (iii) and finally we present and discuss results

and important parameters of our model.

Materials and Methods

A case study of Twitter
As with most complex systems, there are many different scales at

which to analyze dynamics. We start at the national level, counting

the number of new users that signed up for Twitter within the US

each week. Fig. 1 shows time series for both week-to-week user

gains as well as the cumulative sum over the first 3.5 years of

Twitter’s existence. In addition, we have gathered data from

Google’s Trends and Insights web application measuring weekly

search volume news reference volume for the query ‘‘Twitter’’ on

Google News. Information on how search and news values are

scaled can be found at http://www.google.com/intl/en/trends/

about.html.

Following diffusion of innovations literature we label users

according to when they adopted relative to all other adopters. For

the purposes of this analogy, we make the simplifying assumption

that adoption stopped in late 2009. Though this assumption is

inaccurate given the subsequent growth of the platform, we do not

have data passed this point. Furthermore, our time series suggest

that Twitter’s growth was slowing down significantly compared to a

brief period of extremely fast growth. Those who adopt earlier than

1s (standard deviation) before the average adoption time are labeled

as early adopters. Those adopting between 1s before and the mean

adoption time are the early majority, with the late majority and

laggards adopting in further deviations past the mean time. For

more on the motivations behind this, see Rogers, 1995 [2].

At the lowest level of spatial resolution available in our data set,

we examine the adoption patterns for individual cities. Though we

find users in nearly 16,000 cities across the country, many of these

locations have only a few users signed up. To ensure enough

statistical power, we select only cities with over 1000 users, leaving

408 locations for the remainder of our analysis. Despite this

threshold, we still retain data for roughly 70% of all users. Fig. 2

shows three different locations representing a young, early

adopting demographic (Ann Arbor, MI), a large metropolitan

region consisting mostly of late majority adopters (Denver, CO),

and a mixed area (Arlington, VA). While these cities still show the

classic S-shaped adoption curves, there are some significant

differences such as the large spike in adopters during April, 2009

seen in Denver, CO, but not in Ann Arbor, MI. Later, we argue

that these differences are the result of demographics that have

different propensities to adopt and respond differently to media

influences.

Having labeled adopters relative to the national population, we

then measure the composition of each city in terms of the

percentage of users who are early adopters, early majority, late

majority, or laggards. This step also serves to normalize locations

with respect to population. We find, unsurprisingly, that cities with

the most early adopters tend to have large universities or are

technology centers that tend to attract large numbers of young,

tech-savvy persons who are likely to adopt social web applications.

Importantly, these locations are not necessarily co-located near

each other. College towns all across the country saw early growth

of Twitter users despite being very far from major metropolitan

areas usually known for driving innovation. Later, we show that

the empirical composition of cities and the demographics they

represent is critical to reproducing spatiotemporal diffusion

patterns.

We next focus on a key moment for any contagion process,

critical mass achievement. Again following conventions from the

diffusion of innovations literature, we mark a city as reaching

critical mass when 13:5% of all eventual users have signed up [3].

Fig. 3 shows a series of snapshots in time indicating when various

US cities reach critical mass. These snapshots reveal the diffusion

path of Twitter from its birthplace in Silicon Valley, to college

towns such as Cambridge, MA, Ann Arbor, MI, or Austin, TX, to

metropolitan areas such as Los Angeles, CA, or Denver, CO, then

finally to more suburban and rural areas. As noted above, this

pattern is non-local in space. Whereas disease can only be

transmitted via physical contact, or at least being in the same place

at nearly the same time, online innovations are not necessarily

constrained by geography and can travel coast-to-coast almost

instantaneously. Despite reaching critical mass very early in the

San Francisco Bay Area, Twitter did not diffuse spatially up and

down the California coast. Instead, it hopped thousands of miles to

Cambridge, MA, another highly tech-savvy population. As we

shall see later, however, diffusion is not entirely non-local.

Just as individuals users were labeled as early adopters or

laggards, cities were also placed into groups according to when

they reached critical mass relative to the entire population. Table

S1 in the on-line supporting information displays a complete list

cities and their classification to illustrate, qualitatively, the type of

demographic information that can be inferred from looking at the

adoption of web applications. For example, many of the early

adopting cities are home to large, public universities whose

students are young internet users. Smaller rural towns make up the

majority of the lagging cities, with large metropolitan areas falling

somewhere in between.

As with any product or service, we expect at least some

influence from marketing and advertising, done either explicitly by

Adoption with Geographic and Media Influence
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the creators in the form of advertising and marketing or done

implicitly by the users through word-of-mouth. As explained

above, we use Google news and search volumes as a proxy for

these media influences. Importantly, we note that media coverage

(Fig. 1) of Twitter was nearly non-existent during the first two

years. The company itself did almost no official advertising.

During this time, Google search volume was highly correlated with

user growth. After a critical mass of users was reached, media

coverage began to increase super-linearly. Many of the spikes in

adoption rates were the result of celebrity endorsements such as

Oprah’s decision to officially sign up on-air during her show on

April 17th, 2009 and political events like the Iranian protests in

July and August 2009 that sparked debate over the use of social

media to coordinate revolution.

Qualitatively, we recognize the media as having an enormous

role in driving adoption. We also find that news coverage did not

pick up until after the nation had achieved a critical mass of users,

suggesting strong endogeneity where media responds to the very

adoption it produces. This is much different than the traditional

modeling of media [4,5]. We seek to capture these stylized facts by

including a powerful media agent whose coverage both grows with

adoption and produces powerful and random shocks, simulating

hyper-influentials and major media events.

Model Introduction
To capture both geographic effects as well as media influence,

we introduce our model as follows:

(i) We begin by initializing the agent population and social

network. Contagion spreading is simulated by a mechanism

resembling the susceptible - infected (SI) model, which is also a

special case of the Bass model, widely used in the diffusion of

innovations literature. We create a population of N agents and

place each agent into one of L cities, creating city level meta-

populations. Each agent can be one of two types, early adopter or

regular adopter. The geographic placement and and agent types are

chosen to reflect empirical distributions of real Twitter users as

well the composition of cities. Thus, if a city was measured to have

4% of all US Twitter users, 4% of our agents are placed there.

Furthermore, of the agents placed in that city, if the composition

was measure empirically to be 30% early adopters, 30% of agents

will have an early adopter type, with the remainder marked as

regular.

Agents are then connected by links to form a social network.

The empirical characteristics of links and distances can be set to

reflect those measured in on-line social networks. Liben-Nowell

et al. [33] show that pr, the probability of being connected to

someone located a distance r from your city, follows a truncated

power-law, pr~r{czn, where c~1:2 and the probability of

connection becomes roughly constant for distances greater than

n~1000 km. We are also able to set the degree distribution and

density of the social network to reflect different topologies.

(ii) Next, we add dynamics to the simulation. At any given

time, each agent can be in one of two states, susceptible (S) or

infected (I ). Initial adoption is seeded to a small fraction of agents

Figure 1. Plots of weekly national adoption. (a.) The number of new U.S. Twitter users is plotted for each week, normalized by the maximum
weekly increase during the entire period of data collection. (b.) The cumulative total number of U.S. Twitter users is plotted for for the same time
period. Google search and news volumes are normalized such that the maximum value is 1.
doi:10.1371/journal.pone.0029528.g001
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who are initialized as infected. Spreading is modeled over a series

of T time periods, where the number of agents in each state is

tracked (subject to S(t)zI(t)~N). Each time period, all infected

agents attempt to infect their neighbors. With probabilities br and

be, a regular or early adopter, respectively, will heed a

recommendation and adopt the technology. We use the ratio,

Figure 2. Plots of weekly adoption for select cities. (a.) Time series display the number of new U.S. Twitter users for three separate locations
(Ann Arbor, MI, Denver, CO, and Arlington, VA) from mid-March 2006 through late-August 2009, normalized by the largest weekly increase in Denver
users. (b.) Shows a plot of the cumulative fraction of each city’s user base normalized by the total number of users in Denver, CO.
doi:10.1371/journal.pone.0029528.g002

Figure 3. Temporal snapshots of critical mass achievement at locations across the US. For snapshot, the smaller, gray markers indicate
locations that have already reached critical mass. The larger, black markers denote locations that achieved critical mass during that week. We note
that locations achieving critical mass at very early times are clustered around Twitter’s birthplace, San Francisco, CA, suggesting local word-of-mouth
diffusion. There are, however, a few locations on the other side of the country, namely the suburbs of Boston, MA that are equally early in adoption,
contrasting local diffusion with the flattening effects of the Internet.
doi:10.1371/journal.pone.0029528.g003
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R~
be

br

to control differences in propensity to adopt for early

versus regular adopters.

These features mimic social dynamics that suggest the pressure

to adopt increases as more friends adopt and that more connected

people receive greater benefits from adopting social technologies

[3]. Some models assume that an individual will adopt an

innovation once a specific number [18,34,35] or proportion [19]

of their contacts have also adopted. Others have found evidence

that occupying similar positions in social networks is more

predictive of adoption [36]. While we do not attempt to test these

hypotheses, Kleinberg has suggested that the dynamics of these

adoption schemes are quantitatively similar [37].

(iii) In addition to word-of-mouth spreading, we also incorpo-

rate a media agent. This agent can be thought of as an influence in

addition to word-of-mouth spreading, similar to the Bass model.

Each time period, the media broadcasts its message to adopt a

technology, and each agent flips a coin determining if adoption

occurs. The media transmission probability is given by,

Pr(media infection)~aM, where a [ ½0,1� is a model parameter,

and M is the endogenous media volume. Media volume itself is

determined as a function of the number of previously infected

agents, I(t{1), and a random term e such that M(t)~
I(t{1)cze. For convenience, we normalize the media so that,

M(t)[½0,1�. The parameter, c, reflects the super-linear growth

displayed in Google news media volume. Finally, we set the size of

random shocks e to be on the order of M(t), reflecting stylized

features seen in Google News volume data.

In essence, the amount of media exposure an innovation is given

depends explicitly on the number of people who have adopted it as

well as a random error term. Just because the media is reporting

on a new product, however, does not mean a consumer will adopt

it. To model this, we have included the parameter a, which adjusts

how receptive agents are to the media. The probability that any

given agent will adopt due to the medias influence, aM, is then

given by the product of how much the media is reporting and how

closely an individual is listening.

Results

Replicating standard SI model
We first present results for parameter settings that reduce our

simulation to the traditional SI model. We set br~be (leaving only

one type of agent), a~0 (removing the media), and populate each

of L~408 cities uniformly with 1000 agents for a total population

of N~408,000. We initialize the network to have a completely

random spatial distribution of links so as to remove any geographic

bias in friendship and simulate homogeneous mixing in the

population. We choose a Poisson degree distribution because the

qualitative structure of the adoption network is more selective than

a scale free structure found in measurements of all connections in

online social networks [25,38,39]. For example, Leskovec et al.

[25] found that individuals who recommended a product to tens or

even hundreds of contacts influenced no more purchases on

average than those who sent recommendations to just a few

friends.

Thus, we expect the number of people who can influence a

person to adopt a technology is smaller than the number of

acquaintances they have and the distribution is not likely to be

long tailed. Scaling these numbers to fit our simulation size we

choose a reasonable average degree of SkT~7.

Fig. 4 displays the simulated number of adopters per week for a

variety of values for b. The simulation was run 500 times for each

parameter configuration. The bands surrounding the average

represent ranges between which 75% and 95% of simulations fell.

In this simple form of the model, it is not possible to reproduce the

empirical shape of the cumulative adoption curve seen in the

Twitter case study suggesting more complicated dynamics are

required to accurately predict the adoption of these technologies.

Next, we add more diverse geography to the model in the form

of city populations, geographically distributed friendships, and

early adopters that are three times as likely to adopt when than

regular adopters (R~
be

br

~3). To understand how these additions

affect adoption at the local level, we first examine the importance

of network structure in the presence of two agent types.

Our analysis shows that homophily based solely on agent type

(i.e. early versus late adopter) is not enough to reproduce the

observed trends in the spatiotemporal diffusion of information. A

very specific type and strength of homophily must be present to

ensure that the early adopters are connected to each other,

forming a giant component in the early adopter sub-network, and

not leaving members of their type isolated by regular adopters. To

introduce these different types of homophily into the network, we

simulate two types of networks, homogenous mixing and spatially

embedded networks, and also vary the fraction of similarly typed

neighbors each agent prefers. In order to form giant component of

early adopters, we find that not only must agents prefer friendships

with other agents of similar type (homophily by type), but they

must also prefer friendships with those closer to them geograph-

ically, forming a spatial social network. Spatially embedded

friendships are selected as a function of distance with pro-

bability,pr, of selecting a friend who is a geographic distance r
away is described in the previous sections [33].

Fig. 5 plots the size of the giant component of early adopters

produced at a given level of homophily measured among early

adopters for networks either spatially embedded or not. Here we

define homophily as the average fraction of an early adopter’s

friends who are also early adopters. These estimates were obtained

by creating and consolidating results over 100 networks, each with

N~10,000 nodes and a given level of homophily, then measuring

the size of the giant component. For the remainder of this paper,

all configurations labeled spatial network can be assumed to have a

giant component containing over 95% of all early adopters.

To see how this giant component of early adopters affects

adoption, Fig. 6 compares the predicted and actual times of critical

mass achievement both with and without spatial friendships. In the

absence of a giant component, nearly all cities peak at the same

time. When spatially embedded friendships are introduced such

that a giant component of early adopters is formed, we are able to

simulate city level Twitter adoption, while preserving national

trends. Though global cumulative adoption can be reproduced

without the spatial social network, adoption cannot is not

geographically resolved to the city level. Embedding the social

network in real space, however, makes it possible to accurately

simulate the critical mass achievement times in most cities. Fig. 7

shows these simulated times when compared to times empirically

measured in data. We have divided specific cities into four groups

based on when they reached critical mass relative to all locations.

For selected cities, simulation quartiles are plotted along with

actual peak times. In the on-line supporting information we

provide data files containing the composition and adoption times

of different cities, with the goal of facilitating future studies of other

hypothesis and types of adoption.

Media Influence
Fig. 8 compares predictions of national adoption with the above

model conditions. Examining news volume as collected by Google,

we note that purely word-of-mouth simulations start diverging

Adoption with Geographic and Media Influence
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from reality around week 120 after launch. This is just around the

time when mass media begins to report on the web application.

Because of this sharp transition, we can measure the relative

strength of word of mouth spreading versus mass media influence.

Predicting when the individual media events like celebrity

endorsements will occur is beyond the scope of this work. We can,

however, simulate adoptions in the presence of empirical news

volume from Google’s database. In order to achieve the national

adoption pattern similar to that seen in real data, we find that

agents must be highly susceptible to media influence, with the

parameter a~0:15. Contrasting aggregate adoption predictions

both with and without media influence suggests that the mass

media was responsible for at least half of the newly joined Twitter’s

users, most of whom adopted in later stages. Coupled with our

early results showing the importance of homophily and geography

during the early stages of spread, our model paints a much more

complete picture of adoption, capable of reproducing both

aggregate and local trends in space and time.

Next, we expand our model to treat news volume as endogenous

such that adoption may be simulated without requiring external

empirical data on media influence. We introduce an endogenous

mass media, implemented as described above in step iii. of our

model introduction. Reflecting trends seen in the real data, the

growth of media volume is super-linear with respect to adopters

and random spikes in media coverage are introduced to reflect

discrete and unpredictable media events. For these simulations, we

found an exponent of media growth with respect to adopters,

c~3, produced reasonable fits to real data. Fig. 8 displays

simulation results for various model settings described in this

paper. While spatial friendship networks are able to reproduce

early adoption trends, real data quickly diverges in later times.

Introducing an endogenous mass media agent which grows super-

Figure 4. Verification of the basic SI model. Four different transmission rates b are displayed, each run 500 times and averaged. The bands
surrounding the average value are bounds containing 75%, and 95% of simulation runs.
doi:10.1371/journal.pone.0029528.g004

Figure 5. The size of the giant component plotted against homophily. Two configurations are shown, one in which the social network is
explicitly spatial, the other ignoring geography of nodes. The figure illustrates that preference for friendship with similar agents is not enough to
connect early adopters in a giant component and that spatial friendships are produce this structure.
doi:10.1371/journal.pone.0029528.g005

Adoption with Geographic and Media Influence
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Figure 6. Simulated critical mass achievement times are compared to times measured from Twitter data. We find spatially embedded
friendships are necessary to reproduce the inter-city spread of Twitter.
doi:10.1371/journal.pone.0029528.g006

Figure 7. Simulation results are compared to actual critical mass achievement times for different subsets of locations. Borrowing
from the diffusion of innovations literature, we use four groups (a.) Early adopting, (b.) Early Majority, (c.) Late Majority, (d.) Laggards. We are able to
reliably predict adoption times for cities in each category.
doi:10.1371/journal.pone.0029528.g007

Adoption with Geographic and Media Influence
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linearly in the number of current adopters produces, along with

random media spikes, produces much more accurate adoption

trends and reflects features seen real media coverage.

Discussion

In light of a globalized world with near universal access to the

Internet, previous models of adoption fail to characterize the

interplay of media and word of mouth. In this article, we have

presented descriptive statistics of the spatiotemporal adoption of a

web application and proposed a model of technology adoption or,

more generally, social contagion, to replicate features seen in data

from city to national scales. For early stages, when spreading

occurs primarily through word-of-mouth, we find that adoption is

strongly correlated with traditional demographic covariates. Early

adopting cities tend to be those with large, young, and tech-savvy

populations. Media influences during later stages, however, were

found to be very strong, accounting for a two to four fold increase

in the number of people who adopted. This finding is consistent

with earlier work that suggests advertising campaigns are enough

to confound any word-of-mouth spreading [26].

Our model extends previous work in two important ways. First,

we demonstrate that spatial social networks are crucial to

reproducing the dynamics of adoption at a city scale. Secondly,

the media features of the model reflect empirical observations that

the news volume reacts to the number of adopters with a super-

linear trend after a product has reached a critical mass and with

random shocks emanating from super-influential people like

celebrities or major media events like massive demonstrations.

These results suggest that our model is capable of replicating

both micro (at the city level) and macro (at the national level)

adoption phenomena and may provide substantial improvement

over existing frameworks such as the SI or Bass models. We do,

however, urge some caution in the interpretation of our results.

Because our simulation relies upon the fraction of a city denoted as

early adopters and this fraction was measured empirically from

data, the model may be sensitive to errors in this measurement.

While our empirical results are intuitive, for example finding that

Silicon Valley and college towns have the most early adopters of a

viral web application, they may not hold for other products such as

durable goods. Our model is best applied to goods and services

that are very low cost, very easy to tell someone about, and display

large positive externalities.

We hope it inspires future work in the area. Specifically, it

would be interesting to compare and contrast the spatial diffusion

of web apps such as Twitter, with more tangible products such as

gadgets, medicine, or cars. For example, it may be possible to use

the composition of the cities as characterized by the adoption of

Figure 8. Simulated adoption treating the media as endogenous and increasing with the number of adopters. (a.) Shows simulated
new users per week (normalized to the maximum over the period) as well as normalized media volume each week. (b.) A comparison of all model
scenarios is shown. Traditional models, models which do not include media influence are capable of predicting adoption in early periods, but
dramatically underestimate total adoption. Including endogenous media effects allows us to make adoption predictions that more closely resemble
real data.
doi:10.1371/journal.pone.0029528.g008
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Twitter to predict or even try to accelerate the adoption of other

related kinds of technological innovations. To facilitate further

research in this area, we have provided a readme and data file,

Text S1 and Dataset S1, containing city level compositions as well

as time series data in the online supporting information as well as

our web page, http://humnet.scripts.mit.edu/wordpress/2011/

06/13/project-modeling-the-diffusion-of-social-contagion/. This

work also represents advances in models of spreading in networks

where the roll of demographics, i.e. node attributes, as well as

geography is critical for future predictions. These insights may be

particularly useful in modeling opinion spreading such as in

elections and collective action.

Supporting Information

Table S1 Sample cities within each classification (early
adopting, late majority, etc.). Early adopting cities tend to be

college towns or have large populations of young, tech-savy users

such as Mountain View, CA, while larger metropolitan areas adopted

closer to the mean, followed by more rural and remote locations.

(PDF)

Text S1 A readme file containing information on the
files included in Dataset S1.

(TXT)

Dataset S1 A dataset containing city level composition
data as well as time series of weekly adoption. For each of

the 408 cities used as input in our model, we have included data

such as the percentage of early adopters, the total population of

Twitter users, and weekly time series of new users.

(XLS)
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