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Abstract

One of the first steps in analyzing high-dimensional functional genomics data is an exploratory analysis of such data. Cluster
Analysis and Principal Component Analysis are then usually the method of choice. Despite their versatility they also have a
severe drawback: they do not always generate simple and interpretable solutions. On the basis of the observation that
functional genomics data often contain both informative and non-informative variation, we propose a method that finds
sets of variables containing informative variation. This informative variation is subsequently expressed in easily interpretable
simplivariate components. We present a new implementation of the recently introduced simplivariate models. In this
implementation, the informative variation is described by multiplicative models that can adequately represent the relations
between functional genomics data. Both a simulated and two real-life metabolomics data sets show good performance of
the method.
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Introduction

Functional genomics aim to obtain a complete overview of the

biological response as a function of a biological perturbation that

can be induced by given experimental conditions. The biological

response can be, for instance, the expression levels of genes or

metabolite concentrations. Functional genomics experiments are

generally characterized by the generation of high-dimensional data.

One of the challenges in analyzing functional genomics data is

the extraction of relevant biological information from such high-

dimensional data sets, and to present this information in a simple

and concise way to enhance interpretation. Exploratory analysis is

usually a first step in such an analysis; examples are hierarchical

clustering [1] and dimension reduction via principal components

analysis (PCA) [2].

Exploratory analysis is often seen as providing an unbiased view

of the data. However, a price has to be paid in terms of

interpretability. For this reason, methods have been proposed that

mix a certain amount of a priori knowledge with exploratory tools to

attain more interpretable solutions. Examples of such methods are

ASCA [3] and ANOVA-PCA [4] where the experimental design

underlying the generation of the samples in the data matrix is

explicitly imposed on the analysis thereby enhancing the

interpretability of the results. These two methods are examples

of utilizing hard a priori knowledge but such knowledge is not always

available.

Our experience of analyzing functional genomics data sets over

the years is that such data - broadly speaking - usually contains

three major sources of variation: i) informative variation, ii) non-

informative variation and iii) technical variation. Informative

variation is defined as subsets of variables that show consistent and

homogeneous covariation and are thus considered to reflect

biological phenomena. The non-informative part consists of

variables that show random and/or not biologically relevant

systematic variation. The technical variation consists, for example,

in sampling and measurement error. Hence, we want to find

subsets of variables that show informative variation and discard all

other types of variation. To fullfill our goal we recently introduced

the idea of simplivariate models [5]. These models describe the

informative variation by postulating that a studied biological

phenomenon is not represented by all measured metabolites but

only by a few subsets of such compounds. These subsets can be

regarded as simplivariate components, each one accounting for a

particular underlying biological phenomenon. A crucial aspect of

the method is the choice of the model describing the relations

between the metabolites in a simplivariate component. In the very

first formulation additive models were used in an ANOVA-type

fashion and when applied to metabolomics data they showed to be

very effective in creating clusters of variables representing distinct

biochemical processes. Because of the fact that an additive

simplivariate component represents only metabolites belonging

to the same process having mutual positive correlations, they do

not have the full potential to model positively and negatively

correlated metabolites. Indeed, correlations in functional genomics

data reflect information on the relations in fold changes in

metabolites, protein concentrations or expression levels. Hence,
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subsets of tightly correlated metabolites may hint to modules and

regulatory motifs in the data.

To focus on modeling correlations, we implemented multipli-

cative simplivariate components as an example simple structure.

Multiplicative models are also the basis of PCA, hence, this

implementation is related to PCA. Several other extensions of

PCA with L0, L1 or L2 norm penalties on the loadings have

appeared to reduce the number of variables in a principal

component [6]. However, simplivariate models provide a flexible

framework in which data can be analyzed according to a specific

mathematical model chosen according to the problem being

studied and in which the choice of the simplivariate components is

data driven.

The method also gives a measure of the significance of a given

simplivariate component by comparing it to a cluster of the same

size which is randomly generated and in which the correlation

structure arises purely by chance. This procedure is implemented

to avoid overfitting due to chance correlations which is highly

relevant in analyzing high-dimensional functional genomics data.

The remainder of the paper is structured as follows. General

definitions and properties of simplivariate models are first

presented together with examples of existing models and previous

implementations which are discussed. The modeling of multipli-

cative structures is then introduced in a Singular Value

Decomposition framework. The algorithm is illustrated in detail

and general principles of Genetic Algorithms programming are

introduced. The objective function for the proposed problem is

illustrated together with the underlying necessary mathematical

machinery. Finally, the performance of the methods is illustrated

by means of simulations and two real-life NMR and GC-MS

metabolomics data sets.

Materials and Methods

Simplivariate models
Simplivariate models have been first introduced in [5] and will

be recapitulated in the following paragraph for convenience of the

reader. Although the simplivariate framework was developed to

aid the analysis of metabolomics data, it can be applied to any kind

of platform as long as the variation in the measurements can be

plausibly split into informative and non-informative variation. The

traditional approach of breaking down variation in systematic

variation and noise can be indeed too simple (or not hold at all) to

analyze complex omics data. Simplivariate models are grounded on

the observation that a data matrix X can be partitioned in

components containing subsets of (biologically) related variables

which describe experimentally measured entities such as metab-

olite concentrations, bucketed NMR spectra, expression levels of

genes. This idea can be mathematically translated by considering

that every element xij in X (where i and j run over the rows and

the columns, respectively) can be expressed as the sum of the

contribution of different components:

xij~
X

k

jijkdjkcikzeij ð1Þ

where jijk describes the informative parts of the data. In this

context, the term eij accounts for the non-informative part and

should not be confounded with the residual random variation; djk

indicates the presence (djk = 1, 0 otherwise) of the j-th variable in

the k-th simplivariate component and cik indicates the presence

(cik~1, 0 otherwise) of the i-th objects in the k-th simplivariate

component. Equation (1) implicitly assumes that all the objects

and/or variables in X can contribute to the k-th simplivariate

component but in this paper we will address only the case in which

all objects contribute to all components (i.e. cik~c~1) thus

following a 1-way clustering approach. A remark on the utility of a

2-way clustering approach is given at the end of the Results and

Discussion section. The formulation in Equation (1) allows, in

principle, for overlapping clusters, in the sense that the same

variable j can appear in more than one simplivariate component.

See Algorithm Implementation section for more details on

overlapping components.

As jijk describes the relations between the objects and the

variables in each of the simplivariate components, the actual form

of jijk depends on the particular mathematical model chosen to

model the data: the underlying idea is that biologically or

functionally related variables can be modeled according to a

specific mathematical model to be determined on the basis of the

problem being studied. In this framework only subsets of variables

contribute to those components, thus providing a final model

which is of more simple interpretation, i.e. a simplivariate model.

Different mathematical models are available and some of them

are routinely used in many statistical tools.

The most simple model is the constant model

jijk~mk ð2Þ

where every simplivariate component k is equal to a constant mk.

It is analogue to a two-mode clustering [7].

An additive model is given by

jijk~tikzrjk ð3Þ

and it is analogue to a two-way ANOVA decomposition of X [7].

This approach can be useful, for instance, when rows correspond

to different experiments according to a given experimental design.

A multiplicative model

jijk~aikbjk ð4Þ

is equivalent to a rank-1 component PCA decomposition of a

selected subset of X and it will be the subject of this paper. This is

the case when rows describe different individuals without a design.

Combination of different kinds of models are also possible to form

mixed models.

Many existing algorithms can produce simplivariate models

according to the definition in Equation (1). In our first paper [5]

we presented the implementation of both additive and multipli-

cative models in a simplivariate framework using two existing and

well known algorithms. The additive model (3) was implemented

in a plaid algorithm [8–10] which is a two mode clustering which

looks for (possibly) overlapping clusters by iteratively searching

the data to find patches of data that can be modeled by means of

an ANOVA decomposition. The multiplicative model (4) was

implemented using interpretable dimension reduction (IDR) [11]

which is an algorithm that starts from the standard PCA solutions

and, by reducing and summarizing the number of non-zero

elements of the loading vector, produces a new sparse loading

vector which is simpler to interpret.

Plaid was shown to be effective in producing clusters with

distinct biochemical meaning while IDR resulted in clusters

containing too many metabolites to be of any practical utility: the

resulting simplivariate components were not simple enough to

provide a straightforward biological interpretation. These results

are reproduced in Figure 1 and 2, showing the plaid decompo-

sition (additive model) and the IDR decomposition (multiplicative
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model) of the Escherichia coli NST 74 GC-MS data set which will be

also used in this paper. For a discussion of the biological

interpretation see [5].

Unfortunately plaid also has several drawbacks, the main being

that ANOVA-type simplivariate components do not have the

potential to model negative correlations so that an important part

of the relationships among variables is missed. Additive models

can only describe similar sized variations in different entities (such

as metabolites or enzymes) while multiplicative models can

account for correlation structures in the data. Correlations in

omics data are important as they can reflect information on fold

changes in metabolite, protein concentrations or expression levels

and to describe individual cases of mutual regulation by

metabolites/genes that can result in the definition of metabolic

or gene regulatory networks. For this reason, the introduction of a

new algorithm, able to fully model correlations like IDR while

retaining the clarity of results, was deemed necessary.

Modeling multiplicative structures
According to the philosophy of simplivariate models, we aim to

partition a given data matrix X, of size J variables and I objects,

into a (large) non-informative part and in k~1,2, . . . K informa-

tive partitions Wk (whose elements are xijk ) that can be modeled

with a predefined mathematical model able to take into account

the correlation among the variables. Wk are then subsets of the

columns of X.

Given a data matrix X, correlations among variables (columns)

can arise when they describe, for instance, metabolites belonging

to the same metabolic pathway or network or related physico-

chemical entities like peaks of the same molecule in an NMR

spectrum. These correlations translate into sets of correlated

variables, each set representing some physical and/or chemical

process. The assumption is that the correlation among this subset

of variables is the outcome of one underlying latent phenomenon.

This correlated set of variables can then be modeled with a simple

multiplicative model.

The final goal is to obtain partitions W
k

of X that can be modeled

by means of multiplicative simplivariate components (SC):

Wk~�ak�bT
k ð5Þ

where ak and bk are vectors of size I|1 and Jk|1 respectively.

According to the Singular Values Decomposition (SVD)

theorem [12], any matrix A of size I|J can be approximated

with a rank-1 singular value decomposition as follow:

A1~u1s1vT
1 ð6Þ

where u1 and v1 are the first singular vectors of size I|1 and J|1
respectively, and s1 is the corresponding largest singular value. By

exchanging a general matrix A with the k-th subset Wk of X in

Equation (6), it can be written

ŴWk~u1ks1kvT
1k ð7Þ

where ŴWk indicates the rank-1 SVD approximation of k-th subset

Wk of X. Rearranging the singular vector multiplications by

combining the singular value and the vector u1k in such a way that

âak~u1ks1k

b̂bk~v1k

ð8Þ

Equation (7) becomes

âak~âakb̂bk

T
: ð9Þ

By comparing Equations (9) and (5) it appears that a rank-1

singular value decomposition is a natural choice for modeling

multiplicative structures. The search for subset Wk of size I|Jk is

translated into the search of groups of variables that can be fitted

(i.e. approximated) by means of a rank-1 SVD. Incidentally, it

should be noted that a rank-1 SVD also has the property of being

optimal in the sense that a matrix is approximated with minimum

least squares error [13].

Algorithm Description
Search strategy. We are searching for subsets Wk of size

I|Jk by estimating variable memberships of a simplivariate

component. This can be achieved through the maximization of the

sum of squares S0k over all elements of ŴWk. In other words this

means looking for cluster of variables that can be best

approximated by the multiplicative model, that is selecting the

set of variables for which the rank-1 approximation makes sense. It

holds

S0k~
X

i

X
j

ŵw2
ij

� �
k

ð10Þ

where ŵwij

� �
k

indicates the elements of the k-th fitted simplivariate

component ŴWk.

Ideally, the maximization is over all possible subsets of variables

of sizes in-between 2 and J that can be formed from the J

variables in X. Given J variables there are
PJ

q~1

J

q

� �
possible

subsets. (See Text S1, Section S2). Due to its combinatorial nature,

this is an NP-hard problem and the time needed for this task

increases exponentially with the number of variables [14]. Genetic

Algorithms (GA) can be a convenient approach to screen a large

numbers of solutions [15].

Genetic Algorithm. Genetic Algorithms are a class of global

optimizers and rely on the maximization of an objective function

which may depend on several parameters. GA’s search the

parameter space to find an optimal solution, avoiding the risk of

being trapped in a local minimum (maximum). In addition,

finding the best subset of variables to construct Wk aiming for the

largest S0k leads to a mixed binary optimization problem. This

problem cannot be solved with standard methods like least

squares but can be overcome by, amongst others, a GA

approach; an integer type coding can indeed be written for this

kind of algorithm [7].

Although many different implementations of GA’s exist, several

steps are equal for all GA’s. We follow the schema given in [7] for

a brief outline of a GA optimization procedure and refer the

reader to [16] and [17] for an exhaustive review of principles and

Figure 1. Plaid decomposition of the E. coli data set (see section GC-MS metabolomics data set for a description) implementing aa
additive simplivariate model as in Equation 3. Figure reproduced from [5].
doi:10.1371/journal.pone.0020747.g001
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practice of Genetic Algorithms. A GA optimization procedure can

be summarized as follow:

1. Initiliazation: The GA operates on groups of solutions at a time.

A group of random solutions (population) is generated. These

random solutions are vectors of class membership labels (where

1 indicates that a variable belongs to a given SC and 0

otherwise) randomly chosen from a collection of random

vectors containing different percentages of 1 and 0 to assure

maximum representativity.

2. Evaluation: The SC is evaluated by means of an objective

function (OF). The objective function evaluates the quality of

the solutions and expresses it with a single number. The OF is

custom made and needs to be tailored according to the specific

problem under study. This topic is specifically addressed below

in the section Objective Function. Summarizing, the objective

function evaluates how well the found simplivariate component

Wk can be fitted to a rank-1 SVD as presented in Equation (9).

3. Stop: The GA usually stops when a maximum number of

generations is used or when the improvement of the solution is

below a predetermined threshold.

4. Selection: A given percentage of the best solutions in a

population are selected to form the next generation.

5. Recombination: A new population is formed by combining two

selected existing solutions (parents) to give birth to two new

solutions (children).

6. Mutation: A part of a solution is randomly selected and mutated.

For instance a 0 can be turned to 1 or vice-versa. The mutation

rate is usually kept low to avoid random behavior.

Algorithm implementation. The overall algorithm can be

summarized in the following way:

1. Autoscale the original data matrix X.

2. Find ŴWk using the Genetic algorithm search.

3. Subtract ŴWk from the corresponding columns of X. If kw1
apply a backfitting procedure for each obtained component Wk

without changing the variable memberships.

4. Repeat steps 2. to 4. for k~1,2, . . . K .

Some comments on points 1, 3 and 4 of the previous algorithm

outline.

1. Since the aim is to model correlations among variables, the

matrix X is autoscaled [18,19]. Autoscaling means that each column

of the data matrix X is subtracted by its mean and divided by its

standard deviation. This procedure is sometimes called standard-

ization or z-scoring. Additionally, autoscaling assures that

variables with smaller variance have the same a priori chance to

be selected, without further adjustments of the objective function.

3. Backfitting is a well established procedure [18] and it is

applied to improving the fit of the model. Each simplivariate

component is fitted to the residual from the model excluding the

simplivariate component selected. When the k{1-th component

is found (with kw1) the Jk{1 columns of ŴWk{1 are subtracted

from the corresponding columns of X in a such a way that

Xk~X{
Xk{1

n~1

Wn: ð11Þ

The ŴWk is re-estimated from Xk with a rank-1 SVD according to

equations (6)–(10). The next simplivariate component is then

searched on Xk (that is X is set equal to Xk in the algorithm).

The backfitting can affect the fit of the chosen simplivariate

components to the data in case of overlapping components. This

procedure does not alter the set of variables that compose the

components that have been selected in previous iterations. More

precisely, the backfitting performed after obtaining the k-th

component will not influence the subsets of variables in

components 1,2, . . . ,k, but may influence the choice of variables

in a component for larger k when variables are shared between

these components and components 1,2, . . . ,k.

4. Simplivariate models serve as an exploratory tool. Deter-

mining the exact number of significant clusters that can be inferred

from a data set is out of the scope of the simplivariate methods and

dedicated methods such as the Bayesian Information Criterion

[20], GAP statistic [21] and the knee method [22] have been

introduced for this purpose. Nevertheless, implementations of

simplivariate models in algorithms aiming to detect the actual

number of clusters in a data set can be possible. The choice of the

final number K of components to retrieve is somehow arbitrary,

although the algorithm offers a measure of the importance of the

k-th simplivariate component. This aspect is discussed in the

Objective Function section, particularly in the Subsections

dedicated to the reference distribution w and to the Scaling Term

T. A possible criterion to asses the ultimate value of K is

introduced in Results and Discussion section dedicated to the

discussion of a simulated data set. We did not investigated the

ability of the method of assessing the real number of clusters in the

data set and for convenience we presented results up to K~8
similarly to what was presented in [5].

This algorithm can in principle be applied to data sets of any

size. As all objects (rows) of the data matrix contribute to a

simplivariate component, the computational time depends solely

on the number of variables in X and on the number K of

simplivariate components one aims to retrieve.

The algorithm allows for overlapping components. This means

that the same variable(s) can be found in one or more simplivariate

components. Although this is an indication of the versatility of the

method, overlapping components do not necessarily translate into

more accurate, significant or informative results. As a matter of

fact, overlapping components are not easy to (biologically)

interpret. For instance, a PCA model consists only of overlapping

clusters (i.e. every variable contributes to every principal

component) and therefore is very difficult, if not impossible to

interpret. The same problem arises when analyzing results from

the IDR and Plaid algorithm as shown in Figures 1 and 2. In the

Results and Discussion Section we show how simplivariate

components are much more readable and easy to interpret than

plaid or IDR solutions.

Objective Function
Objective Function. The maximization of the sum of squares

S0k is a trade off between selecting simplivariate components based

on a large number of variables which may give a high sum of

squares and selecting smaller sets of more homogeneous variables

that better fit the proposed model.

Three features complicate the optimization process. First, S0k

will almost always increase when adding an additional variable.

Figure 2. IDR decomposition of the E. coli data set (see section GC-MS metabolomics data set for a description) implementing a
multiplicative simplivariate model as in Equation 4. Figure reproduced from [5].
doi:10.1371/journal.pone.0020747.g002
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Second, the combinatorial nature of the problem, paired with the

properties of the distribution of S0k values, can bias the GA’s

solutions towards clusters of size Jk&
J

2
. Third, high correlations

can occur by chance, generating simplivariate components with a

very small number of variables. Considering the number of

variables that will form the simple components, these three

phenomena bias the maximization of S0k in different and

counteracting ways. There are no easy cures of these problems.

We tackled these problems by penalizing and scaling the objective

function.

We devised an objective function Ek which consists of two terms

Ek~
S0k{W �

0k

T(I ,Jk)

~Sk{W �
k

ð12Þ

where S0k is the sum of squares of the elements of ŴWk, W �
0k is the

penalization term for chance correlations and T(I ,Jk) is the

scaling term. The latter terms are of the utmost importance. The

rationale behind their introduction and their role is explained in

details in the next three sections. Summarizing, the (standardized)

fit value (Sk) of the original data (S0k) is confronted with the

(standardized) distribution of fit values of random data compo-

nents (W �
k ) of the same size, an idea which is related to the gap

statistic [21]. Hence, the distance (or gap) between Sk and W �
k can

be seen as a measure of significance of the k-th simplivariate

component. In other words, the reference distribution W �
k acts as

an (empirical) null distribution to test the null hypothesis H0 that

Sk of a given simplivariate component ŴWk is equal to that of a

cluster of the same size which is randomly generated and in which

the correlation structure arises purely by chance.

Correction for chance correlations. The occurrence of

chance correlations is well known: it increases when the number of

observations is small compared to the number of variables (as

almost usually happens in the case of functional genomics datasets)

[23] and can become critical when building models for subsets of a

larger set of variables [24]. Chance correlations therefore influence

the maximization of S0k. We compensate for this effect by

introducing the correction term W �
k which is extracted from a

reference distribution w(I ,Jk). The correction term is such that

smaller clusters are penalized more than larger ones, counteracting

the bias of the simplivariate component estimation procedure

towards smaller components as caused by chance correlations.

The reference distribution w. The reference distribution

describes the variation in the sums of squares W0k of simplivariate

models of size I|Jk fitted to random data, accounting for

complete absence of structure [253]. The number of variables Jk

and objects I that are used to construct the distribution w(I ,Jk)
equals those that underly the simplivariate component that

resulted in the specific value of S0k (which also equals the size of

Wk). Since not only the location but also the scale of the

distribution is related to the size of the simplivariate component

(i.e. Jk), the penalty W �
0k is estimated as the ath percentile of the

distribution w(I ,Jk). The choice relies on the fact that the

percentile is not sensitive to extreme values of the distribution tails

and can be easily numerically computed once the reference

distribution has been generated by using the percentile definition

[26]. This is actually similar to test the null hypothesis H0 (i.e. the

correlation structure of Wk is due purely to chance correlations)

with a 0.01 confidence threshold.

The reference distribution w(I ,Jk) and W �
0k can be derived both

empirically and theoretically. We choose to derive the distribution

w from randomly generated subsets of sizes I|Jk in the range

½2,J� by permutations of the original data matrix X. This is

equivalent to randomly generating sets of autoscaled variables.

This choice is based on the need of reducing the computational

burden required by the GA while exploiting at maximum the

versatility and the power of the GA approach. More details are

given in File S1. Results presented here have been obtained with

the common 0:01 percentile but more conservative values can of

course be used as long as a proper number of permutations is

applied to sample the distributional tails [27].

The scaling term T. The scaling factor T(I ,Jk) corrects for

the combinatorial/probabilistic bias towards larger components.

The rationale behind this correction can be expressed in terms of

probability theory and results from random matrix theory. The

mathematical and theoretical machinery is explained in File S1.

Table 1 contains a summary of mathematical the notation and

symbols used through the paper.

Software
The algorithm was programmed in Matlab 7.1 R14 [28] and

the Genetic Algorithm and Direct Search [29] Toolbox was used

for the Genetic Algorithm implementation. All GA runs were

executed five-fold with different random seeds to exclude any

(un)lucky starting positions. The results from the five runs should

be similar and the best solution is chosen.

All calculations were performed on an AMD Athlon XP 2400+
2.00 GHz 512 MB RAM PC running Windows XP.

Table 1. Summary of mathematical notation and symbols.

X (matrix) bold uppercase

x (vector) bold lowercase

x (scalar) italic

xij element i,j of a matrix X

i~1, . . . ,I object index

j~1, . . . ,J variable index

X1 Rank-one singular value decomposition (SVD) of a matrix X

u1 Rank-one singular vector of size I|1

v1 Rank-one singular vector of size J|1

âak Singular vectors re-arrangement: u1ks1k

b̂bk
Singular vectros re-arrangement: v1k

k~1, . . . ,K simplivariate component index

djk simplivariate component k class membership for variables

cik simplivariate component k class membership for objects

Wk k-th cluster of size I|Jk formed by Jk columns of X

ŴWk
Rank-1 Singular Value Decomposition of Wk

ŵwij

� �
k

Elements i,j of ŴWk

S0k Sum of squares over the elements of ŴWk

Sk Standardized S0k

Ek Objective function for the k-th simplivariate component

W �
0k Penalization term for chance correlations

W �
k Standardized penalization term for chance correlations

T(I ,Jk) Scaling term

w(I ,Jk) Reference distribution for the variation of the sum of
squares for random fitted data

doi:10.1371/journal.pone.0020747.t001
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The Matlab m-files of the method presented can be downloaded

from www.bdagroup.nl.

Results and Discussion

Simulated dataset
The method will be first applied to a simulated dataset D of size

10|30 in which four multiplicative structures W
k
, k~1,2,3,4 of

size 10|5 have been added to a background random noise matrix

B of size 10|35. A heat map of the simulated dataset D is shown

in Figure S1. Structures W1, W2, W3 and W4 contain features 1{5,

16{20, 6{10 and 21{25 respectively, that can be intended to

represent biological entities, e.g., groups of biological related

metabolites.

These structures are in the form Wk~fkabT where a and b are

random vectors drawn from a standard normal distribution and fk

is a positive real number.

D~Bz½W1 W3 0 W2 W4 0 0� ð13Þ

where 0 is a zero matrix of size 10|5.

Each structure Wk is purely multiplicative and can be modeled

by ŴWk~âab̂bT , that can be decomposed in one loading and one

score vector by means of a rank-one singular value decomposition

as described in the Methods section (Equation 6). The proposed

method is able to recover the four structures containing correlated

variables as shown in Figure 3. A summary of the statistics is given

in Table 2 The order in which the four structures are recovered

[1–5,16–20,6–10,21–25] reflects the strength of the correlation

introduced in the simulated dataset: f1wf3wf2wf4. It is

Figure 3. Dataset decomposition obtained by means of a multiplicative model implemented in the algorithm described in the
Methods section. Black squares indicate that a certain variable belongs to a given simplivariate component (SC). The algorithm is able to retrieve
four simplivariate components (referred as SC 1, 2, 3, 4, 5) containing sets of correlated variables.
doi:10.1371/journal.pone.0020747.g003

Table 2. Summary of statistics parameters for the
decomposition of the a simulated data set.

k Jk Ek Sk W �
k

1 5 0.4294 1.0000 0.5706

2 5 0.4292 0.9999 0.5706

3 5 0.4289 0.9995 0.5706

4 5 0.4286 0.9992 0.5706

5 2 20.2713 0.5856 0.8569

20 out 35 variables have been selected. The fifth simplivariate component is
shown for completeness (see text).
doi:10.1371/journal.pone.0020747.t002
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interesting to note how for the fifth simplivariate component, the

value of Ek becomes negative, indicating the non significance of

that component: this component is indeed formed by chance

correlation of two background noise variables.

NMR metabolomics dataset
As a first example, we choose a data set which is part of the

Metref data set [30,31]. Forty urine samples from the same

individual (male, 35 year old) have been collected over a period of

two months and subjected to 1H Nuclear Magnetic Resonance

spectroscopy profiling on a 600 MHz spectrometer. Details about

samples collection, preparation, NMR experiments and spectra

precessing can be found in [31]. Processed spectra have been

subjected to 0.02 ppm bucketing, and obtained data has been

summarized into a 40|240 points data matrix.

An NMR spectrum of a urine sample or other biofluid can be

regarded as the superposition of the spectra of tens to thousand

small molecules of low or very low molecular weight. This reflects

the well known complex correlation structure of NMR data sets:

correlations among resonances from the same molecule appear

together with correlations occurring among peaks of different

molecules that covary because they occur in the same biological

process (e.g. the same metabolic pathway).

Ideally, the correlation between resonances from different

molecules would be high but usually not as strong as resonances

from the same molecule. However, background noise and overlap

of non-related signals, may result in the lowering of correlation

strengths and in the appearance of spurious correlations between

peaks [32]. Analysis of NMR data by means of the analysis of

correlations is therefore a challenging task; the heat map of the

correlation structure of a pool X of 40 human urine NMR spectra

is shown in Figure S2.

When applied to the Metref NMR dataset, our methods

performed well, generating simplivariate components with a

distinct biochemical and biological meaning. Summary statistics

for the first eight simplivariate components (SC) is given in Table 3

while Figure 4 gives a graphical illustration of the metabolite

composition of the SC’s. In general, each SC contains resonances

arising from molecules in the same metabolic pathway as well as of

resonances from the same molecule. It is interesting to note (see

Table 3) that the value for the sum of squares S is not decreasing.

SC 2 has a larger S value than SC 1 but has a smaller size (6

variables vs 23): it is much more penalized, resulting in a lower E
value.

Without going into all the details it is interesting to see what

kind of information can be extracted from the simple compo-

nents. As an example, SC 1 contains resonances of different

essential and non-essential aminoacids like arginine, citrulline,

glutamate, glutamine, isoleucine, leucine, ornithine, threonine

together with peaks of short chain fatty acids like 2- and 3-

hydroxybutyrate. Citrulline, ornithine and arginine are subprod-

ucts of the urea cycle [33].

Analysis of SC 3 shows how our method is able to model also

negatively correlated metabolites. SC 3 contains peaks from

hippurate and creatinine (plus two unassigned resonances), two

urinary metabolites whose clearance is known to be negatively

correlated in healthy subjects [34] (See also Figure S3).

Simplivariate component 4 contains signals from phenylacetyl-

glycine (PAG) and indoxyl sulfate (IF), two metabolites related to the

activity of gut microbiota: PAG has only recently been attributed to

gut microflora [35], while IF is a uremic toxin produced in the liver

from indole, which is a subproduct of tryptophan bacterial

metabolism [36,37]. In addition, both pyruvate and indole are

involved in tryptophan degration through an a,b-elimination

reaction [38]. Further, acetoaceate is also a subproduct, together

with pyruvate, of tryptophan catabolism [39]. Both pyruvate and

acetoacetate are intermediates of glycolysis [33].

In SC 5 we found again resonances form energy associated

metabolites [40] like 1-methyldicotinamide and lactate (which

overlaps with the threonine resonances) and peaks from fucose.

Interestingly, glycopeptides containing fucose and threonine have

been observed in human urine [41,42].

GC-MS metabolomics dataset
Escherichia coli NST 74, a phenylalanine overproducing strain

and E. coli W3110, a wild type strain, were grown in batch

fermentations at 300C in a Bioflow II (New Brunswick Scientific)

bioreactor as previously described [43]. Cells were cultivated on

MMT12 medium with glucose as carbon source, a constant pH

and a constant oxygen tension of 30%. Samples were taken at 16,

24, 40 and 48 hours and analyzed by GC-MS and LC-MS. Peaks

related to the substrates used for growth (glucose and succinate)

were removed from the data. The resulting data set consisted of 28

measurements and 188 metabolites. Extensive details on experi-

mental setup, GC-MS and LC-MS analysis and subsequent

preprocessing can be found in [43].

When applied to this dataset, the method is able to retrieve

biologically correlated metabolites in small sized simplivariate

components. Results are graphically displayed in Figure 5 while a

statistics summary is given in Table 4. Metabolites belonging to

the Krebs’ cycle (2-ketoglutarate, fumarate and malate) are found

in SC 1, similarly to what was found in [5].

Simplivariate component 4 contains molecules that are

fundamental participants in many metabolic reactions such as

carbohydrate metabolism or fat metabolism.

Three metabolites (N-acetylglutamate, N-acetylaspartate and b-

phenylpyruvate) that have been demonstrated to specifically

correlate with the phenylalanine production titer [44] are found

in SC 5. Simplivariate component 5 also contains UDP-N-AAGD

Figure 4. First eight simplivariate components from the multiplicative simplivariate decomposition of the NMR human urine
multiple collection data set. Results are grouped as much as possible for clarity and non selected metabolites are not shown. See test for details
on the biological interpretation.
doi:10.1371/journal.pone.0020747.g004

Table 3. Summary of statistics parameters for the
decomposition of the NMR metabolomics data set.

k Jk Ek Sk W �
k

1 23 0.6582 0.8050 0.1468

2 6 0.6399 0.9793 0.3394

3 11 0.5885 0.8169 0.2285

4 19 0.5737 0.7376 0.1639

5 16 0.5669 0.7483 0.1814

6 5 0.5169 0.9012 0.3843

7 13 0.5104 0.7162 0.2059

8 11 0.5057 0.7342 0.2285

114 out 240 variables have been selected.
doi:10.1371/journal.pone.0020747.t003
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Figure 5. First eight simplivariate components from the multiplicative simplivariate decomposition of the GC-MS E. coli data set.
Results are grouped as much as possible for clarity and non selected metabolites are not shown. See text for details on the biological interpretation.
doi:10.1371/journal.pone.0020747.g005
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and UDP-N-AAGDAA, cell wall precursors for peptoglycans

biosynthesis [45] together with uracil, thymine and guanine, the

three nucleobases whose concentration is above the detection limit

in this data set.

Nucleotides (CMP, UDP, UTP, CDP, UMP, UDP-glucose,

UDP-N-Acetyl-glucosamine) involved in cell wall biosynthesis and

in the cell wall machinery [46] are clustered together in cluster 6.

Metabolites related to lactate fermentation such as pyruvate and

lactate are found in SC 8.

This survey of the retrieved SC’s allows us to point out a subtle

point which is too often neglected when analyzing a dataset on the

base of correlations. We expected to retrieve the complete

phenylalanine biosynthesis pathway (erythrose-4-phosphate, 3-

dehydroquinate, shikimate-3-phosphate, chorismate, phenylpyru-

vate, and phenylalanine itself) and several compounds which are

side routes of this pathway, (i.e. 3-phenyllactate and tyrosine), but

we could only get a tight SC containing chorismate, phenylalanine

and tyrosine (SC 10, not shown). We found out that these

metabolites show low/moderate correlations: actually only the

concentrations of chorismate and phenylalanine show a moder-

ately strong correlation (r~0:74). Phenylpyruvate shows correla-

tion (r~0:68) with chorismate, but it is found in SC 12 (not shown)

together with 2-hydroxyglutarate with whom it has a stronger

correlation (r~0:77). The concentrations of all others metabolites

show low or no correlation at all.

This fact can be explained by considering the particular

experimental design underlying the generation of this data set that

contains different strains in different growth conditions. It must

indeed be borne in mind that some metabolites, measured in

different conditions, can be far from a steady state and this can result

in the alteration of correlation patterns [47], hindering the

interpretation of results in the case of metabolomics data [48].

Indeed, if one considers only samples 25–28 (NST 74 strain, oxygen

30%, pH 7.0, phosphate concentration 1; see [43] for details), a

strong correlation between chorismate and prephenate concentra-

tions (r~0:94) can be observed while those metabolites do not

correlate in the complete dataset (r~0:04). See Figure S4 for a heat

map of the correlation structure of the phenylalanine pathway.

When applying an additive model [5], the phenylalanine pathway

was retrieved at the cost of very large simplivariate components (on

average larger than 40 metabolites). Our method has the advantage

to produce tight clusters, accounting for more precise underlying

biological effects, which are more easily interpretable.

It is clear that with respect to a particular experimental design,

some metabolic pathways can be modeled with a simple

multiplicative model only if the sampling design is taken into

account. This can be done by extending this method to 2-way data

clustering, by searching the best combinations of variables and

samples that maximize the objective function. These extensions

will be the subject of a follow-up paper.

Overall remarks
As remarked in the Material and Methods section, the proposed

method is closely related to Principal Component Analysis and

IDR. Figure 2 shows the IDR implementation of the multiplicative

model (see [5] for PCA results, in particular Figure 4). It shows

that all components have contributions from all metabolites. This

fact impairs a straightforward biological interpretation of the

results and indicates at the greatest extent the need of simplicity

that can be attained in a simplivariate framework. As a conclusive

remark we can note that we did not obtain overlapping clusters

although no restrictions on this aspect are imposed neither by the

multiplicative model chosen to fit the data or by the particular

implementation (GA based) of the algorithm. This is likely due to

the larger number of variables in respect to the small number of

clusters.

Conclusions
Simplivariate models are presented as a new framework for

exploring high-dimensional functional genomics data constrained

by soft a priori knowledge to arrive at meaningful solutions. Any user-

defined simple structure can be imposed and in this paper a simple

multiplicative structure was chosen. The simulations show that the

method does what it is supposed to do. The algorithm is based on

natural computation thereby avoiding problems of local minima.

Moreover, the optimization criterion used to fit the model

explicitly selects significant components. The method is illustrated

with an NMR and an MS based metabolomics data set. In both

cases, the methods produce interpretable simplivariate compo-

nents. The method can be used for analyzing any functional

genomics data set where the underlying assumption of partitioning

of informative and non-informative variation holds.

Supporting Information

Figure S1 Heat map of a simulated dataset D containing
four correlated structures (variables 1{5 6{10, 16{20
and 21{25).

(EPS)

Figure S2 Heat map of the correlation structure of a
pool X of 40 human urine NMR spectra. The statistical

correlation matrix C~ 1
39

XT X shows the highly correlated nature

of NMR spectra.

(EPS)

Figure S3 Correlation pattern within hippurate peaks is
shown, together with the anti-correlation between
creatinine and hippurate.

(EPS)

Figure S4 Heat map of the expected correlation pattern
for the phenylalanine biosynthesis pathway for the NST
74, a phenylalanine overproducing strain and for the
wild type strain.

(EPS)

File S1 Detailed explanation of the mathematical and
theoretical machinery underlying the reference distri-
bution w and the scaling term T.

(TEX)

Table 4. Summary of statistics parameters for the
decomposition of the GC-MS metabolomic dat set.

k Jk Ek Sk W �
k

1 10 0.5983 0.8581 0.2599

2 7 0.5440 0.8646 0.3206

3 11 0.5042 0.7504 0.2426

4 8 0.4666 0.7626 0.2959

5 10 0.4510 0.7109 0.2599

6 7 0.4349 0.7555 0.3206

7 7 0.4196 0.7402 0.3206

8 11 0.4084 0.6545 0.2462

71 out 188 variables have been selected.
doi:10.1371/journal.pone.0020747.t004
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