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Abstract

The development of resistant strains of HIV is the most significant barrier to effective long-term treatment of HIV infection.
The most common causes of resistance development are patient noncompliance and pre-existence of resistant strains. In
this paper, methods of antiviral regimen switching are developed that minimize the risk of pre-existing resistant virus
emerging during therapy switches necessitated by virological failure. Two distinct cases are considered; a single previous
virological failure and multiple virological failures. These methods use optimal control approaches on experimentally
verified mathematical models of HIV strain competition and statistical models of resistance risk. It is shown that,
theoretically, order-of-magnitude reduction in risk can be achieved, and multiple previous virological failures enable greater
success of these methods in reducing the risk of subsequent treatment failures.
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Introduction

The development of multi-drug regimens for HIV therapy has

resulted in HIV infection becoming a chronic, manageable disease

in first world countries [1]. The necessity of a three-drug regimen,

where each drug in the regimen targets separate viral epitopes, is

due to the extremely high replication and mutation rates

characteristic of HIV infection [2]. These make the evolution of

viral strains resistant to a single drug inevitable. Three drugs,

however, present a mutational barrier high enough to make such

an evolutionary occurrence unlikely [3,4]. These combinations

contain three drugs from at least two separate classes of antivirals,

including the nucleoside/nucleotide analog reverse-transcriptase

inhibitors (nRTI), non-nucleoside reverse-transcriptase inhibitors

(NNRTI), protease inhibitors (PI), and integrate inhibitors (II).

While these three- drug regimens, known as highly active

antiretroviral therapy, or HAART, are highly effective at

suppressing the virus in the long term, some patients nevertheless

experience viral load rebound, driven by the emergence of a viral

mutant resistant to all three components of their HAART

regimen.

Mutation
Mutation events in HIV replication appear to be dominated by

point-substitution events, which occur with very high frequency.

This, coupled with the high turnover rate of HIV in uncontrolled

infection, create a situation in which multi-drug resistant virus

develops frequently. When a resistant mutant emerges, it becomes

necessary to switch to a new three-drug regimen, whose

components exhibit no cross-resistance with the failed three-drug

regimen [5]. There are a limited number of independent drug

combinations. A patient who has developed viral strains resistant

to all such combinations is called Multi-Drug Resistant or MDR,

and such patients are left with few viable treatment options. It is

critical, therefore, to preserve the remaining pool of independent

HAART regimens, especially for patients who have experienced

virological failure on more than one previous regimen.

Attempts have been made to re-sensitize the virus to

previously failed regimens through the use of treatment

interruptions; the theory is that the wild-type virus, which

enjoys a competitive advantage in the absence of therapy, would

re-establish dominance and potentially drive the resistant virus

extinct through competition [6]. Although these studies showed

a brief return of susceptibility, the resistant strain quickly

returned upon re-introduction of the drug regimen, and overall

patient outcome was worse than a non-interrupted control

group. More recent approaches have focused on changing the

genetic makeup of the viral pool in MDR patients in

preparation for 4-9 drug rescue regimens known as Mega-

HAART or giga-HAART [7,8], [9], [10], [11], [12]. These

approaches showed mixed results, mostly with poor clinical

outcomes. All of these previous approaches attempted to use

treatment interruptions to manipulate the susceptibility of the

virus to regimens consisting of drugs to which resistant virus had

already emerged. None of these addressed the possibility of

using interruptions to preserve the usefulness of a naive antiviral

regimen. Also, the antiviral regimen introduced following the

interruption was always novel, implying an attempt to

manipulate susceptibility by genetic profile alone, as opposed

to manipulating viral load and genetic profile.
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Attempts have also been made to use previously failed drugs in

novel combinations in order to preserve some usefulness from

previously failed treatments in MDR patients. The problem with

this, however, is that the existing mutations represent a lowering of

the mutational barrier. The only way to overcome this in the long-

term seems to be an increase in the number of drug components

used, which may succeed at the goal of reducing viral load at the

cost of raising the side effects of the HAART drugs to an

unacceptable level. A notable exception to this was the recent

Tetriz study [13]. In this study, a drug combination using

components from previously failed regimens, including two drugs

for which the resistance mutations were known to be antagonistic.

Despite the use of only four previously failed components, this

regimen succeeding in inducing complete viral suppression in a

significant portion of the study group, strongly suggesting the

usefulness of permuted regimens. The importance of preserving

suppressive regimens has driven a number of clinical studies,

including the SWATCH study [14], which showed reduced

incidence of virological failure in patients undergoing a pre-

emptive switching schedule based on mathematical models of risk

similar to those described in the Analysis section.

Competition and Selection
The development of drug resistance in HIV infection is driven

by two phenomenon: mutation and selection. Mutation in HIV

replication occurs at a well-characterized, relatively constant rate

of approximately 3 � 10{5 substitutions per base-pair per

replication cycle [15]. Other mutation types, such as deletions,

insertions, and rotations, happen with considerably lower

frequency, and do not usually contribute to the development of

resistance. Despite this relatively high rate of mutation, the

population of virus in a treatment-naive patient contains only virus

with very few genetic changes from the nominal, or ‘‘wild-type’’

HIV sequence. This is due to the influence of selection; the wild-

type dominates in the absence of treatment because it is usually the

fittest virus in that environment. Many mutations carry a fitness

cost when compared to the wild-type sequence; viruses carrying

these mutations do not replicate as efficiently as the wild-type

virus. The various virus subtypes compete for target cells, so

selective pressures tend to drive extinct virus variants that carry

mutations.

When antiviral medication is used, the wild-type is no longer the

fittest virus; their interference with the virus’ ability to replicate is

such that the virus population will shrink exponentially. Various

mutations exist that, if present, reduce the ability of the antiviral

drugs to interfere with HIV replication; if they interfere to the

extent that the mutant virus population is able to grow overall, the

mutation can provide clinically significant resistance.

Genetic Distance and Fitness Cost
The likelihood of a particular resistance mutation emerging is

influenced by two major factors. The first is the relative fitness of

the mutation under the current treatment. This may be calculated

by considering the relative effectiveness of the mutation at

negating the effect of the drug and the relative fitness cost of the

mutation. Fitness cost, in this sense, means the decrease in the

viruses’ ability to effectively replicate in the absence of treatment as

a result of the mutation.

The second factor influencing likelihood of emergence is the

genetic distance of the resistance mutation from the existing virus

pool. This is the number of point mutations necessary to generate

the resistance mutation. If the HIV genome is considered to reside

in a sequence space, the genetic distance is equivalent to the

Hamming distance. Because mutation is a random process,

mutations with a high genetic distance are very unlikely to emerge.

Example Strains from the Stanford database. Extensive

data on resistance mutations to the antivirals listed above has been

collected online at the Stanford HIV database [16]. An example

from the database can illustrate the genetic distance calculations

referenced above. Consider a patient who developed viral

resistance to an initial therapy consisting of the NRTIs abacavir

and lamivudine and the NNRTI nevirapine (this is a standard first-

line therapy). According to the database, one set of mutations

yielding significant resistance to these three drugs is

(74V,103N,184V), that is, a substitution of valine for leucine in

position 74 of the viral reverse transcriptase protein, a substitution

of asparagine for lysine in position 103, and a substitution of valine

for methionine in position 184. Together, these mutations require

at least three point substitutions from the wild-type genome (the

number may be higher, as multiple sequences may code for the

same amino acid), giving us a genetic distance of 3.

Since the (103N) mutation gives broad class resistance against

all NNRTIs, any follow-up therapy will not use NNRTIs. Neither

(74V) nor (184V) exhibit strong cross-resistance patterns with any

other NRTIs, so a possible follow-up therapy would be the two

NRTIs tenofovir and zidovudine together with the PI nelfinavir.

Clinically significant resistance to these three drugs could be

conferred by the set of mutations (41L,210W,215Y) on the viral

RT protein and the mutation (30N) on the viral protease protein.

This set of mutations has a genetic distance of 4 from the wild-

type, but a genetic distance of 6 from the mutant virus generated

in the first round of treatment. This is because the inclusion of

either the (74V) or the (184V) mutation increases the susceptibility

of the virus to both tenofovir and zidovudine. Consequently, any

resistant virus arising to the second treatment will probably arise

from the wild-type viral pool, and will probably not carry the

(74V), (103N), or (184V) mutations.

Therefore, after developing resistance sequentially to these two

treatment regimens, the patient will be carrying three viral strains;

the wild-type, one mutant carrying the (74V,103N,184V) RT

mutations and another mutant carrying the (41L,210W,215Y) RT

mutations and the (30N) Protease mutation,. A resistance mutation

to a third antiviral schedule consisting of a permutation of the first

two regimens, say abacavir, zidovudine, and nevirapine, would have

to arise from one of these parent viruses. The common resistance

mutation to this combination with the closest genetic distance to the

wild-type carries the mutations (70R, 103N, 184V, 215F) would

have a genetic distance of 5. This is also the variant with the shortest

genetic distance to the first mutant, with a genetic distance of 4 (the

inclusion of the 74V mutation eliminates the resistance to

zidovudine, so it must be undone to confer resistance). The variant

with the shortest genetic distance to the second mutant would carry

the RT mutations (41L,103N,184V,210W,215Y), and would have a

genetic distance of either 2 or 3, depending on whether the protease-

resistance mutation renders it inviable.

Genetic Distance Uncertainty. The computation of genetic

distance between HIV strains is relatively straightforward, but

there are a few ways in which the genetic distance can be over- or

under-estimated. The first is the non-uniqueness of the genetic

code; multiple genomic sequences can code for the same amino

acid. The calculations carried out in the previous section assumed

the parent genome contained the sequence with the shortest

genetic distance to the mutant; this may lead to an under-

estimation of genetic distance.

When using genetic distance to estimate mutational barriers, as

described in the next section, the existence of viable transitional

forms can result in an overestimation of genetic distance. That is,

Risk-Optimal Antiviral Switching in HIV
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while the genetic distance to the identified resistant strain may be

high, an unidentified partially resistant strain with a lower genetic

distance may provide a ‘‘stepping-stone’’ for the development of

the fully resistant strain.

Analysis

Computation of Risk as a function of Viral Load
Pre-existence. The research of Bonhoeffer and Ribeiro [17],

[3] show that emergence of resistant virus strains is most likely

caused by preexistent resistant mutants under very general

conditions. Bonhoeffer [17] also stated that the preexistence does

not mean that there is a stable coexistence of sensitive and resistant

virus. The preexistence of resistant mutant is made from mutations

between sensitive and resistant mutant. Therefore, in order to

quantify the risk of drug-resistance emergence, resistance

mutations must be modeled as a stochastic process.

Poisson Modeling. In this section, equations are presented

that determine the drug-resistance emergence risk, which is the

mutation probability from the current virus pool to a resistant

mutant for the new regimen. To accomplish this, a Poisson

distribution is used to model the mutation process. The probability

of pre-existing resistant genotypes depends upon two key variables:

the total number of active virions for each type of virus present in an

infected host, v1,v2,:::vn, and the point genetic distance from the

current virus strains to the emergent resistant mutant ve: g1,g2,:::gn.

Based on the research of [18], [19],[20], [21], the total viral burden

can be estimated. The total viral burden of actively circulating virus

can be roughly calculated as the viral titer multiplied by the volume

distribution of total body extracellular fluid which is 25-30% of body

mass [21]. For example, a 100-kg man (roughly 100-liter volume)

with a viral RNA load 10000 copies/ml would have (100000|

10000|0:3) circulating virions approximately.

Therefore, assuming a point mutation rate of m, the probability

of drug-resistance emergence risk is calculated as follows:

P(ve(St)=0jvi(St)) ~ 1{e{lr ,

lr ~
Pn

i~1

vi(St)m
gi

ð1Þ

where vi(St) is the viral load of virus subtype vi present in the

patient at the time of introduction of the naive regimen, St.

Consider the simplest case. Assuming that the current virus pool

consists of only one kind of virus strain and the genetic distance

from the current virus strain to the resistant mutant is either 1, 2 or

3. Fig. 1 shows the relationship between viral load and the risk of

resistant mutant emergence.

As Fig. 1 shows, the resistant mutant may pre-exist when the

point genetic distance is 1 or 2, but the pre-existence of resistant

mutants is very unlikely if the point genetic distance is 3 or bigger.

Consider the case where the current virus are all wild-type and the

point genetic distance is 2 between the wild-type virus and a

mutant resistant to the naive regimen. If the patient is switched to

the naive regimen when the viral load is 30000 copies/ml, the

probability that the resistant mutant will preexist is 64.11%.

However, if the switch is made when the viral load is 2000 copies/

mL, the risk is only 6.86%. Therefore, the task is to create a switch

point for the new regimen with the lowest risk.

Model
To model HIV dynamics, a set of ordinary differential

equations is used that includes terms describing the mutations

among different virus types. This model depicts the interactions

between a wild-type virus population sensitive to all antiviral drug

regimens and a resistant mutant virus population only sensitive to

treatment with some, if any, antiviral drug combinations. The

model is in shown in Equation 2

_xx ~ l{dx{bw(1{jw,1u1)(1{jw,2u2)xvw

{br(1{jr,1u1)(1{jr,2u2)xvr

_yyw ~ bw(1{jw,1u1)(1{jw,2u2)xvw{awywzlw

_yyr ~ br(1{jr,1u1)(1{jr,2u2)xvr{aryrzlr

_vvw ~ cwawyw{vwvw

_vvr ~ craryr{vrvr

ð2Þ

This model includes states x, representing CD4+ T cells that are

susceptible to infection; yk, the CD4+ T cells infected by the virus

type vk, and vk, the kth type of virus in the patient’s virus pool.

k~w for wild-type virus and k~r for resistant mutant viruses.

The definition of each parameter, and its units, may be found in

Table 1.

CD4+ T cells are generated from their source at rate l and

disappear at rate d . The target cells are infected by the viral strain

vk at rate of bk and the therapy suppresses the infection by strain vj

with efficacy jk,iui, where jk,i is the maximum effectiveness of

antiviral regimen ui on virus strain vk.

The infected CD4+ T cells yk are created first by the infection

from target cells x with virus vk that are generated at a rate bk.

Secondly, there is a contribution due to the activation from long-

lived reservoirs at rate lk. The infected CD4+ T cells die with a

rate of ak.

The virus vk are created from infected CD4+ T cells yk. Virus,

vk, die with a rate of vk. These equations are arbitrarily scalable to

any number of viral species.

Model identification parameters. To apply the system of

equations describing the evolution of viral loads and CD4+T cells

to a specific individual, the parameters of the nonlinear differential

equations need to be estimated. Using patient data from the

AutoVac study [22], a Bayesian estimation technique (specifically,

the MCMC, Monte Carlo Markov Chain, method) is used to

Figure 1. Resistance emergence risk vs. viral load.
doi:10.1371/journal.pone.0027047.g001
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identify the parameters for this model. In the AutoVac study,

HIV patients had viral load measurements taken at a 1-day

interval during a series of short treatment interruptions. The data

available for estimation is limited to a relatively few values of viral

loads after an interruption of medication and reintroduction. In

this work, the approach of Huang [23] is used in applying a

Bayesian nonlinear mixed-effects model. For the simplified

model, there are six parameters to estimate: l, the generation

rate of the target cells, d, the death rate of the target cells, bw, the

infection rate for the wild type virus, aw, the death rate of the cells

infected with the wild type virus, cw, the number of viral particles

emitted per infected cell, and vw, the death rate of viral particles.

The generation rates for the wild and resistant virus from long-

term reservoirs are assumed to be a small, known constant, and j
is assumed to be 1. Since the data is so limited, the parameters for

the resistant virus are not identified from the data. Instead, they

are assumed for the purposes of this paper to be proportional to

the parameters for wild-type according to the ratio of viral fitness,

with a nominal ratio of 0.5. In practice, this ratio could be

estimated from in vitro fitness data available for most common

mutation patterns.

Parameter estimates were generated for each of 12 patients. For

each patient, treatment was interrupted and after a period of time,

the treatment was restarted. This cycle of interrupting and

reinstating the treatment is repeated 3 or 4 times. The MCMC

procedure produced 200,000 possible combinations of parameters

that are consistent with the patients’ data. From this result, the

marginal probability densities for of the six parameters can be

established. Among the 12 patients, 3 of them have no detectable

virus after an interruption and another 3 appear to be subject to

multiple large exogenous disturbances (likely viral blips) which are

not accounted for in our model, and result in poor fits. The results

of the other 6 patients by using this identification method are

shown in Fig. 2.

Multiple previously failed therapies
In the case of patients who have failed one or more drug

regimens previously, the need to preserve the remaining regimens

becomes all the more important. Interestingly, the previously

failed regimens provide additional control inputs which can be

used to reduce the risk of failure for the new regimen at a lower

systemic cost than is possible when only one failing regimen is

available to use.

Regimen Cycling. The multiple failed regimens allow two

options for achieving a transient reduction in viral load. Cycling

through the previously failed regimens before returning to the

currently failing regimen is one such option. Consider a patient

with viral dynamics described by Equation 2 who has developed

virus strains vr1 and vr2 resistant to two previous treatment

regimens u1 and u2. If the viral strains resistant to those regimens

are susceptible to the current regimen, they will have decayed to

very low levels, and will take some time to re-emerge. Assuming no

cross resistance, the currently dominant viral strain is likely

susceptible to the original drug regimen u1 to which the strain vr1

developed resistance. Strictly speaking, so long as R0(vr1,u1)w
R0(vr2,u1) and R0(vr1,u2)vR0(vr2,u2), where R0 is the basic

reproductive ratio defined as

R0(vi,uj)~
bilci(1{ji,juj)

daivi

ð3Þ

then a transient viral minimum significantly lower than the steady-

state level of viral load may be achieved by this method [24].

Our approach can be formulated as an optimal control problem

in two steps. In the first step, the allowable patterns of treatment

cycling where either u1(t)~1 or u2(t)~1 at any time t are searched

to find a treatment pattern that minimizes the cost function

min
StƒTM ,u1(�),u2(�)

P(ve(St)=0jvi(St)), ð4Þ

where P(ve(St)=0jvi(St)) is the cost function defined by Equation

1 and St is the time to introduce a naive regimen. In Fig. 2, St1

and St2 represent the time to introduce a naive regimen in current

treatment strategy and our proposed treatment strategy respec-

tively. If the genetic distances between the closest strain resistant to

regimen u3 and vw,vr1, and vr2, respectively are all equal, this

optimization returns the treatment cycling schedule with the

largest decrease in total viral load prior to introducing the naive

regimen, as seen in Fig. 3. If a naive regimen was not introduced at

St2, the viral load would rebound shown as red-dash line in Fig. 3.

The treatment schedule may be fixed, or may change as the

optimization horizon TM increases, based on the actual values of

the parameters in Equation 4 [25]. Since treatment switching on

intervals faster than 1 day is not practical, the controls space is

discretized at 1 day intervals. This yields an optimization problem

with a finite search space, which can be solved in real time using

exhaustive search techniques. The second step involves robustly

estimating the time at which the minimum in the risk is achieved,

and switching to the naive regimen at this point. This study is a

subject for future research.

The achievable minimum according to this method will be

limited by the initial load levels of the various resistant viruses vri.

These in turn are determined by the length of time they have been

under suppressive therapy, and their relative prevalence in the

viral reservoirs. Using a cycling approach to achieve a risk

minimum requires tolerating a relatively high viral load for a short

period of time, which may contribute to disease progression or

increased resistance.

Permuted Regimen Introduction. A better option for

inducing a transient minimum in the case of multiple previously

failed regimens is to introduce a permuted antiviral regimen. It is

very likely that that no strain exists which is resistant to

permutations of the previously failed therapies. While an

antiviral regimen consisting of the permuted components of

previous regimens will not provide sufficient mutational barrier to

be a viable long-term option, they will allow a dramatic transient

reduction in the total viral load, and the corresponding risk of pre-

existent resistance.

In the mathematical formulation, the same cost function as

Equation 4 is applied. However, the simplified model is not

applicable for this case, because u1 and u2 are efficacies of drug

cocktails. In this case, ui is the efficacy of an individual drug.

Therefore, Equation 2 is modified as follows:

_xx ~ l{dx{
P

0ƒjƒn

bjxvj( P
0ƒiƒn

(1{jj,iui))

_yyk ~ bk( P
0ƒiƒn

(1{jk,iui))xvk{akykzlk

_vvk ~ ckyk{vkvk

ð5Þ

In this model, there are multiple virus strains, vi, where

i~1,2,3,:::, corresponding to wild-type and all existing resistant-
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type viruses. The variable lk represents the contribution from

long-live reservoir, and ui is the efficacy of the ith individual drug.

The optimization is performed to achieve the minimum cost

function defined by Equation 4 by exhaustively searching the

possible schedules for each individual drug.

When utilizing permuted regimens, the optimal switching

strategy involves switching from the failing regimen directly to a

permutation of previously failed regimens prior to introduction of

the naive regimen. Every previously dominant strain will be

susceptible to this permuted regimen, so this will result initially in

exponential decline in the total viral load. However, the reduced

genetic distance inherent in using components of previously failed

regimens means that resistance to the permuted regimen is likely to

emerge. The expected achievable risk reduction can be estimated by

assuming that the strain resistant to the permuted regimen pre-

exists, with initial conditions related to measures of genetic distance.

Assuming that the two previously dominant resistant strains vr1

and vr2 are resistant to drug combinations a+b+c and A+B+C,

respectively, then virus resistant to a permuted drug combination

such as A+b+c will pre-exist with expected initial viral load

Table 1. State and parameter definitions for Equation 2.

Symbol Definition Unit

x Susceptible CD4+ T cells cells � mL{1

yk CD4+ T cells infected by the kth-type virus cells � mL{1

lk Contribution from the long-lived reservoirs of the kth-type virus cells � mL{1 � d{1

vk Viral load of the kth-type virus copies �mL{1

l CD4+ T-cell generation rate cells � mL{1 � d{1

d CD4+ T-cell death rate d{1

bk The kth-type virus infection rate copies{1 �mL � d{1

jk,i Efficacy of the ith drug regimen on the kth-type virus

ui The ith antiviral drug regimen dosing

ak The kth-type infected cell virus-induced death rate d{1

ck The proliferation rate of the kth-type virus copies � cells{1

mmk,i Mutation rate between the kth and ith-type virus, d{1

where the point genetic distance is mk,i .

vk The kth-type virus decay rate d{1

doi:10.1371/journal.pone.0027047.t001

Figure 2. Model fitting for identified patients. Red star: experimental data (detection limit: 50 copies/mL); solid line: estimate. Unless otherwise
stated, examples in this paper use parameter values adapted from Patient 1: l~1:18 � 102 , d~0:100, bw~3:52 � 10{6 , br~3:52 � 10{6 , aw~0:299,
ar~0:599, lw~0:063, lr~0:070, cw~297, cr~297, vw~1:14, vr~1:14.
doi:10.1371/journal.pone.0027047.g002
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m vA{vr1j jH vr1(t)zm vbc{vr2j jH vr2(t), ð6Þ

where m is the pointwise mutation rate for HIV and vA{vr1j jH is

the number of point mutations in virus variant vr1 necessary to

generate a virus vA with resistance to drug A and vbc{vr2j jH is the

number of point mutations in virus variant vr2 necessary to

generate a virus vbc with resistance to drugs b and c, respectively.

Note that these are also the Hamming distances applied to the

genetic sequences of the respective viruses. Fig. 4 shows the case

where only one point mutation separates the dominant resistant

strain from a strain resistant to the permuted regimen. Standard

treatment introduces a naive regimen at switch point S1. By

introducing a permuted regimen at S1, it is possible to achieve a

greater than 2 order-of-magnitude reduction in viral load before

introducing the naive regimen at S2. The permuted regimen

provides insufficient mutational barrier to prevent resistance, so if

a switch is not made, the viral load will rebound. The reduction in

resistance emergence risk achieved by this intervention depends on

the genetic distance of the dominant strain at the switch time to

the closest strain with resistance to the naive regimen. Table 2

illustrates the achievable reduction in risk. It is clear that while a

genetic distance of 1 rules out any successful intervention, a genetic

distance of 2 or three allow a greater than 2 order-of-magnitude

reduction in the risk. Especially in the case of a genetic distance of

2, this is a dramatic change in expected outcome.

Although current guidelines [26] suggest changing drugs when

the virus load exceeds some threshold values (e.g., 1000-5000

copies/mL), finding the exact time when the viral load reaches the

threshold is unlikely, because a patient during therapy is only

tested for viral load every 3 or 4 months. The equilibrium value of

the viral load can therefore be used as the comparison benchmark.

It is worth noting that the genetic distance of 1 between the

previous viral strains and a strain resistant to the permuted

regimen, as used in this example, represents a worst-case scenario

(if the genetic distance is 0, this method cannot be used). The

example from the Stanford database in the introduction illustrates

a real-world case where this distance could be 2 or higher, yielding

even greater reductions in viral load and the corresponding risk of

pre-existent resistance.

Frequent sampling for minimum finding. Both of these

methods use optimization to find schedules that create a transient

minimum in the total viral load. Successful implementation of

these methods require accurately finding the time when this

minimum occurs and switching to a naive regimen at that point.

The exact time point of the achieved minimum may vary

considerably from its calculated point due to parameter

variation and the stochastic uncertainty in calculating initial

values of emerging resistant virus [27,28]. Also, a feedback-free

application of the schedule would be disastrous if unanticipated

resistance to the permuted regimen is present, as this would result

in the patient having uncontrolled virus replication for the

duration of the schedule. The simplest method to avoid this is

sample the viral load frequently following introduction of the

permuted regimen, and switch to the naive regimen either when

viral load reduction ceases or when a desired reduction in viral

load is achieved.

One Previously failed therapy
The case where a patient has a single previously failed regimen

had been the focus of our previous studies [29]. The only strategy

that yields effective reduction of future mutation risk in this case

involves total treatment interruptions.

Treatment interruptions and optimal scheduling. Our

objective is to find a drug-switching schedule that yields the

minimum risk, which is calculated as shown in the method in the

Analysis section. For patients with only a single previously failed

regimen, this can be achieved only through the use of interrupted

schedules of treatment. The concept is identical to that driving the

regimen cycling approach described in the previous section, except

that periods of no treatment are allowed. If the resistant virus

generated during the previous therapy has associated fitness cost

Figure 3. Multiple Previous Failures with Cycling.
doi:10.1371/journal.pone.0027047.g003
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with respect to the wild-type virus, then these periods of no

treatment allow the wild-type virus to re-establish dominance. Re-

introduction of the failing regimen will then result in a transient

decrease in total viral load before the resistant strain re-establishes

dominance.

As in the previous section, this is an optimal control problem in

two steps. The optimal schedules consist of an interruption of

length T1, to sensitize the virus, followed by the re-introduction of

the failing regimen, resulting in transient suppression of the

sensitized viral load. Before viral load rebound occurs, the naive

antiviral regimen is introduced at time T2, resulting in a greatly

reduced risk of subsequent virological failure. T1 is again

calculated to minimize the cost function of Equation 4, and T2

is the switching time that achieves this minimum.

An example is used to illustrate how our algorithm works. The

simplified model of Equation 2 is employed with the parameters

which are identified for Patient 1. Assume that the point genetic

distances vw{vej jH~ vr{vej jH~2. The optimal time for intro-

duction of the naive regimen is fixed by the initial conditions at

time T1. The optimal interruption length T1 changes as a function

of parameters; there may be a true optimum, or the optimal time

may be infinite, as shown in Fig. 5 [25]. Where there is no

minimum, the knee in the curve, where increased interruption

time yields only marginal benefit, dictates the switching time. Fig. 6

shows the associated optimal switching schedule, with viral load as

a function of time. In this case, the risk of resistance emergence is

reduced from almost 55.4% to 0.18% by applying our algorithm.

Evolutionary Risks. Treatment interruption regimens have

been associated with a high rate of resistance emergence [30], and

are consequently avoided in standard HIV therapy [26]. Careful

analysis of their use in this context is needed to avoid the possibility

of encouraging development of multi-drug resistant viral strains.

Discussion

We have presented methods to reduce the risk of drug resistance

emergence in HIV by manipulating the viral load prior to

introduction of a naive antiviral regimen. These methods rely on

creating a transient reduction in total viral load prior to

introduction of a naive regimen. If the patient has failed multiple

previous regimens, this may be accomplished either through

regimen cycling or the use of a permuted antiviral regimen. If the

patient has failed only a single previous regimen, this may be

accomplished through the use of interrupted therapy. The optimal

switching regimens are computed using simple model-based open-

loop optimal control algorithms. In all cases, the models predict

achievable order-of-magnitude reduction in the risk of resistance

to the naive regimen pre-existing its introduction.

The method proposed in this paper uses predictive models of

HIV evolution under conditions of dynamic treatment to find

treatment schedules that minimize the probability of certain

resistant strains emerging. The application of dynamical systems

and control to evolutionary systems will likely find broader

application, as problems of drug resistance continue to increase in

other areas of medicine.

While risk reduction should be achievable through any of these

three methods, regimen cycling and interrupted therapy carry an

increased risk of disease progression and/or further development

of resistant virus. For these reasons, initial clinical investigations

will focus primarily on the method of permuted regimens.

Nevertheless, the other two methods may be useful in certain

circumstances.

The problem of multi-drug resistance in HIV is extremely

widespread, and methods that preserve remaining suppressive

antiviral regimens have the potential to significant decrease

morbidity and mortality in the HIV-positive population. The

necessary next steps for implementing this method are outlined

below:

Implementation Issues and Future Works
The methods introduced in this paper have the potential to

significantly reduce the incidence of pre-existence related

treatment failure. The methods involving permuted regimens

could be applied to select groups of patients without significant

further work. These patients would have to be in a closely

monitored clinical situation, have a history of consistent viral

genotyping showing strain patterns amenable to this method, and

would have to be available for frequent viral load sampling. For

these methods to be more broadly applied, several issues involving

measurement, viral load history, and sampling frequency will need

to be addressed.

Unmodeled Phenomenon. The model of Equation 2

represents a highly reduced form of the HIV dynamics, and

neglects many known factors in HIV infection. Perhaps chief

among these is the immune response to HIV, which can change

the infection rate b and the death rate of infected cells a
significantly. There is some previous work suggesting that the

immune response can change dynamically with respect to changes

in viral load, and that the consequences of this can be significant,

potentially leading to immunological control of the virus under

some circumstances [31–33]. However, multiple previous

experiments summarized in [34] show that, once the chronic

infection stage is reached, the immune system is permanently

damaged and no longer displays such dramatic dynamic response

Figure 4. Multiple Previous Failures with Permuted Regimens.
Blue line = Standard Treatment. Red Line = Permuted Regimen
Treatment. Green Line = Viral Load Rebound.
doi:10.1371/journal.pone.0027047.g004

Table 2. Probability of resistant strain pre-existence at each
switch point vs. genetic distance.

Genetic Distance 1 2 3

Switch Point S1 1 0.93 8:83 � 10{5

Switch Point S2 1 0.0089 3:04 � 10{7

doi:10.1371/journal.pone.0027047.t002
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to changing viral loads. The excellent fits to the simplified model

over several successive treatment interruptions shown in Fig. 2

argues strongly for the sufficiency of the model of Equation 2 to

predict the dynamics of HIV during therapy changes.

Furthermore, the algorithm proposed in this paper does not

actually depend on the exact form of the model, but uses a closed-

loop sampling method to find the viral load minimum, and is

therefore robust to unmodeled phenomenon such as a changing

immune response.

Measurement issues. The methods described in this paper

rely heavily on the frequent and accurate measurement of the HIV

viral load, both for risk computation and model identification.

Viral load measurements are complicated by the existence of a

detection limit of 50 copies/mL. Targeting viral load reduction

below the limit of detection is therefore problematic. However,

reduction of viral load to this limit of detection is sufficient in most

cases to achieve a significant order-of-magnitude reduction in risk.

A second issue related to measurement is the proportion of the

measured viral load which is noninfectious. Cells with defective

integrated viral genomes may produce replication-incompetent

virus particles, and a proportion of the particles produced by all

infected cells will also be replication-incompetent. The most direct

measurement of this phenomenon estimates that between 5–13%

of the total free virus particles are capable of successfully

completing the infection process (a much lower percentage

actually complete the process, due to high inefficiencies at each

intermediate step of replication) [35]. If a model of HIV dynamics

is identified against plasma HIV RNA quantifications, which do

not differentiate between infectious and noninfectious particles,

then the estimate of the infection rate parameter b will implicitly

be multiplied by the percentage of plasma virions which are

infectious. This will not be a problem so long as all measurements

are consistent between the model identification and prediction;

estimated values of the number of infected cells will not be

affected. The method of action of protease inhibitors results in an

increase in the percentage of viruses which are noninfectious; this

reduced fraction will be implicitly captured in the estimated value

of the drug efficacy parameter j associated with the PI-containing

regimen. The proportion of measured virus that is non-infectious

will not affect the risk reduction algorithm, as the algorithm

attempts to minimize the measured virus prior to switching, which

is always proportional to the infectious virus. This phenomenon

will slightly alter the calculated risk associated with a given

measured viral load, but as the risk only depends logarithmically

on the viral load, the change due to this relatively small

proportional difference will be negligible.

A third issue, related to the second, is the fact that plasma viral

concentrations are not the same as the virus concentrations in the

lymphoid tissues, where the majority of the HIV virus resides and

the where the majority of virus dynamics occur. HIV virus

penetrates into many different tissues in the body, and there is

evidence that these tissues are sufficiently compartmentalized to

allow for divergent evolution of the virus in different compart-

ments [18–20].The conversion factor developed in [21] and used

in Equation 1 is a good first order approximation of the

relationship between plasma virus level and total viral burden. A

recent study in SHIV infected Rhesus Macaques has shown

excellent proportional correlation between viral concentrations in

plasma and various other tissue types both under treated and

untreated conditions [36], indicating that the plasma virus load is a

good surrogate measurement of total viral burden, even under

conditions of dynamic therapy. The exact ratio between plasma

viral load and total viral burden will change from patient to

patient, but this will not affect the proposed algorithm, though it

will slightly alter the calculated risk associated with a measured

viral load, as discussed above.

Choosing drug permutations. The most promising method

presented in this paper is the introduction of permuted antiviral

regimens prior to the introduction of a naive regimen. In order to

safely choose these permuted regimens, it is necessary to know

which resistant viruses are present in the patient’s viral reservoirs.

Consistent viral genotyping following every treatment failure

would provide this information; unfortunately, this is rare. It may

be possible to estimate the likely distribution of resistant viruses in

a patient based on a history of antiviral use and failure, using

genetic distance and fitness information from the HIV database.

Finding Minima. All the methods presented in this paper

induce a transient crash in the viral load, and depend on being

able to switch therapies at or near the minimum of this crash, prior

to rebound. In this paper, the method suggested for this is

consistent, frequent sampling of the viral load during the transient

period. While this should work, it is expensive both in economic

Figure 5. Achievable risk reduction as a function of interrup-
tion length.
doi:10.1371/journal.pone.0027047.g005

Figure 6. Optimal switching schedule. Treatment is interrupted at
time 0,and reintroduced at time T1. At time T2 , naive treatment is
introduced, yielding an 2 order-of-magnitude reduction in risk.
doi:10.1371/journal.pone.0027047.g006
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terms and in terms of patient burden. Optimal minimal sampling

methods to find the viral load minima with the fewest possible

measurements should solve this issue; this research is ongoing [37–

39].
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