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Abstract

Management of Graves’ orbitopathy (GO) is challenging, as no reliable, specific, and safe medical therapeutic agents have
yet been developed. We investigated the effect of quercetin in primary cultured orbital fibroblasts from GO, targeting
pathways of inflammation, aberrant accumulation of extracellular matrix macromolecules, and adipose tissue expansion.
Quercetin significantly attenuated intercellular adhesion molecule-1 (ICAM-1), interleukin (IL) -6, IL-8, and cyclooxygenase
(COX) -2 mRNA expression, and inhibited IL-1b-induced increases in ICAM-1, IL-6, and IL-8 mRNA. Increased hyaluronan
production induced by IL-1b or tumor necrosis factor-a was suppressed by quercetin in a dose- and time-dependent
manner. Treatment with noncytotoxic doses of quercetin inhibited accumulation of intracytoplasmic lipid droplets and
resulted in a dose-dependent decrease in expression of peroxisome proliferator-activated receptor c, CCAAT/enhancer-
binding protein (C/EBP) a, and C/EBPb proteins. In conclusion, inhibition of inflammation, hyaluronan production, and
adipogenesis by the natural plant product quercetin in vitro provides the basis for further study of its potential use in the
treatment of GO.
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Introduction

Graves’ disease is an autoimmune disease of the thyroid gland in

which autoantibodies bind to the thyrotropin receptor on thyroid

follicular cells, thereby activating gland function and leading to

excess production of thyroid hormones. Up to 50% of Graves’

disease patients develop manifestations pathologic in the eye,

known as Graves’ orbitopathy (GO) [1,2]. The most common

features of GO include upper eyelid retraction, edema, erythema

of periorbital tissues, and proptosis. Between 3–5% of individuals

with GO suffer from intense pain and inflammation, diplopia, and

sight-threatening compressive optic neuropathy.

An increase in connective/fatty tissues within the bony orbits is

responsible for most orbital complications in patients with severe

active GO [3]. Tissue expansion is characterized by marked

infiltration of immunocompetent cells, mainly T and B lympho-

cytes and mast cells, and the presence of abundant hydrophilic

glycosaminoglycans, predominantly hyaluronan. It is likely that

orbital adipose tissue in GO is more cellular than normal and

contains a higher proportion of preadipocytes capable of

differentiating into adipocytes [4,5].

GO is a disfiguring and often incapacitating disease that is

difficult to treat. Glucocorticoids have been used for decades and

are still indicated as the first-line treatment because of their anti-

inflammatory and immunosuppressive actions, either alone or in

combination with orbital radiotherapy [2,6]. Glucocorticoids are

mostly effective in patients with severe and active eye disease [6].

However, proptosis and longstanding extraocular muscle involve-

ment associated with fibrotic changes are poorly responsive.

Another drawback of glucocorticoid therapy is the long-term side

effects, including cushingoid features, diabetes, hypertension,

osteoporosis. No reliable, specific, and safe medical therapeutic

agents have yet been developed for GO. The development of

specific therapies targeting pathways of inflammation, adipose

tissue expansion, aberrant accumulation of extracellular matrix

macromolecules, and fibrosis is essential.

Quercetin (3, 3, 4, 5, 7-pentahydroxy flavonone) is a flavonoid

phytoestrogen, found abundantly in soybeans, vegetables, and

fruits. Quercetin affects cell cycle kinetics and proliferation and

induces apoptosis [7,8]. Quercetin has also been found to possess

antioxidant [9], anti-inflammatory [10,11], and antiadipogenic

properties [12,13,14]. Recently, Lisi et al. reported that quercetin
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reduced cell proliferation and hyaluronan release in orbital

fibroblasts when cells were incubated for 3–5 days, and the

mechanism responsible for inhibition of cell proliferation was the

induction of necrosis as well as cell cycle blockade [15].

In this study, we chose to employ noncytotoxic conditions of

quercetin exposure to investigate its inhibitory effects on

inflammation, hyaluronan production, and adipogenesis, thereby

targeting the three major mechanistic pathways of GO.

Results

Effect of quercetin on the viability of orbital fibroblasts
To determine nontoxic, concentrations of quercetin in orbital

fibroblasts, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium

bromide (MTT) assay and annexin V-fluorescence isothiocyanate

(FITC) apoptosis assay were performed. Exposure of cells to

quercetin at #100 mM for 24 h neither decreased cell viability

below 95% in both normal and GO orbital fibroblasts (Fig. 1A)

nor induced a significant level of apoptosis (less than 7%; Fig. 1B).

Therefore, treatment of cells with 100 mM quercetin for 24 h was

used to determine effects on inflammation and hyaluronan

production. For experiments testing suppression of adipogenesis,

cells in adipogenic medium were treated with quercetin (10–

200 mM) from days 1–3 of differentiation. Cell viability at day

three in the presence of 100 mM quercetin was not significantly

reduced compared to untreated cells, whereas 200 mM attenuated

cell viability to 82.3% (Fig. 1C). Therefore noncytotoxic

concentrations (50, 100 mM) of quercetin were used for 3 days

in differentiating cells cultures to find the effect of quercetin on

adipogenesis.

Effect of quercetin on the expression of mRNA of
interleukin (IL) -1b-induced proinflammatory molecules

We first examined intercellular adhesion molecule (ICAM) -1,

IL-6, IL-8 and cyclooxygenase (COX)-2 gene expression in the

absence or presence of quercetin (50 or 100 mM for 24 h),

evaluated in both GO and normal orbital fibroblasts by reverse

transcription-polymerase chain reaction (RT-PCR). These proin-

flammatory molecules were virtually undetectable in untreated

normal cell cultures (data not shown) but were detectable in GO

cells, and expression was decreased significantly by quercetin

pretreatment in a dose-dependent manner (Fig. 2A).

Then we tested for stimulation of ICAM-1, IL-6, IL-8, and

COX-2 gene expression in both normal and GO cells by IL-1b
(10 ng/ml for 16 h), with or without quercetin pretreatment.

Expression of ICAM-1, IL-6, IL-8, and COX-2 mRNA was

strongly upregulated by IL-1b in both GO and normal cells, and

there was no difference observed between GO and normal cells

(data not shown). Quercetin suppressed IL-1b-stimulated ICAM-

1, IL-6, and IL-8 mRNA similarly in both GO and normal cells in

a dose- and time-dependent manner (P,0.05). Fig. 2B shows the

dose-dependent suppressive effects of quercetin in GO orbital

fibroblasts (normal data not shown; Fig. 2B). The longer

pretreatment with quercetin resulted in greater suppression of

the IL-1b-induced upregulation of these three proinflammatory

molecules (Fig. 2C). In contrast, the IL-1b-induced COX-2

mRNA level was not significantly altered by quercetin pretreat-

ment.

To investigate the effect of quercetin on IL-10 production, we

examined IL-10 mRNA expression in GO cells cultured with

quercetin in various concentrations (0–100 mM) (Fig. S1A). IL-10

mRNA expression was very weak in control cells, and was not

affected by the quercetin treatment. IL-1b (10 ng/ml) did not

Figure 1. Effect of quercetin on cell viability and apoptosis in
preadipocyte orbital fibroblasts and differentiating orbital
fibroblasts. (A) Orbital fibroblasts (16105) of normal and Graves’
orbitopathy (GO) patients were seeded into 24-well culture plates and
treated with different concentrations of quercetin (10, 30, 50, or
100 mM) for 24 h. After treatment, assays with 3-(4, 5-dimethyl-thiazol-
2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) were performed to test
for viability. (B) An annexin V/FITC kit was used to detect phosphati-
dylserine externalization, as an index of apoptosis. Percentage of
stained cells with annexin V was analyzed by flow cytometry. (C) Orbital
fibroblasts (16105) of GO patients were seeded into 24-well culture
plates and treated with different concentrations of quercetin (10, 50,
100, or 200 mM) for 3 days in adipogenic medium containing
adipogenesis inducers and rosiglitazone (10 mM). After treatment,
MTT assays were performed. Results are expressed as percentage of
untreated control values presented as mean 6 standard deviation (SD).
Assays were performed at least three times in triplicate; data from a
representative experiment are shown, expressed as the differences
between treated and untreated cells.
doi:10.1371/journal.pone.0026261.g001

Effect of Quercetin in Graves’ Orbitopathy
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induce IL-10 expression, and the quercetin did not change its level

(Fig. S1 B).

Effect of quercetin on IL-1b- or tumor necrosis factor
(TNF)-a-induced hyaluronan production

Hyaluronan concentrations in culture medium did not differ

significantly between unstimulated normal (367685 ng/ml) and

GO orbital fibroblasts (557694 ng/ml; P = 0.07). However, the

IL-1b-stimulated hyaluronan concentration was significantly

higher in GO (15526234 ng/ml) than in normal cultures

(11916198 ng/ml; P = 0.023). Quercetin pretreatment (50 and

100 mM) significantly reduced the IL-1b-induced hyaluronan

release in both GO (1226 and 947 ng/ml, respectively) and

normal cells (871 and 624 ng/ml, respectively; P,0.05; Fig. 3A).

The effect of quercetin pretreatment on hyaluronan production

induced by either IL-1b or TNF-a in GO orbital fibroblasts is

shown in Fig. 3B. TNF-a (10 ng/ml) stimulated hyaluronan

production to levels similar to those induced by IL-1b, and

quercetin pretreatment significantly lowered this production in a

dose-dependent manner (all P,0.05).

Suppressive effect of quercetin on nuclear factor (NF)-kB
activation

Because the NF-kB signaling pathway regulates the production

of many cytokines, we investigated effects of IL-1b and quercetin

on the nuclear translocation of active NF-kB in orbital fibroblasts

from GO patients. As shown in Fig. 4A, stimulation of orbital

fibroblasts with IL-1b induced nuclear translocation of p65 NF-

kB, and quercetin dose-dependently inhibited this. We examined

the effect of quercetin using an NF-kB-dependent luciferase

reporter assay. Quercetin significantly reduced the IL-1b- or TNF-

a-induced elevation of luciferase activity in a dose-dependent

manner (Fig. 4B). To determine whether the IL-1b-stimulation of

proinflammatory gene expression was mediated by an NF-kB-

dependent pathway, SC-514, a selective IkB kinase-2 inhibitor,

was tested. We found that preincubation with SC-514 (100 mM)

for 1 h significantly decreased IL-1b-induced ICAM-1 and COX-

2 gene expression, but the decreases in IL-6 and IL-8 mRNA were

not significant (Fig. 4C), suggesting the presence of different

activation mechanisms for these proinflammatory genes.

Effect of quercetin on adipogenesis in GO orbital
fibroblasts

Confluent orbital fibroblasts from GO patients were subjected

to an adipocyte differentiation protocol for 10 days and examined

by light microscopy. Under the control adipogenic conditions

without rosiglitazone, orbital fibroblasts lost their stellate fibro-

blastic appearance and converted to a spherical adipocytic shape,

and a fraction of these cells accumulated small lipid droplets.

Visible from day 3, the lipid droplets increased in number and

enlarged in size during the 10 days of differentiation (Fig. S2 A).

The addition of rosiglitazone (10 mM) significantly increased

adipogenesis (Fig. S2 B). Treatment with IL-1b (10 ng/ml)

increased cellular accumulation of lipid droplets (Fig. S2 C), as

reported previously [16]. Combined treatment with rosiglitazone

and IL-1b further stimulated adipogenesis (Fig. S2 D).

Oil Red O staining showed that quercetin dose-dependently

decreased the size and number of intracytoplasmic lipid droplets in

cells treated with either rosiglitazone alone or in combination with

IL-1b (Fig. 5A and B). The optical density of stained cell lysates

was measured to evaluate adipocyte differentiation quantitatively

(Fig. 5C). Quercetin-treated cells showed significantly decreased

absorbance at 490 nm in a dose-dependent manner (P,0.001).

Figure 2. Effects of quercetin on ICAM-1, IL-6, IL-8, and COX-2
mRNA expression in Graves’ orbitopathy (GO) orbital fibro-
blasts. (A) Orbital fibroblasts (56105) from GO patients pretreated with
0, 50, or 100 mM quercetin for 24 h were used to analyze for ICAM-1, IL-
6, IL-8, and COX-2 mRNA expression by RT-PCR. (B) Cells pretreated as in
(A) were then stimulated with IL-1b (10 ng/ml) for 16 h, and were then
used for RT-PCR analyses. (C) RT-PCR analysis of ICAM-1, IL-6, IL-8, and
COX-2 mRNA expression, with values determined by densitometry and
normalized to GAPDH. Cells had been pretreated with 100 mM
quercetin for 6, 9, or 24 h, then stimulated with IL-1b (10 ng/ml) for
16 h. Data in each column above represent the mean relative density
ratio 6 SD of three experiments, and representative gel images are
shown below the graphs. Differences between treated and untreated
cells (*P,0.05, **P,0.001) are indicated.
doi:10.1371/journal.pone.0026261.g002

Effect of Quercetin in Graves’ Orbitopathy
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IL-1b treatment stimulated higher lipid accumulation levels, and

the stimulatory effect was inhibited by quercetin (P,0.001).

Effect of quercetin on the expression of transcriptional
regulators of adipogenesis

Western blot analysis was performed to investigate whether

quercetin affects the expression of adipogenic transcription factors.

As shown in Fig. 6, peroxisome proliferator-activated receptor

(PPAR) c and CCAAT/enhancer-binding proteins (C/EBP) a and

b were all strongly enhanced in cells treated with either

rosiglitazone or IL-1b. The protein levels were all further

increased by the combination of rosiglitazone and IL-1b.

Quercetin dose-dependently and significantly attenuated the

expression of PPARc, C/EBPa, and C/EBPb in differentiated

fibroblasts treated with rosiglitazone, with or without IL-1b
(Fig. 6A, B, C, and D).

Discussion

In this study, we found that quercetin blocks three biological

processes—inflammation, aberrant accumulation of extracellular

matrix macromolecules, and adipose tissue expansion—in primary

cultured orbital fibroblasts from GO stimulated by proinflamma-

tory cytokines. Significantly, these three processes are the major

pathogenic mechanisms associated with development of GO.

In the early stage of GO, infiltrating T cells interact with orbital

fibroblasts, potentially resulting in cross-activation, further pro-

moting cytokine production and secretion of T-cell activating

factors by fibroblasts, such as IL-8 and products of COX-2 activity

[3]. Many observations support this hypothesis. For example,

stimulated fibroblasts secrete multiple cytokines, including IL-6,

which stimulates B cell differentiation and thus Graves’ disease

IgG [17]. ICAM-1 mRNA and protein are upregulated in GO

orbital fibroblasts by CD40 ligand, mainly through the NF-kB and

p38 pathways [18]. IL-1a, TNF-a, and interferon-c stimulate the

expression of ICAM-1 in GO orbital fibroblasts [19]. IL-1b
increases production of IL-6 and IL-8 in orbital fibroblasts

[20,21,22,23]. Additionally, active GO tissues have higher levels of

Figure 3. The effect of quercetin on hyaluronan production
induced by IL-1b or TNF-a in orbital fibroblasts. (A) Hyaluronan in
media of confluent orbital fibroblast cultures from GO (n = 3) and
normal (n = 3) individuals pretreated with 0, 10, 50 or 100 mM quercetin
for 24 h before IL-1b stimulation (10 ng/ml, 16 h). (B) The effect of
quercetin on hyaluronan production in GO orbital fibroblasts (n = 3)
stimulated with IL-1b (10 ng/ml, 16 h) or TNF-a (10 ng/ml, 16 h).
Triplicate measurements were averaged, and the data are expressed as
mean values 6 SD. *P,0.05 vs. cells stimulated with IL-1b or TNF-a
alone.
doi:10.1371/journal.pone.0026261.g003

Figure 4. Effect of quercetin on NF-kB activation in GO orbital
fibroblasts. (A) Cells were pretreated with quercetin for 24 h prior to
IL-1b (10 ng/ml) stimulation for 16 h, and p65 NF-kB translocation was
assayed by western blot analysis. (B) Results of assays measuring NF-kB
activity with a NF-kB-dependent luciferase reporter construct in cells
treated with quercetin (0, 50 or 100 mM, 24 h) prior to stimulation with
IL-1b or TNF-a (10 ng/ml) for 16 h. (C) RT-PCR analysis of ICAM-1, IL-6,
IL-8, and COX-2 expression in cells pretreated with NF-kB inhibitor SC-
514 (100 mM) for 1 h and then stimulated with IL-1b (10 ng/ml). PCR
bands measured by densitometry and normalized to GAPDH. *P,0.05
vs. cells stimulated with IL-1b or TNF-a alone.
doi:10.1371/journal.pone.0026261.g004

Effect of Quercetin in Graves’ Orbitopathy
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Figure 5. Effect of quercetin on adipogenesis in GO orbital
fibroblasts. (A–B) Quercetin (50 or 100 mM) treatment for the first 3
days after initiation of 10-day adipogenesis in adipogenic media
containing (A) 10 mM rosiglitazone, or (B) combined 10 mM rosiglita-
zone and 10 ng/ml IL-1b. Cells were stained with Oil Red O and
examined grossly and microscopically (640; inset 6400). (C) Cell-bound
Oil Red O was solubilized and optical density (OD) read at 490 nm to
obtain a quantitative assessment of adipogenesis. The experiments
were performed in triplicate with cells from three different donors, and
data in the column are the mean relative density ratios 6 SD of three
experiments. *P,0.001 vs. untreated control differentiated cells.
doi:10.1371/journal.pone.0026261.g005

Figure 6. Effect of quercetin on the expression of adipogenic
transcriptional regulators in differentiated orbital fibroblasts
from GO patients. (A) Quercetin (50 or 100 mM) treatment for the first
3 days after initiation of 10-day adipogenesis in adipogenic media
containing 10 mM rosiglitazone, or combined 10 mM rosiglitazone and
10 ng/ml IL-1b. After 10 days, cell lysates were subjected to western
blot analysis of PPARc, C/EBPa, and C/EBPb protein expression. The
experiments were performed in triplicate with cells from three different
donors. (B–D) Quantification by densitometry, normalized to the b-actin
level in the same sample, is shown for PPARc (B), C/EBPa (C), and C/
EBPb (D). The data in the column are the mean relative density ratios 6
SD of three experiments. *P,0.05, **P,0.001 vs. untreated control
differentiated cells.
doi:10.1371/journal.pone.0026261.g006

Effect of Quercetin in Graves’ Orbitopathy
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mRNA for IL-6 and IL-8 than inactive GO tissues [24]. In our

study, we found that quercetin inhibits ICAM-1, IL-6, IL-8, and

COX-2 gene expression in cell strains from GO donors, and it also

suppresses IL-1b-induced ICAM-1, IL-6, and IL-8 mRNA

expression in cell strains from GO and normal donors.

Considering the possible roles of ICAM-1, IL-6, IL-8, and

COX-2 in the immunologic pathogenesis of GO, prevention of

expression of these molecules could be an effective treatment for

GO.

There are conflicting reports concerning the expression of

COX-1 and -2 in orbital fibroblasts [25,26]. In our study, we

observed that COX-2 mRNA expression is significantly inhibited

by quercetin treatment in GO cell strains. We found that COX-2

mRNA is upregulated by IL-1b in both GO and normal cells;

however, quercetin did not suppress the IL-1b-induced increase of

COX-2 gene expression. Of note, the relative expression of COX-

2 mRNA stimulated by IL-1b was lower than that of ICAM-1, IL-

6, and IL-8 in all cell cultures.

We expected to observe a more significant upregulation of

proinflammatory molecule gene expression by IL-1b or TNF-a in

GO cell strains than in normal cells, but we obtained similar

results in both, in agreement with previous reports [21,22]. The

orbital fibroblast cells used in our experiments were all derived

from orbital tissues of fat-predominant patients with minimally

active GO. All seven GO patients were biochemically euthyroid

with anti-hyperthyroid medications at the time of surgery, and

their clinical activity scores were three or less. This could explain

the similar responses of GO and normal cells to IL-1b, and this

was the reason we used IL-1b to stimulate inflammation and

hyaluronan production in orbital fibroblasts from both GO and

normal donors. However, in naive normal cells without IL-1b
stimulation, mRNAs of proinflammatory molecules were not

detectable and not affected by quercetin pretreatment, whereas

those molecules were expressed at detectable levels, and their

expression was suppressed by quercetin, in GO cells. Although the

GO patients in our study had minimal inflammatory activity by

clinical criteria, the enlarged fatty tissue compressed under

pressure in the fixed bony orbits of GO patients could be exposed

to more inflammatory local conditions than normal orbital fatty

tissues.

Quercetin significantly attenuated the IL-1b- or TNF-a-induced

activity measured with an NF-kB-dependent reporter construct,

and it also inhibited IL-1b-induced NF-kB nuclear translocation,

suggesting that the anti-inflammatory action of quercetin may be

mediated by the NF-kB pathway. In our study, an NF-kB inhibitor

suppressed the IL-1b-induced ICAM-1 and COX-2 expression,

but not that of IL-6 and IL-8. This indicates that different

mechanisms are involved in the anti-inflammatory action of

quercetin. We have also tested the effect of quercetin on the

expression of IL-10, an anti-inflammatory cytokine repressing the

inflammatory cytokines such as TNF-a, IL-6 and IL-1 by activated

macrophage. The basal expression of IL-10 in GO cells was very

weak, and was not also increased by IL-1b stimulation. Either

stimulated with IL-1b or not, the quercetin did not affect the

expression of IL-10 gene. The suppressive mechanism of quercetin

on proinflammatory molecules may not be associated with IL-10.

Further investigation is required to identify the signaling pathways

involved in the action of quercetin on IL-6 and IL-8 expression in

orbital fibroblasts.

GO is characterized by an inflammation of retrobulbar tissues,

leading to accumulation of hydrophilic glycosaminoglycan, which

in turn attracts water into surrounding tissues and thereby

increases the volume of the orbital connective tissue and

extraocular muscles [27,28]. Orbital fibroblasts respond in vitro

to various mediators of inflammation, including IL-1b, by

producing excessive amounts of hyaluronan, a major glycosami-

noglycan, in the orbital tissues of GO patients [28,29]. A recent

report showed that 75 mM quercetin treatment for 5 days reduces

hyaluronan production; then when quercetin is removed,

hyaluronan production increases at a similar trend, but at a

lower level, to that observed in untreated fibroblasts [15]. It was

also reported that proliferation of orbital fibroblasts is suppressed

by continuous exposure to quercetin (75 mM for 3 days, or 30 mM

for 5 days). Judging from the increased lactate dehydrogenase

(LDH) reported to be released from these quercetin-treated cells,

and the decreased proportion of cells in G2 and S phases, cell

death or cell cycle blockade appears to be associated with

quercetin treatment. In our study, the maximum quercetin

treatment was for 24 h, and under this condition there was no

evidence for either apoptotic or necrotic effects. Therefore the

inhibitory effect of quercetin on proinflammatory molecules and

hyaluronan that we observed is not associated with nonspecific

drug cytotoxicity.

IL-1b and TNF-a are known to increase hyaluronan

production [28,29], and we found that the hyaluronan

production stimulated by IL-1b or TNF-a was significantly

inhibited by quercetin pretreatment for 24 h. This inhibition

was not associated with suppression of the NF-kB pathway by

quercetin, because NF-kB inhibitors did not reduce the level of

hyaluronan (data not shown). Further studies are needed to

identify the pathway by which quercetin inhibits hyaluronan

production.

Quercetin was reported to affect adipocytes during specific

stages of development, resulting in either inhibition of adipo-

genesis or induction of apoptosis [12,30]. Quercetin inhibited

lipid accumulation and induced apoptosis in early- and mid-

phase maturing and lipid-filled mature primary human adipo-

cytes [12]. Our microscopic results with Oil Red O staining

show that quercetin suppresses adipogenesis in orbital fibroblasts

and reduces the protein levels of adipogenesis-related transcrip-

tional factors, PPARc and C/EBPa, and their upstream

regulator, C/EBPb. The inhibitory effect of quercetin on

adipogenesis is not associated with nonspecific drug cytotoxicity,

as shown by MTT analysis of cell viability. It is known that the

PPARc and C/EBP transcription factors are expressed at

distinct phases during adipogenesis, and they have been shown

to play important roles: there is a positive feedback loop between

PPARc and C/EBPb during the terminal stages of adipogenesis

[31]. Our data suggest that quercetin exerted antiadipogenic

effects by suppressing these adipogenic transcription factors. The

potential of many natural products and various flavonoids,

including genistein, docosahexaenoic acid, epigallocatechin

gallate, quercetin, and resveratrol, to inhibit adipocyte differen-

tiation and stimulate lipolysis in adipocytes has been reported

[12–14,30,32]. These reagents could have a similar potential for

drug development in GO.

Stimulation of orbital fibroblasts with IL-1b in vitro can mimic

orbital inflammation in GO, and in our study, this cytokine

promoted all three pathological aspects of GO: inflammation,

hyaluronan production, and adipogenesis. Consistent with previ-

ous reports [16,33], we found that IL-1b stimulated adipogenesis

in orbital fibroblasts, and this may have important clinical

implications. Quercetin not only suppressed IL-1b-induced

proinflammatory molecule expression and hyaluronan production,

but also inhibited adipocyte differentiation enhanced by IL-1b.

Thus, IL-1b might present an attractive therapeutic target in GO.

We investigated the effect of quercetin on TNF-a-induced

upregulation of the same four proinflammatory molecules induced

Effect of Quercetin in Graves’ Orbitopathy
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by IL-1b, but, interestingly, quercetin did not show inhibitory

effects (data not shown).

Quercetin is now available in a high-grade purified form, and

clinical phase I–III studies can be readily performed in the near

future [34]. The beneficial effects of quercetin are supported by

the detailed findings at the molecular and cellular levels of the

specific pathways and molecules affected. However, many

questions regarding flavonoids remain to be investigated. It is

unknown whether they may contribute to the clinical benefits seen

in the epidemiologic studies. However, we believe the results of

our present study are noteworthy, and we propose that

phytochemicals, such as quercetin, could be used as lead molecules

to develop a new generation of drugs for the treatment of GO.

Treatment with quercetin could be safer and have fewer side

effects than high-dose glucocorticoids. Further research and

clinical studies are necessary to ensure the safety of quercetin

treatment and to ascertain the optimum doses for prevention and

treatment of GO, bearing in mind that phytochemicals seem to

have tissue- and concentration-specific effects.

Materials and Methods

Reagents
Quercetin (Q0125), Oil Red O, and the MTT assay kit were

purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA).

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum

(FBS), penicillin, and gentamycin were purchased from Hyclone

Laboratories, Inc. (Logan, UT, USA). Annexin V-FITC apoptosis

detection kit was purchased from BD Biosciences (Franklin Lakes,

NJ).A hyaluronan (hyaluronic acid) enzyme-linked immunosor-

bent assay (ELISA) kit was purchased from Echelon Biosciences

(Salt Lake, UT, USA). Recombinant human IL-1b and TNF-a
were purchased from R&D Systems (Minneapolis, MN, USA).

Anti-PPARc, anti-C/EBP a, anti-C/EBP b, and anti-b-actin

antibodies were all obtained from Santa Cruz Biotechnology

(Santa Cruz, CA, USA).

Cell culture and differentiation protocol
Orbital adipose/connective tissue explants were obtained from

seven GO individuals undergoing surgical decompression for

severe proptosis associated with increased orbital fat volume, and

tissue from seven control individuals with no history of GO or

autoimmune thyroid disease was obtained in the course of orbital

surgery for other noninflammatory problems (Table 1). The GO

patients were not on steroid medication for at least 3 months

before surgery and were euthyroid at the time of surgery. The

orbital adipose tissue volumes were seriously enlarged in all GO

patients. However, the clinical activity score at the time of harvest

was below four in all patients (i.e., all the GO patients were not in

an active inflammatory disease state). Orbital decompression

surgery is usually not performed in the active disease, as surgery

itself can aggravate inflammation and proptosis can recur

postoperatively. None of the patients had been previously treated

with orbital radiotherapy. The protocol for obtaining orbital

adipose/connective tissue was approved by the Institutional

Review Board of Severance Hospital, and written informed

consent was obtained from all patients.

Tissue explants were minced and placed directly in plastic

culture dishes in DMEM containing 20% FBS, penicillin (100 U/

mL), and gentamycin (20 mg/mL), allowing preadipocyte fibro-

blasts to proliferate. After fibroblasts had grown out from the

explants, monolayers were passaged serially by gently treating with

trypsin/EDTA, and cultures were maintained in 80-mm flasks

containing DMEM with 10% FBS and antibiotics. Cell cultures

were grown in a humidified 5% CO2 incubator at 37uC. The

strains were stored in liquid N2 until needed, and they were used

between the third and seventh passage.

After cells reached confluence in 6-well plates, differentiation of

adipocytes was initiated by the following protocol. The culture

medium were changed to serum-free DMEM supplemented with

33 mM biotin, 17 mM pantothenic acid, 10 mg/ml transferrin,

0.2 nM T3, 1 mM insulin (Boehringer-Mannheim, Mannheim,

Germany), and 0.2 mM carbaprostaglandin (cPGI2; Calbiochem,

Table 1. Clinical characteristics of patients in the study.

Age (y) Gender Duration of GO (y) CAS Previous GO treatment Proptosis R/L (mm) Surgery performed

GO patients:

53 F 2.2 3/7 GC 23/24 Decompression

46 F 0.8 2/7 GC 22/19 Decompression

41 F 2.3 1/7 GC 23/23 Decompression

55 F 1.4 0/7 None 20/23 Decompression

57 F 0.9 1/7 GC 22/24 Decompression

44 M 1.5 3/7 GC 25/25 Decompression

62 M 3 3/7 GC 24/19 Decompression

Controls patients:

45 F n/a 0 n/a n/a Orbital wall fracture

55 F n/a 0 n/a n/a Orbital wall fracture

35 F n/a 0 n/a n/a Orbital wall fracture

54 F n/a 0 n/a n/a Orbital wall fracture

61 M n/a 0 n/a n/a Evisceration

57 M n/a 0 n/a n/a Evisceration

48 M n/a 0 n/a n/a Evisceration

Abbreviations: CAS, clinical activity score; GC, glucocorticoids; n/a, not applicable; F, female; M, male; R/L, right or left eye.
doi:10.1371/journal.pone.0026261.t001
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La Jolla, CA, USA). For the first 4 days, 1 mM insulin, 1 mM

dexamethasone, and 0.1 mM isobutylmethylxanthine were in-

cluded in the media. The differentiation was continued for 10

days, during which the media was replaced every 3 days. A

PPARc agonist, rosiglitazone (10 mM, Cayman, Ann Arbor, MI,

USA), was added from day 1 for further stimulation of

adipogenesis.

Cell viability and apoptosis assays
To evaluate the effect of quercetin on preadipocyte orbital

fibroblast viability, orbital fibroblasts of normal and GO

patients were seeded into 24-well culture plates (16105 cells/

well) and treated with different concentrations of quercetin (10,

30, 50, or 100 mM) for 24 h. After treatment, cells were washed,

incubated with 5 mg/ml MTT solution for 4 h at 37uC, then

solubilized in ice-cold isopropanol and analyzed spectrophoto-

metrically. Absorbance of the dye was measured at 560 nm,

with background subtraction at 630 nm, with a microplate

reader (EL 340 Biokinetics Reader; Bio-Tek Instruments,

Winooski, VT, USA).

To evaluate the effect of quercetin on preadipocyte orbital

fibroblast apoptosis, an annexin V/FITC kit was used to detect

apoptotic cells. Cells were washed with isotonic phosphate-

buffered saline (PBS) and then incubated in serum-free DMEM

in the presence of different concentrations of quercetin for 6 or

24 h, after which the apoptosis assay was performed according to

the procedure recommended by the manufacturer. For flow

cytometric analysis, 16104 cells were excited at 488 nm, and

emission was measured at 530 and 584 nm to assess FITC and

propidium iodide fluorescence, respectively.

Semiquantitative RT-PCR
Total RNA was extracted with TriZol (Invitrogen, Carlsbad,

CA). cDNA was synthesized from 1 mg of total RNA in a reaction

containing 2 ml of a 10 mM dNTP mixture, 0.5 ml of recombinant

RNasin ribonuclease inhibitor, 1 ml of AMV reverse transcriptase

(15 U), reverse transcription buffer, 1 ml of Oligo(dT)15 primer

(0.5 mg; reagents from Promega Corporation, Madison, WI, USA).

PCR was performed in a reaction containing 0.25 mM dNTP,

0.25 U Taq polymerase (iNtRON Biotechnology, Inc., Korea),

10 pmol primer pair, and 3 ml cDNA, in a thermal cycler

(PerkinElmer, NY). PCR cycling conditions for amplification of

GAPDH, IL-6, and IL-8 consisted of 30 cycles of three serial

segments: 94uC for 30 s, 55uC for 1 min, and 72uC for 1 min; for

amplification of ICAM-1, 34 cycles of: 94uC for 30 s, 65uC for

30 s, and 72uC for 1 min; COX-2 was amplified in 35 cycles of:

93uC for 30 s, 60uC for 30 s, and 72uC for 30 s; IL-10 was

amplified in 35 cycles of: 94uC for 20 s, 61uC for 20 s, and 72uC
for 20 s. Primers for ICAM-1 were 59-GGC CTC AGC ACG

TAC CTC TA-39 (forward) and 59-TGC TCC TTC CTC TTG

GCT TA-39 (reverse); for IL-6, 59-TCA ATG AGG AGA CTT

GCC TG-39 (forward) and 59-GAT GAG TTG TCA TGT CCT

GC-39 (reverse); for IL-8, 59-TTG GCA GCC TTC CTG ATT

TC-39 (forward) and 59-AAC TTC TCC ACA ACC CTC TG-39

(reverse); and for COX-2, 59-GTT CCA CCC GCA GTA CAG-

39 (forward) and 59-GGA GCG GGA AGA ACT TGC-39

(reverse); and for IL-10, 59-CTG TGA AAA CAA GAG CAA

GGC-39 (forward) and 59-GAA GCT TCT GTT GGC TCCC-39

(reverse). GAPDH primers were 59-GCC AAG GTC ATC CAT

GAC AAC-39 (forward) and 59-GTC CAC CAC CCT GTT

GCT GTA-39 (reverse). Amplification bands were quantified by

densitometry and normalized against corresponding GAPDH

bands to control for PCR variability.

Hyaluronan ELISA
Orbital preadipocyte fibroblasts were grown to confluence in

12-well plates and then incubated for indicated time periods with

various concentrations of quercetin before stimulation with IL-1b
or TNF-a. Supernatants from the cell cultures were collected, and

hyaluronan concentrations were determined using a competitive

binding hyaluronan ELISA kit according to the manufacturer’s

instructions. Absorbance of reactions was measured at 405 nm,

and the percentage of binding was calculated for each sample. The

concentration of hyaluronan in the sample was determined using a

standard binding curve generated with known amounts of

hyaluronan. Samples were diluted 1:10 before analysis, and the

average of triplicate assays was determined.

Nuclear protein extraction
Orbital preadipocyte fibroblasts were plated in 100-mm dishes

at 70% confluence and then incubated with various concentrations

of quercetin for 24 h before stimulation with IL-1b for 16 h.

Nuclear proteins for NF-kB western blot analysis were then

isolated using a nuclear extraction kit (Cayman, Ann Arbor, MI)

following the manufacturer’s protocol. Briefly, cells were washed

in 1 ml ice-cold PBS/phosphatase inhibitor solution, centrifuged

at 3006 g for 5 min, resuspended in 500 ml ice-cold hypotonic

buffer, left on ice for 15 min, vortexed, and then centrifuged at

15,0006 g for 30 s. Pelleted nuclei were gently resuspended in

50 ml of ice-cold nuclear extraction buffer, vortexed for 15 s and

then placed on ice for 15 min; resuspension and incubation of

nuclei were repeated for a total of 6 times and then the nuclear

suspension was centrifuged at 15,0006 g for 5 min at 4uC.

Aliquots of the supernatant that contained soluble nuclear proteins

were frozen in liquid nitrogen and stored at 270uC.

Transfection and Luciferase Assays
Orbital fibroblasts were transfected using the LipofectAmin2000

reagent (Invitrogen). Empty vector control DNA was added to

ensure that each transfection received the same amount of total

DNA. To test the NF-kB-dependent transcriptional activity, NF-

kB-luciferase plasmid was transfected into orbital fibroblasts. After

24 h, cells were pretreated with quercetin (0, 50, or 100 mM) for

24 h prior to stimulation with IL-1b (10 ng/ml) or TNF-a (10 ng/

ml) for 16 h. Luciferase reporter assays were performed using a

luciferase kit (Promega, Madison, WI) by following the manufac-

turer’s protocol, and the luciferase reaction product was measured

with a luminometer.

Oil Red O staining of cells
Cells were stained with Oil Red O as described by Green and

Kehinde [35]. A 0.5% (w/v) stock solution of Oil Red O in

isopropanol was prepared. For the working solution, 6 ml of the

stock solution was mixed with 4 ml distilled water, left for 1 h at

room temperature, and then filtered through a 0.2-mm filter. Cells

were washed twice with 16PBS, fixed with 3.7% (w/v) formalin

in PBS for 1 h at 4uC and stained with 300 ml Oil Red O working

solution for 1 h at room temperature. The dishes were washed

with distilled water before being visualized with an Axiovert (Carl

Zeiss) light microscope and photographed at 40 and 4006
magnification with an Olympus BX60 light microscope (Olympus,

Melville, NY, USA).

To measure lipid accumulation, cell-bound Oil Red O was

solubilized with 100% isopropanol, and the optical density of the

solution was measured with a spectrophotometer at 490 nm.

Experiments for the quantitative assessment of adipogenic

differentiation were performed in triplicate in cells from different
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donors, and results were normalized to the absorbance of

untreated control differentiated cells.

Western blot assay
Differentiated cells were washed with ice-cold PBS and lysed on

ice for 30 min in cell lysis buffer consisting of 20 mM HEPES

(pH 7.2), 10% (n/n) glycerol, 10 mM Na3VO4, 50 mM NaF,

1 mM phenylmethylsulfonyl fluoride, 0.1 mM dithiothreitol,

1 mg/ml leupeptin, 1 mg/ml pepstatin, and 1% (n/n) Triton X-

100. Reagents were obtained from Sigma-Aldrich (St. Louis, MO,

USA). Lysates were centrifuged for 10 min at 12,0006 g, and cell

homogenate fractions were stored at 270uC before use. Protein

concentrations in supernatant fractions were determined by the

Bradford assay (BioRad). Equal amounts of protein (50 mg) were

boiled in sample buffer and resolved by sodium dodecyl sulfate

polyacrylamide gel electrophoresis in 10% (w/n) gels. The

separated proteins were transferred to polyvinylidene fluoride

membranes (Immobilon; Millipore, Billerica, MA), probed over-

night with primary antibodies in Tris Buffer Saline Tween 20, and

washed three times with Tris Buffer Saline Tween 20. Immuno-

reactive bands were detected with horseradish peroxidase-

conjugated secondary antibody, and the bound peroxidase was

visualized using an enhanced chemiluminescence kit (Amersham

Pharmacia Biotech) and exposure to X-ray film (Amersham

Pharmacia Biotech). The relative amount of each immunoreactive

band was quantified by densitometry and normalized to the b-

actin level in the same sample.

Statistical analysis
All experiments were performed at least three times, and

samples were assayed in duplicate each time. For statistical

analysis of semiquantitative PCR assays and western blots, the

mean value and standard deviation (SD) was calculated for

normalized measurements of each mRNA or protein from

multiple ($3) samples harvested from different individuals.

Cumulative differences at various time intervals or concentrations

of drugs were analyzed by the Friedmann test. The one-way

analysis of variance test and Tukey’s multiple-comparison test as a

post-test were performed to achieve quantitative assessment of

adipogenesis. Data between or within cell groups at different drug

concentrations and incubation times were analyzed by the t-test or

analysis of variance using the SPSS program for Windows, version

12.0.1 (SPSS, Chicago, IL, USA). A P-value of ,0.05 or ,0.001

(as specified for different experiments) was considered significant.

Supporting Information

Figure S1 Effect of quercetin on the expression of IL-10
mRNA in GO orbital fibroblasts. (A) Orbital fibroblasts

(56105) from GO patients pretreated with 0, 10, 30, 50, or

100 mM quercetin for 24 h were used to analyze for IL-10

expression by RT-PCR. (B) Cells pretreated with quercetin (0, 50

or 100 mM) for 24 hours were then stimulated with IL-1b (10 ng/

ml) for 16 h, and were then used for RT-PCR analyses. The

experiments were performed in triplicate with cells from three

different donors, and the expression of IL-10 was similarly weak in

all experiments.

(TIF)

Figure S2 Examination of prestained orbital fibroblasts
cultured in adipogenic medium under light microscopy.
Orbital fibroblasts from GO patients were differentiated in control

adipogenic medium with no additions (A), supplemented with

rosiglitazone (10 mM); (B), IL-1b (10 ng/ml); (C), or both

rosiglitazone and IL-1b (D). Magnification was 640, or 6400

(inset).

(TIF)
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