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Abstract

Among proteins, orthologs are defined as those that are derived by vertical descent from a single progenitor in the last
common ancestor of their host organisms. Our goal is to compute a complete set of protein orthologs derived from all
currently available complete bacterial and archaeal genomes. Traditional approaches typically rely on all-against-all BLAST
searching which is prohibitively expensive in terms of hardware requirements or computational time (requiring an
estimated 18 months or more on a typical server). Here, we present xBASE-Orth, a system for ongoing ortholog annotation,
which applies a ‘‘divide and conquer’’ approach and adopts a pragmatic scheme that trades accuracy for speed. Starting at
species level, xBASE-Orth carefully constructs and uses pan-genomes as proxies for the full collections of coding sequences
at each level as it progressively climbs the taxonomic tree using the previously computed data. This leads to a significant
decrease in the number of alignments that need to be performed, which translates into faster computation, making
ortholog computation possible on a global scale. Using xBASE-Orth, we analyzed an NCBI collection of 1,288 bacterial and
94 archaeal complete genomes with more than 4 million coding sequences in 5 weeks and predicted more than 700 million
ortholog pairs, clustered in 175,531 orthologous groups. We have also identified sets of highly conserved bacterial and
archaeal orthologs and in so doing have highlighted anomalies in genome annotation and in the proposed composition of
the minimal bacterial genome. In summary, our approach allows for scalable and efficient computation of the bacterial and
archaeal ortholog annotations. In addition, due to its hierarchical nature, it is suitable for incorporating novel complete
genomes and alternative genome annotations. The computed ortholog data and a continuously evolving set of applications
based on it are integrated in the xBASE database, available at http://www.xbase.ac.uk/.
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Introduction

A central goal in comparative genomics is to identify novel and/

or shared biology between organisms, or at least make informed

predictions in this regard. The discovery of sets of orthologous

proteins plays an important role towards elucidating such

relationships. Fitch [1] originally proposed the definition of

orthologs as homologous proteins related via speciation. Under

this definition of orthologs ‘‘it is both theoretically plausible and

empirically supported that due to their sequence similarity they

have similar structure and typically perform equivalent biological

function’’ [2]. Paralogs, on the other hand, are created via gene

duplication and are prone to diversification, which can lead to

them acquiring biologically distinct functions. As lines of descent

are rarely known, a practical approach for inferring orthology is to

compare protein sequences and draw conclusions based on

sequence similarity. The existence of co-orthologs, i.e. where a

pair of paralogs from one genome is orthologous to a protein or a

pair of paralogs from another, can complicate such approaches

and requires further consideration.

Assignments of orthology are required in numerous contexts,

including determining gene content and creating annotation for

newly sequenced genomes; taxonomic and phylogenetic studies;

estimation of the number of novel genes expected when

sequencing a new strain from a known species [3]; and identifying

novel drug targets [4].

Existing techniques for ortholog computation fall in two major

categories – tree-based and pair-based. Tree-based techniques

(e.g., [5–10]) identify all similar genes among a set of genomes,

build a phylogenetic tree for each family of homologs and use the

trees to distinguish between orthologs and paralogs (orthology

inferred if tree for protein identical to that for whole genomes).

Pair-based techniques (e.g., [11–25]) use a heuristic approach to

identify pairs of similar genes belonging to different genomes and

then organize them into orthologous groups by performing a

subsequent clustering step to filter out some co-orthologous pairs.

Tree-based techniques are generally thought to perform better

than pair-based approaches [26], but in many cases it appears that

the two approaches perform equally well [27,28]. Even if

considered the ‘‘gold standard’’, tree-based approaches are not

feasible for large projects, involving millions of proteins, as they are

slow and resource-hungry in computational terms and difficult to

automate. OrthoMCL is a popular representative of the pair-

based approach to ortholog computation, providing an attractive

trade-off between sensitivity and specificity [27,28] and ability to

handle evolutionary distant sequences. In addition, OrthoMCL

analyses are not limited to pair-wise comparisons and can be

automated.
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We wished to compute orthologs for the large and ever-

increasing set of complete prokaryotic genomes. However, an off-

the-shelf adoption of OrthoMCL for analyzing the current 1,382

complete prokaryotic genomes from the NCBI collection would

make unrealistic demands on time or computational capacity.

Based on the OrthoMCL algorithmic complexity – a quadratic

function of the number of coding sequences (CDSs) alignments to

be performed, we estimate that it would take more than 18 months

to analyze the current 1,382 genomes on a typical server, i.e. four

2.3 GHz CPUs and 16 GB RAM (see Results). In other words, if

we were to start the ortholog computation using directly

OrthoMCL today, by the time the computation was finished, we

would be faced with a four-fold bigger problem, given the NCBI’s

18-month doubling rate for prokaryotic genomes and the

solution’s quadratic complexity. One might argue that such a

problem could still be solved in reasonable time given extensive

use of computational resources (e.g. in the cloud). However, even

this solution is not sustainable, as three years from today the

problem will be 16 times larger and, in only nine years, it will have

increased over 4,000-fold!

Faced with these challenges, we devised an alternative approach,

xBASE-Orth, to provide a scalable and efficient system for ortholog

annotation. xBASE-Orth is a pair-based technique, which relies on

bidirectional best-hit calculations, applies a ‘‘divide and conquer’’

approach and adopts a pragmatic scheme that trades accuracy for

speed. Starting at species level, xBASE-Orth carefully constructs

and uses pan-genomes as proxies for the full collections of coding

sequences at each level as it progressively climbs the taxonomic tree

using the previously computed data (see Methods). This leads to a

significant decrease in the number of alignments that need to be

performed, which translates into faster computation, making

ortholog computation possible on a global scale.

Results

Predicted Ortholog Pairs and Groups
Using xBASE-Orth, we analyzed 94 archaeal and 1,288

bacterial complete genomes available in the NCBI’s RefSeq

collection (February 2011, see Dataset S1) containing 4,431,241

CDSs. As can be seen from Figure 1, we found a total of

719,477,188 ortholog pairs analyzing all possible genome pairs in

the bacterial and archaeal domains. xBASE-Orth could not find

any ortholog for 7.5% of the CDSs; for the remaining 92.5% of

the CDSs there are ,350 orthologs per CDS on average.

Using the ortholog pairs data, we organized the CDSs in

ortholog groups (OGs) using the single-linkage approach (i.e., a

CDS is clustered to an ortholog group if it forms an orthologous

pair with at least one CDS from this group). Each of the generated

15,874 (Archaea) and 159,657 (Bacteria) ortholog groups contains

2 or more CDSs and each CDS belongs to one group only. Based

on the OGs, we computed the frequency of occurrence of the

CDSs in the considered genomes (Figure 2). Our results are in

accordance with the estimations made in [29]: a significant

fraction of all CDSs (about one-third for Archaea and one-half for

Bacteria in our computation) are present only in a small

percentage of genomes (less than or equal to 10%) – i.e. the

‘‘accessory pool’’; about 10% of all CDSs have orthologs in more

than 90% of the genomes – i.e. the ‘‘extended core’’.

The computed orthologs are integrated in the xBASE database

(http://xbase.ac.uk/). The ortholog pairs/ortholog group for a

CDS can be fetched via the xBASE web-interface by entering the

CDS locus tag in the search box, following the ‘‘Genome View’’

link, and selecting the desired option from the left-hand panel.

Timing and Speedup
We implemented the xBASE-Orth pipeline in Python and

conducted the experiments using a 462.3 GHz CPUs, 16 GB

RAM Blade server. Analyzing the 1,382 complete prokaryotic

genomes took a total of 889 hours (,37 days), the vast majority of

which (.80%) was spent performing alignments of amino acid

sequences. Figure 3 shows a more detailed report on the

computation times for xBASE-Orth at each level, as well as the

estimated speedup achieved by xBASE-Orth compared to a brute-

force use of OrthoMCL. The estimation of the OrthoMCL

computation times is based on the fact that both xBASE-Orth and

OrthoMCL computation times are quadratic functions with

respect to the number of CDSs to be aligned. Since xBASE-Orth

uses pan-genomes rather than the full CDS collections (see

Methods), it performs an order of magnitude fewer alignments

(Columns 3 and 4), resulting in estimated overall speedup of about

15-fold.

Comparison with OrthoMCL
To evaluate the accuracy of xBASE-Orth, we compared its

predicted ortholog pairs (OP) to the OP produced by OrthoMCL

(given the full set of CDSs) for three evolutionary distant phyla –

Bacteroidetes (40 complete genomes), Cyanobacteria (41 genomes)

and Euryarchaeota (62 genomes). Using pan-genomes as proxies

Figure 1. Discovered Ortholog Pairs (OP) analyzing 1,382 complete prokaryotic genomes. xBASE-Orth computes the ortholog pairs by
climbing up taxonomic levels and using the results at lower levels as part of the input for higher levels. At species level, for each species with two or
more complete genomes, we compute the orthologs for each pair of genomes (see Methods). At genus level, for each genus with two or more
species with at least one complete genome, we compute the orthologs for each inter-species genome pair. For details on how the species ortholog
data is used in ortholog computation at genus level, see Methods. The orthologue computation at higher levels proceeds similarly.
doi:10.1371/journal.pone.0028388.g001
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to the full CDS collections provides a significant computation

speedup for xBASE-Orth, but introduces some differences in the

predicted orthologs (Figure 4). The difference in the predicted

ortholog pairs between the two techniques increases with the

evolutionary distance. At higher taxonomic levels the pan-

genomes are more compressed, i.e. each CDS in a pan-genome

is a representative of a larger set of orthologous/paralogous CDSs,

thus becoming less sensitive and specific.

xBase-Orth Sensitivity and Specificity
To determine the quality of the xBASE-Orth ortholog

prediction, we investigated its sensitivity and specificity. In our

context, sensitivity refers to the ability to discover distant

orthologs. As shown in Figure 1, xBASE-Orth could not find

orthologs for 7.5% of the CDSs, ,80% of which are annotated as

‘‘hypothetical proteins’’. This number is in accordance with the

results reported previously for detecting singleton ORFans (i.e.

CDSs with no homology with any other protein from a genome

collection) - 14.4% analyzing 127 microbial genomes [30], 14% in

60 genomes [31], 12% in 122 genomes [32], 7.8% in 277 genomes

[33] and typically 10–15% [34]. For the remaining 92.5% of the

CDSs, the average distribution of orthologs found across the

taxonomic levels is: 2% at species and genus level each, 4% at

family and order level each, 12% at class level, 21% at phylum

level and 55% at domain level, which indicates suitable sensitivity

of xBASE-Orth.

To investigate the specificity of xBASE-Orth, i.e. avoiding

spurious ortholog pairs, we performed the following analysis. For a

given CDS, we fetched all of its predicted orthologs, performed a

multiple alignment of the CDSs in this orthologous group with

ClustalW2 [35] using default parameters and subsequently scored

the alignment with the norMD tool [36]. Since it would be

Figure 2. Frequency of CDSs occurrence in the 94 archaeal and 1,288 bacterial genomes. Using single-linkage approach, the computed
orthologs are organized in ortholog groups (OGs). Each CDS is clustered to an OG if it forms an ortholog pair with at least one CDS from the group
and each CDS is included in one OG only. The x-axis lists 10 possible bins for the observed percentage of genomes in which CDSs from a particular
OG are found. The y-axis denotes the fraction of all CDSs found for each bin. In agreement with previous reports, a significant fraction of CDSs are
found only in a small percentage of genomes (less than in 10% of the considered archaeal or bacterial genomes, these also include singletons/
orphans) forming the ‘‘accessory pool’’; about 10% of the CDSs have orthologs in more than 90% of the genomes - the ‘‘extended core’’.
doi:10.1371/journal.pone.0028388.g002

Figure 3. Computation times and estimated speedup compared to OrthoMCL. By adopting practical accuracy/speed trade-off xBASE-Orth
allows for acceptable computational time using reasonable hardware resources and is predicted to be about 15 times faster compared to direct
application of OrthoMCL. The vast majority of the computation time is spent performing CDS alignments and operating on the smaller pan-genomes
(xBASE-Orth) rather than on the full CDS collection (OrthoMCL) results in significant time advantage. It is more prominent at higher taxonomic levels,
where the difference between pan-genome and full CDS collection sizes increases.
doi:10.1371/journal.pone.0028388.g003
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impractical to perform this analysis for each of the 4.1 million

CDSs for which an ortholog is found, we selected a representative

subset of CDSs, such that: i) each chosen CDS has at least one

ortholog from each taxonomic level; ii) it has no more than 150

orthologs in total, in order to keep multiple alignment computa-

tion times reasonable; and iii) all orthologous groups are disjoint

(each CDS from any group belongs to this group only), in order to

avoid sampling bias. There are 2,384 such CDSs with a total of

190,187 orthologs distributed across the taxonomic levels as

follows: 3.3% at species level, 8.6% at genus, 3.9% at family,

11.3% at order, 12.5% at class, 30.7% at phylum, and 29.8% at

domain level.

As shown in Figure 5, for 84% of the orthologs groups the

computed norMD value is at least 0.5 (mean norMD = 0.63,

s= 0.16), which is considered to be the cutoff value for

distinguishing between good and poor multiple alignment quality

[36]; in only 16% of the cases the set of discovered orthologs

contains some spurious (or very divergent) orthologs. This result

indicates that xBASE-Orth provides suitable specificity even at

large evolutionary distances (,60% of the orthologs for the 2,384

CDSs are at phylum and domain level). For comparison, the tree-

based Build_Fam algorithm for constructing the HOGENOM

database is shown to outperform OrthoMCL in most of the cases

for analyzing 219,951 proteins from 50 bacterial, archaeal and

eukaryotic genomes and achieves mean norMD = 0.59, where

74% of the groups have norMD $0.5 [10].

The Bacterial Core Genome
The core genome for a taxonomic group is the collection of

CDSs that are present in all of the genomes in this group.

However, given the variability of approaches and uncertain

accuracy of CDS prediction and annotation across all available

bacterial genomes, we adopted a less stringent definition, namely

that a CDS had to be present in 90% of the set of bacterial

genomes to be termed a highly conserved bacterial ortholog

(HCBO). Based on the data in the ortholog groups, we have

computed a list of the HCBOs for the domain Bacteria by

analyzing all 1,288 bacterial genomes (a significant increase on

previous efforts which exploited far fewer genomes).

We identified 195 CDSs as HCBOs in the domain Bacteria

(Figure 6, Figure 7 and Dataset S2). The number of HCBOs in the

domain Bacteria predicted by xBASE-Orth is in accordance with

the estimated ,250 bacterial extended core CDSs based on the

analysis of 573 genomes [29]. Ciccarelli and colleagues [37]

analyzed 150 bacterial, 18 archaeal and 23 eukaryotic genomes

and determined a set of 36 core CDSs. Our list of HCBOs

contains 35 of their 36 core CDSs, but lacks leucyl-tRNA

synthetase.

We also computed the archaeal core genome and compared our

result with reported data. Previous work predicted archaeal core

genome size ranging from 543 CDSs by analyzing 4 genomes [38],

480 by 6 genomes [39], 166 by 41 genomes [40], to 152 CDSs by

analyzing and manual curation of the results for almost all of the

considered 70 genomes in the unpublished ‘‘2009 arCOG update’’

of [40], available at ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/

arCOG/. Our computations produced a list of 261 highly

conserved archaeal orthologs (HCAOs) occurring in at least

90% of the 94 genomes (Dataset S3). Overall, our results confirm

the findings in the ‘‘2009 arCOG update’’ – 138 of the CDSs were

found by both approaches. Only 14 arCOGs were not discovered

by xBASE-Orth, possibly due to miscalled CDSs and/or the 24

additional archaeal genomes considered in our analysis. On the

other hand, as a result of the more relaxed 90% threshold, xBASE-

Orth suggests an additional 123 CDSs that rank as highly

conserved archaeal orthologs.

Comparing the COG functional category distributions of the

bacterial and archaeal core genomes, it is interesting to note that

while the two have similar proportion of core CDSs related to

information storage and processing (55.6% in Bacteria vs. 54.5%

in Archaea), the archaeal core genome contains more metabolism

Figure 4. xBASE-Orth vs. OrthoMCL comparison. xBASE-Orth has a significant speed advantage over direct application of OrthoMCL which
comes at the possible cost of decreased accuracy. We compared the performance of the two approaches over three distinct phyla – Bacteroidetes (40
complete genomes), Cyanobacteria (41 genomes) and Euryarchaeota (62 genomes), computing orthologs at genus, family, order and phylum level.
At higher taxonomic levels the pan-genome sizes are significantly smaller compared to the full CDS collections - about half at order level and only
about one third at phylum level for the datasets analyzed here (CR stands for Compression Ratio = [Number of CDSs in pan-genomes used by xBASE-
Orth/Number of CDSs used by OrthoMCL] * 100%). Hence, at higher levels each CDS in a pan-genome is a representative of a larger set of
orthologous/paralogous CDSs, plausibly becoming less sensitive and specific. Compared to the OrthoMCL results, it appears that on average the
xBASE-Orth results contain from 1% (at genus level) to 9.7% (phylum) additional ortholog pairs, while failing to detect from 0.5% (genus) to 14%
(phylum) OrthoMCL pairs.
doi:10.1371/journal.pone.0028388.g004
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related CDSs (26.3% vs. 19.0%) and significantly less core CDSs

related to cellular processes (7.9% vs. 21.5%).

Genome Plasticity
The term ‘species pan-genome’ was coined by Tettelin and

colleagues [41] and ‘‘includes a core genome containing genes

present in all strains and a dispensable genome composed of genes

absent from one or more strains and genes that are unique to each

strain’’. Closed pan-genomes indicate species with static genomic

content – for such species it is possible to acquire their full CDS

repertoire by sequencing enough genomes. In contrast, open pan-

genome indicates species with dynamic genomic content, which

translates into ‘‘infinite’’ species CDS repertoire - regardless of the

number of already analyzed genomes, each newly sequenced

strain can be expected to reveal some CDSs unique within species.

We investigated the open/closed pan-genome property for 34

species with 5 or more complete genomes using the technique

proposed in [42], defining new CDSs as CDSs with no orthologs

(cut-off 70% identity over 70% of the length of the shorter peptide)

and no paralogs (90%, 90% cut-offs) and using medians over 100

random genome order permutations. As shown in Figure 8, about

one third of considered species have closed pan-genomes (a.1,

Figure 9), while the rest have dynamic genomic content (a#1,

Figure 10). We compared our results with previously published

predictions available for 15 species [3,42–51] and our predictions

generally agree with published data with four exceptions shown in

gray in Figure 8. The differences are due to different cut-offs (S.

aureus), different methodologies in computing the content of the

pan-genome (P. marinus) and different strains being considered (H.

influenzae, C. jejuni). Particularly interesting is the case of H.

influenzae. Analyzing only strains isolated in North America, its

pan-genome is predicted to be large, but closed [46]. Our analysis

is based on 6 of these strains, as well as including the H. influenzae

10810 strain isolated in the UK (deposited to NCBI Nov, 2010,

accession number FQ312006), which is somehow distinct from the

remaining strains – it contains 1,914 CDSs, more than any of the

other 6 strains (average of ,1,700 CDSs) and has more species-

unique CDSs (198) than any of the other 6 strains (average of ,60

CDSs), leading to a borderline open pan-genome prediction. This

result illustrates the possible caveat of drawing general conclusions

based on closely related isolates (which Hogg and colleagues also

pointed out).

We also evaluated the 34 species by computing their genomic

fluidity [52]. Results are reported in Figure 8, where a genomic

fluidity of 0.2 implies that 20% of the CDSs in a genome pair are

unique to their host genome, while 80% are shared. The difference

between the two approaches is best illustrated considering A.

pasteurianus – the analysis of the pan-genome suggests a widely

open pan-genome; while according to the genomic fluidity

approach A. pasteurianus has one of the highest genome similarity,

due to the very small proportion of the unique CDSs found for

each genome pair.

Discussion

We have devised an approach that allows for scalable and

efficient computation of the bacterial and archaeal ortholog

annotations. In addition, due to its hierarchical nature, it is

suitable for incorporating novel complete genomes and alternative

genome annotations. The proposed xBASE-Orth exploits the

available taxonomic information by adopting a ‘‘divide and

conquer’’ approach that pragmatically trades accuracy for speed

and as a result circumvents the usual high computational cost of

ortholog prediction. However, there are several factors that affect

the quality of the xBASE-Orth computations – the problem of

horizontal gene transfer, quality of the CDS prediction, the

approximate nature of our solution, and the sequence similarity

paradigm on which it is based, as discussed next.

Figure 5. Distribution of norMD scores for the 2,384 multiple alignments. To investigate the specificity of xBASE-Orth we selected 2,384
CDSs such that: i) each CDS has at least one ortholog at each taxonomic level; ii) it has no more than 150 orthologs in total; and iii) the ortholog
groups (OGs) for each of the 2,384 CDSs are disjoint. For each of the CDSs, we fetched the orthologs predicted by xBASE-Orth, performed multiple
alignment of the sequences with ClustalW2, and scored the alignment with the norMD tool. The x-axis lists the chosen bin ranges for the norMD
value. The y-axis depicts the distribution of the observed norMD values across the bins. A value of 0.5 or greater is considered to be the cut-off value
for a good multiple alignment, indicating high level of sequence similarity. A vast majority (84%) of the chosen 2,384 OGs exhibit suitable sequence
similarity and align well, producing norMD values $0.5. It is worth noting that on average about 60% of the orthologs fetched for each of the 2,384
CDSs are at phylum and domain level – i.e. xBASE-Orth exhibits good specificity even at large evolutionary distances.
doi:10.1371/journal.pone.0028388.g005
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Our ortholog computation does not take into consideration

horizontal gene transfer, which means that for mobile genetic

elements such as bacteriophages our approach will predict CDSs

to be orthologous when they do not fit the classical Fitch definition

of orthologs, i.e. homologous proteins related via speciation [1].

However, this is part of the trade-off between speed and accuracy,

as creation and evaluation of phylogenetic trees for each CDS

family would be too computationally costly to be feasible.

Nonetheless, in almost all cases, xBASE-Orth will provide sound

inferences of homology and thereby of function.

Figure 6. List of potential bacterial core CDSs. For details on potential bacterial core CDSs, see Dataset S2; for details on potential archaeal core
CDSs, see Dataset S3.
doi:10.1371/journal.pone.0028388.g006
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Our ortholog computation approach depends on the NCBI’s

CDS annotation and is therefore affected by the quality of the

CDS prediction. The proportion of bacterial genomes (953/1288)

in which at least one HCBO was missing based on the CDS

annotation is surprisingly high (Dataset S2). For example, among

the Escherichia coli species, the genome with the highest number of

apparently missing HCBOs (ten) is E. coli APEC O1. However,

performing a search in the E. coli APEC O1 genome sequence

finds highly plausible hits for all ten HCBOs. To address this

problem, we performed a direct six-frame sequence search in all

genome sequences which miss at least one HCBO/HCAO using

PROMER [53] and a representative subset of the HCBO/HCAO

in question as a query set. In about 25% of the cases in which a

HCBO cannot be found in the annotated CDSs from a genome, a

plausible hit was found through PROMER. The implied defects in

annotation underline the need for an optimal and consistent

community-wide approach to CDS prediction. Interestingly,

performing PROMER searches for apparently missing HCAOs

suggest CDS prediction is better in archaeal genomes than in

bacteria – plausible hits were found in less than 15% of the cases.

These PROMER results have been incorporated into our final

assessments of HCBOs and HCAOs presented in Figures 6 and 7

and Datasets S2 and S3.

A comparison between our set of HCBOs (Figure 6) and the

expected bacterial core genome, based on what one would predict

to be necessary for core informational processes of transcription

and translation, reveals some unexpected absences. In some cases,

these result from the trade-off between sensitivity and speed. For

example, the ribosomal protein S16 is missing from our HCBOs,

as xBASE-Orth separates this family of proteins into two clusters –

one exclusive to Firmicutes, the other from all other bacteria

(present in 76.3% of genomes). Performing a six-frame PROMER

alignment reveals only less than 2% of all cross-cluster CDSs pairs

have detectable similarity. Being an approximate solution (using

pan-genomes rather than the full CDS collection), xBASE-Orth

fails to find this similarity, due to selecting a quite distinct CDS as

a representative of the S16s in Firmicutes.

Ribosomal protein S21 is also absent from our HCBOs. The

S21 proteins are separated into several ortholog groups – the

largest cluster, present in 71.5% of genomes, contains CDSs from

all phyla except Deferribacteres; two clusters for Cyanobacteria;

three clusters for Tenericutes; four clusters for Chloroflexi and

eight clusters for Proteobacteria. All S21 proteins in Deferribac-

teres are grouped together and form the second largest cluster

including S21s from some Alphaproteobacteria and Deltaproteo-

bacteria genomes. An attempt to reconcile the two largest clusters

using six-frame PROMER alignment reveals no detectable

similarity between any pair of CDSs from these two clusters.

Incorporation of more sensitive approaches to homology searching

might solve this problem, but only at the expense of time and

resources.

Another surprise stems from the fact that some CDSs, which are

correctly predicted as HCBOs, could not be found in certain

genomes, even with six-frame PROMER search. Examples

include ribosomal protein L2 (occurrence rate 99.9%) not found

in Streptococcus mutans UA159, ribosomal protein L6 (occurrence

rate 99.8%) not found in Granulibacter bethesdensis CGDNIH1,

ribosomal protein L11 (occurrence rate 99.8%) not found in

Thermoanaerobacter mathranii subsp. mathranii str. A3 (although

ribosomal L11 methyltransferase is found and annotated in the

genome). Potential explanations for these anomalies include errors

in the processes of sequencing and assembly, extreme sequence

divergence, or a genuine absence of the HCBOs in these genomes.

In conclusion, with xBASE-Orth we have circumvented the

usual high computational cost of ortholog prediction by adopting a

‘‘divide and conquer’’ approach that pragmatically trades

accuracy for speed. We are confident that this approach will

provide scalability for some years to come and that our ortholog

dataset and predictions of HCBOs and HCAOs will provide a tool

for experimentalists to generate laboratory-testable hypotheses.

Figure 7. Functional category distribution of HCBOs. We define HCBOs (Highly Conserved Bacterial Orthologs) as CDSs that is present in at
least 90% of the considered bacterial genomes. The COG functional assignment was performed using COGnitor.
doi:10.1371/journal.pone.0028388.g007
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Figure 8. Genome plasticity for 34 species with at least 5 complete genomes. We evaluated the genome plasticity by two alternative
methods: evaluation of the pan-genome as proposed by Tettelin et al. [42] and computation of the genomic fluidity as proposed by Kislyuk et al. [52].
The former approach is based on the assumption that in processing newly sequenced genomes from given species it will become increasingly harder
to find novel CDSs and their number n grows according to a sub-linear power law n = k N2a , where N is the number of genomes considered. Species
with a.1 are said to have ‘‘closed’’ pan-genome, while species with a#1 are said to have ‘‘open’’ pan-genomes. Since the results depend on the
order in which genomes are considered, for the n values we used medians over 100 random genome order permutations for each species. In most
cases the data fitted the model well, with R-squared (goodness-of-fit) values close to 1.0. The latter approach compares each pair of genomes within
species to find the proportion of unique/shared CDSs and computes the median species genomic fluidity, where fluidity value of 0.2 implies that 20%
of CDSs are unique to their host genomes, while 80% are shared.
doi:10.1371/journal.pone.0028388.g008
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Methods

Computing Paralogs
The computation of the paralogous CDS pairs in each genome

is done using the PROMER tool [53] to perform six-frame

alignments in amino-acid space of all-vs-all CDSs in a genome,

with no explicit identity and coverage thresholds imposed. For

each discovered paralogous pair, only the highest scoring

alignment is recorded in our database.

Computing Species Orthologs
A recent study [28] concluded that for relatively close genomes,

the BBH (bidirectional best-hit, also referred to as reciprocal best-

hit, RBH) approach provides an acceptable trade-off between

accuracy and computational time. Our species ortholog compu-

tation expands the traditional BBH approach by being ‘‘synteny-

aware’’. For each possible genome pair within a species we

perform six-frame whole-genome pair-wise alignments in amino-

acid space using the PROMER tool, chosen over BLAST [54] for

its computational efficiency and its suitability for closely related

genomes. Next, the aligned regions are sorted based on their

length. Starting from the longest alignment, orthologs are detected

by a PROMER computation of the similarity between CDSs in

the aligned regions and selecting the bidirectional best hits

(identity $70%, coverage $70%). A BBH pair is predicted to

be orthologous if none of the two CDSs in the pair is part of

previously predicted ortholog pair. In this way, we are filtering out

a subset of co-orthologs which do not belong to syntenic blocks.

Computing the species orthologs as described took ,10 days on

our server and proceeding in the same accurate but computation-

ally intensive manner would require more than 10 years. The vast

majority of the time at this step was spent performing alignments

and to reduce their number at higher taxonomic levels, we

adopted the pan-genome based scheme that trades accuracy for

speed.

Computing Species Pan-Genomes
Starting with the set of all CDSs from a species, we compute all

homologous groups (paralogy cut-off: identity $90%, coverage

$90%, orthology cut-off: identity $70%, coverage $70%) using

the single-linkage approach (i.e., a CDS is clustered to a group if it

forms a pair with at least one CDS from this group). In the pan-

genome we record all CDSs for which no paralog or ortholog is

found, as well as a single representative of each homologous group.

We chose to use as a representative the CDS with the largest

number of orthologs at this level. Note that our pan-genome

computation does not depend on the order in which the genomes

are considered (a difference with the traditional sequential

inclusion pan-genome computation [41]) – starting with and

using all CDSs results in more biologically representative and

,2% smaller species pan-genomes. While this difference is smaller

at species level, it grows more substantial at higher taxonomic

levels.

Computing Genus and Higher Level Orthologs
The synteny-aware BBH approach we used for computing

species orthologs is not suitable for ortholog prediction in more

Figure 9. Species with closed pan-genomes. x-axis: number of genomes considered (N in the power law model), y-axis: number of new CDSs
discovered at each iteration (n in the power law model), the curve fitted as power trendline (Excel 2007).
doi:10.1371/journal.pone.0028388.g009
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Figure 10. Species with open pan-genomes. x-axis: number of genomes considered (N in the power law model), y-axis: number of new CDSs
discovered at each iteration (n in the power law model), the curve fitted as power trendline (Excel 2007).
doi:10.1371/journal.pone.0028388.g010
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phylogenetically distant genomes [11]. We compute orthologs at

genus and higher levels as follows. First, the pan-genomes of all

species in a genus is computed, as described above. Next, the

collection of the species pan-genomes is given as input to

OrthoMCL, rather than the full genus CDS collection.

OrthoMCL performs an all-versus-all protein BLAST of the

CDSs, detects the BBH pairs above user-specified match and e-

value thresholds and augments the 1:1 BBH pairs with in-paralogs

using bootstrapping and Markov matrices. We refer to the

OrthoMCL result as the set of ‘‘explicit’’ ortholog pairs. At the

last step in our algorithm, the set of explicit orthologs are

expanded by mapping them to each inter-species pair of genomes

using the already computed species ortholog and genome paralog

data. For example, if CDS X from species A forms an explicit

ortholog pair with CDS Y from species B, then each homolog of X

in species A forms an ‘‘implicit’’ ortholog pair with each homolog

of Y in species B and all such implicit pairs are added to the set of

ortholog pairs. The orthologs at family, order, class, phylum, and

domain levels are computed in similar manner, adjusting the

OrthoMCL parameter values accordingly (min peptide

length = 33 aa, max percentage of stop codons = 2%, e-value

cut-off = 161025, I = 1.5, percent match cut-off = 65% at genus

level, 60% family, 55% order, 50% class, 45% phylum and 40% at

domain level).

Computing Genus and Higher Level Pan-Genomes
Computing the pan-genomes at genus and higher levels is done

in a manner similar to the one for species pan-genomes. Starting

with the collection of pan-genomes of all species within a genus,

replace each explicit orthologous group with a single representative

CDS - the one with the largest number of genus orthologs (both

explicit and implicit). Note that we do not consider the implicit

genus orthologs data in pruning the genus pan-genome - although

it will result in significantly smaller pan-genomes, it will negatively

affect the accuracy of the computation for higher taxonomic levels.
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