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Abstract

Chemistry text mining tools should be interoperable and adaptable regardless of system-level implementation, installation
or even programming issues. We aim to abstract the functionality of these tools from the underlying implementation via
reconfigurable workflows for automatically identifying chemical names. To achieve this, we refactored an established
named entity recogniser (in the chemistry domain), OSCAR and studied the impact of each component on the net
performance. We developed two reconfigurable workflows from OSCAR using an interoperable text mining framework, U-
Compare. These workflows can be altered using the drag-&-drop mechanism of the graphical user interface of U-Compare.
These workflows also provide a platform to study the relationship between text mining components such as tokenisation
and named entity recognition (using maximum entropy Markov model (MEMM) and pattern recognition based classifiers).
Results indicate that, for chemistry in particular, eliminating noise generated by tokenisation techniques lead to a slightly
better performance than others, in terms of named entity recognition (NER) accuracy. Poor tokenisation translates into
poorer input to the classifier components which in turn leads to an increase in Type I or Type II errors, thus, lowering the
overall performance. On the Sciborg corpus, the workflow based system, which uses a new tokeniser whilst retaining the
same MEMM component, increases the F-score from 82.35% to 84.44%. On the PubMed corpus, it recorded an F-score of
84.84% as against 84.23% by OSCAR.
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Introduction

Text mining for the domain of chemistry is a very challenging

task because of the several semantic and syntactic styles in which

domain texts are usually expressed. Different aspects such as

named entity recognition (NER), tokenisation and acronym

detection require bespoke approaches because the complex nature

of such texts [1–5]. Chemical compounds such as:

17-a-hydroxy-16-a-methyl-3,20-dioxopregna-1,4-dien-21-yl ac-

etate

P(Cy)3

1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,

4-dihydroquinoline-3-carboxylic acid hydrochloride

illustrate the complexity of the mining task. Typical word

delimiters such as spaces, brackets, hyphens and commas cease

to bear the same meaning as in a natural language. As a

consequence, the normal text mining approaches such as

tokenisers, part-of-speech (POS) taggers and parsers will need to

be re-calibrated for this domain as already done for other domains

such as biochemistry, biomedicine etc., [6,7].

In the chemistry domain, researchers have presented a few

successful approaches to handle some tasks such as named entity

recognition [8–13]. However, these approaches usually require

reconfiguring and sometimes rewriting everytime a new training

corpus or dictionary is released [14,15]; typically this could be due

to different data format or additional information in the new

resource. For example, if the new resource is in a different format,

the whole system or at least a part of it may need to be rewritten.

With the growing number of freely available resources such as

Chemspider (http://www.chemspider.com/), Chemlist [14] and

[5,16–18] etc., the ability to reconfigure the systems becomes more

acute. Such reconfiguring takes time and the subtle changes in the

throughputs of these components, which may seem innocuous,

could result in the lowering of the net performance of a system;

this could be a direct consequence of a suboptimal composition of

the workflow. Therefore, it is imperative to configure the optimal

set by exploring the various manifestations of the different

components [19]. To be able to arrive at an optimum combination

of components, one has to substitute one component for another in

a workflow and then assess if the performance has indeed

improved. This warrants an understanding of inter-component

relations working together as a system. It would also be desirable if

components using different machine learning techniques could

easily be replaced to observe differences in performance. This

ability to reconfigure an approach has the advantage of allowing

scientists to concentrate more on science rather than format

conversion and code refactoring. Usage of workflows for chemistry

and its related disciplines has been pursued very actively in the

community [20–23]. Thus, there is already good familiarity, if not

expectation, of this methodology. For the experiments discussed in
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this paper, we implement reconfigurable workflows that are

interchangeable by drag-&-drop on the graphical user interface. To

do this we employ U-Compare [24]: an open UIMA-based [25]

framework (http://incubator.apache.org/uima/[26]) which allows

shareable components, using a common type system, to be used

together to form different workflows. In doing so, we also design

an interoperable type system for UIMA-compliant systems.

Figure 1 (b) illustrates the composition of a reconfigurable

workflow system, wherein one component can be substituted by

another component from a repository.

U-Compare framework provides a platform for reconfigurable

workflow experiments. Its UIMA-based framework provides the

necessary component repository, consisting of several shareable

components such as Genia tagger [7], Stepp tagger [27] and

OpenNLP [28] sentence splitters, for other UIMA-based compo-

nents. This extensive repository readily allows for several

combinations of components as workflows.

As a consequence, we use a set of individual components to

handle the different aspects of text mining, which together form a

workflow.

Related work for workflows

The use of several individual components to construct work-

flows is quite prevalent amongst the scientific community with

interdisciplinary sciences [29]. Bespoke workflows have been

employed in several domains such as bio-informatics and earth

sciences. Some studies have introduced workflow tools as a LegoH-

like setup [30], wherein several simple components form a

complex workflow which can be easily deployed, modified and

tested without the overhead of implementing it into a monolithic

application. Taverna [31] is such a workflow management suite

for building scientific workflows which offers loosely-coupled services.

Kepler [32] is another workflow management system for

designing, executing, processing and sharing scientific workflows.

The workflows in this context are directed graphs where the nodes

represent components, the edges represent data paths along which

data and results can flow between components.

There are also commercial products which provide environ-

ments to create and manage workflows. Pipeline Pilot [33] is an

example of a commercial application that combines workflows

with data analysis to represent information visually for informatics

and scientific business intelligence needs. Pipeline Pilot has been

extended to track bibliography in chemistry literature using a web-

based graphical user interface [34].

The UIMA platform introduced a new framework for

developing shareable components into a repository. Mellebeek

et al. show the usage of UIMA and text mining applications for

curation purposes in the domain of bio-informatics [35]. In doing

so, they demonstrate the possible synergy from a combination of

diverse expertise in biology, computer science and linguistics.

Their application was fundamental to the development of a

successful curation tool. The U-Compare [36], based on the

UIMA Framework, is an integrated text mining system which

provides a graphical user interface for easy drag-&-drop workflow

creation. It has built-in tools for evaluation and visualisations of

components and also has a number of syntactic and semantic tools

to generate workflows. Kano et al. showed the advantages of using

workflows in U-Compare framework by developing a protein-

protein interaction extraction system [37].

Our paper presents a similar workflow to [37] but in the domain

of chemistry. As a first step, we used Oscar3 [38] to extract

chemical named entities from the literature. Subsequently, we

segregated Oscar3 into separate components. Townsend et al. have

developed a methodology and a workflow (CHIC) for the

automatic semantic enrichment and structuring of legacy scientific

documents by using Oscar3[38]. U-Compare has a plug-in for

Taverna [37] which implicitly means the workflows discussed here

can be ported to Taverna, which increases the audience and

applicability of our workflows.

In the area of chemistry and text mining, Wilbur et al. employed

two approaches with an aim of separating chemical terms from

non-chemical terms [39]:

1. thesaurus-based lexical text analysis using chemical patterns

2. Bayesian classification using n-grams

Figure 1. Showing a normal workflow and a reconfigurable workflow as can be built by using U-Compare.
doi:10.1371/journal.pone.0020181.g001
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They found that the Bayesian approach had an overall

classification accuracy of 97%, while the thesaurus-based method

had an accuracy of 84%. While the work by Wilbur et al. operates

on individual words (or entities) based on thesaurus-style lists [39],

the work described here processes full papers (and abstracts),

tokenizes them for analysis and classifies chemical compounds

found in the text.

Materials and Methods

In this paper, our principal task was to elicit chemical

compounds from free-flowing text in the chemistry literature.

We have used the Sciborg [40] and PubMed [41] corpora for this

task.

Sciborg Corpus
This corpus was compiled as part of the Sciborg project [42]. It

consists of 42 articles (full papers) published in the chemical

literature which were provided by the Royal Society for Chemistry

(RSC). It was curated for linguistic analysis by [41]. This corpus

was split randomly into two groups of 14 and 28 papers, such that

they form two disjoint testing and training sets respectively.

MEMM models (discussed later in paper) were trained on the set

of 28 papers having 4102 manually annotated chemical com-

pounds and the 14 papers were used as a test set. The test set was

hand-annotated by three chemistry experts and an inter-annotator

agreement (k) of 0.91 was observed on this set.

PubMed Corpus
This corpus was compiled for linguistic analysis by Corbett et al.

[41]. It had 500 abstracts from the PubMed [43] collection. This

corpus was randomly split into 400 and 100 abstracts for training

and test sets respectively. MEMM models were trained on the 400

abstracts consisting of 4048 annotations of chemical compounds.

The test set was hand-annotated by one expert.

Models
For the MEMM-based component of our approach we

experimented with two models,

N chempaper-M: trained on Sciborg training data (28 papers)

N pubmed-M: trained on 400 PubMed abstracts

Overview of Oscar3
Oscar3 is an open extensible system for the automated

annotation of chemical entities in scientific articles [9]; it was

created as part of the Sciborg project [40]. The overall

architecture of Oscar3 is shown in Figure 2 and the individual

components are discussed below:

SciXML. SciXML is the interface used when working with

Oscar3, all forms of input (such as XML, HTML and plain text)

are converted into this format before any processing is done. It is a

form of XML markup used for providing logical structure to

scientific papers. Further information about SciXML and its

schema can be found in [40].

Tokeniser. The tokenisation with Oscar3 is chemistry

specific; chemical names are fragile to common methods of

tokenisation as they contain potential inter token and intra token

characters such as space, hyphens, brackets and comma. The

tokeniser here also refers back to the SciXML document to store

information about the start and end points of a token as well as its

content. For example, some of the tokens in data are:

aztreonam{Metallo-b-lactamase

Cu2z

C2(MONO)

C{O/C{N

Zn:::O3S(monobactam)

Chemical Entity Recognisers. Oscar3 contains two types of

chemical entity recognisers, each producing a list of named entities

as an output containing chemical annotations, such as token, types

and likelihood scores (where applicable).

Pattern Recogniser. This recogniser was initially used

before the machine learning component was introduced. It uses

deterministic finite state automata alongside ontologies (such as

CHEBI [44]), dictionaries and n-gram models to recognise the

named entities. As it relies on the regular expression based rules, it

does not use any mathematical models for classification.

MEMM Recogniser. This recogniser uses MEMM and

character level n-grams to recognise chemical entities based on

their likelihoods. The MEMM was trained using the annotated

corpora discussed earlier. Corbett et al. reported an F-score of

80.7% for a model trained on Sciborg and PubMed training sets at

a confidence threshold of 0.3 [41].

Why the new Oscar? Oscar3 is an efficient annotation tool

and is widely used within the chemistry domain. However, the

architecture is rigid and, due to its dependency on the SciXML

format and the interdependency within the different components,

it is difficult to modularise and it does not readily adapt to new and

emerging trends in annotation and corpora. This puts a limitation

on enabling and refactoring reusable components.

Oscar3 as a Workflow of Reconfigurable Components
Conceptually, Oscar3 [9] is a named entity recogniser which

classifies tokens into chemical entities based on either likelihoods

or a pattern match. Therefore, Oscar3 was divided into the

following components as shown in Figure 3. This is just one of the

many possible manifestations of the workflows; other configura-

tions such as different tokenisers and components implementing

machine learning techniques can be easily accommodated to make

a new workflow.

N A tokeniser: This tokeniser is a white-space delimited, word

eliciting component which reads content from files in text,

XML or HTML and yields tokens similar to the syntactic

token of the U-Compare type system [45]. It must be noted

here that any tokeniser that yields the syntactic tokens for a

given source file can be used as the first stage of the Oscar

workflow.

N A MEMM Component: trained on two chemistry-specific

corpora (as mentioned in the data section).

N A Pattern matching Component: based on a finite state

automaton driven regular expression matcher; the rules of

which were designed after several observations of the training

data. As a consequence, this component does not use any

statistical models for classification purposes.

Shown in Figure 4 is one of the workflows (left in the figure)

using three components (right in the figure): a file system

component to read the files which are then split into individual

tokens by the OscarTokeniser component which subsequently

feeds into the OscarMER component to classify the tokens into

chemical names.

Results

The experiments described earlier with Oscar3 and its refactored

version were designed to study the effect of tokenisation on chemical

Optimise NER for Chemistry Using Workflows

PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e20181



element identification. We present the results of modularising

Oscar3 and compare it with the existing version. Also, to present the

robustness of the workflow, we compare the performance of Oscar3

on the corpora described in the data section.

Reconfiguring Oscar3: a confidence-driven approach
The machine learning components used by the two variations of

Oscar3 (Oscar3 stand-alone version and Oscar workflow) yield a

confidence score, which is a likelihood estimate (see [41] for more

details), to show the confidence in that annotation. In order to

arrive at an optimum threshold for each of the corpora, we have

plotted the ROC (A ROC curve is a receiver operating

characteristic which plots the rate of true positives against the

rate of false positives.) curves for each of the data sets. Shown in

Figure 5 are the ROC curves for different combinations of data

sets and Oscar3 variants.

Oscar vs. Oscar: One Variant against Another
As described earlier, currently there are two types of named

entity recognisers, a MEMM-based and a pattern matching one.

The MEMM-based versions were tested with two models;

chempaper-M and pubmed-M.

The results are presented in terms of percentages of precision

(P), recall (R) and F score (F). Table 1. shows the overall

Figure 2. The original architecture of Oscar3.
doi:10.1371/journal.pone.0020181.g002

Optimise NER for Chemistry Using Workflows

PLoS ONE | www.plosone.org 4 May 2011 | Volume 6 | Issue 5 | e20181



performance of both the variants of Oscar3 on Sciborg test data.

The MEMM-driven systems were tested using both models

(chempaper-M and pubmed-M) which are trained on Sciborg and

PubMed training data respectively.

Table 2. shows the performances of Oscar3 with pattern

recogniser (Oscar3 (PAT)) and as a workflow with pattern

recogniser (Oscar workflow (PAT)) on the Sciborg test data.

As described in Corbett et al. [41], Oscar3 can be tuned to filter

out some false positives (Type I) errors based on a confidence score

derived from the logit scores (see [41] for more details). At a

confidence score of 0.42, Oscar3 as a workflow with MEMM

recorded an F-score of 84.84% while Oscar3 with MEMM

recorded 82.35% on the Sciborg data. It is also noteworthy that

although the pattern recognition variants were less accurate than

their MEMM counterparts, the workflow variant still outperforms

its monolithic parent.

Table 3 shows the performance of the Oscar3 variants when

used on the PubMed test set against models trained on Sciborg

and PubMed training data sets. It can be observed that a different

tokeniser gives an extra boost of 0.61% (84.84 by the workflow

MEMM variant as against 84.23 by the Oscar3 variant) whilst

retaining the same machine learning component and the model.

Table 4 shows the performance of pattern-recognition based

variants of Oscar3 and Oscar3 workflow on the Pubmed data.

Although having lower scores than the MEMM variants, Oscar

workflow (PAT) outperforms the Oscar3 (PAT) by 1.7%.

Wren used the single-order Markov models to distinguish

between chemical and non-chemical terms on Medline [46]

corpus with an average precision of about 82.7% [10]. The work

described here uses maximum entropy Markov models on 2

different corpora: Sciborg and PubMed. For this corpus, our

approach recorded a precision of 90.31% and a recall of 85.66%.

As the work by Wren ([10] ) and our approach vary on the corpora

and methodology, we do not see it fair to compare head-to-head;

however, our system does perform as well, if not better.

Discussion

To observe the efficacy of workflows, we have used two sets of

workflows, one each in pattern recognition based variant and the

Figure 3. Oscar3 refactored as a workflow of different components.
doi:10.1371/journal.pone.0020181.g003
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MEMM variant. As shown in Tables 1 and 2, the workflow

variants of Oscar3 achieve better performance the two variants.

On the Sciborg, the workflow-based MEMM model achieved

an F-score of 84.44% as opposed to 82.35% for Oscar3. We

observed that this increase was due to removal of the dependency

on SciXML conversions within the workflow.

A reconfigurable approach enabled us to identify the erroneous

(or underperforming) component and relate some of the errors to

Figure 4. U-Compare view of Oscar workflow. Right side of the figure shows a workflow made from the Oscar components shown on the left.
doi:10.1371/journal.pone.0020181.g004

 

 

 

 

 

 

 

 

Figure 5. ROC curves comparing the performance of various Oscar variants. In all the four different experiments, Oscar workflow has a
slight edge over the Oscar 3 variant.
doi:10.1371/journal.pone.0020181.g005
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severe dependency on SciXML conversions, when using chempaper-

M. We infer that there was a net increase in false positives due to

the noise in several inter-conversions of formats in SciXML. It

should be noted here that the dependence of Oscar3 on SciXML

was due to them both being part of the Sciborg project. This

dependency could make it difficult to adapt to newer corpora. It

was observed that the new tokenisation identified more chemical

words such as

b-lactam{zn2+
bis-monodentate

gold{sulfur

which automatically led to a decrease in false positives (Type I

errors). It also avoided wrongly tokenizing a few words such as,

diimine

mono-bidentate

which were subsequently omitted as non-chemistry words by the

Oscar3 but accurately identified by the workflow variant. In this

example, the complete chemical was ruthenium (ii) diimine, but

Oscar3 returned only ruthenium(ii) as CM, whilst the workflow

version got the complete entity. by the Oscar3 but accurately

identified by the workflow variant. This led to fewer false negatives

(Type II errors) and hence a better recall.

As the machine learning classifiers and the models they used

were exactly the same for all experiments, we infer that

tokenisation on the Sciborg test avoided partial entities for

recognition and this helped reduce both Type I and Type II

errors.

Figure 6 shows the chemical names as annotated by the Oscar

workflow in the U-Compare framework. When these entities

(which are underlined) are clicked, more information about the

entity such as confidence scores, metadata etc. is available to the

user.

Table 3 shows a decrease in precision of *3% with an increase

in recall of *4% for the PubMed test data. Perhaps, this could be

attributed to the possible shortcomings in the ability of the new

tokeniser to adapt to the biochemical entities; we are working on

enhancing the tokeniser to suit multiple domains where chemistry

plays an important role.

The current version of Oscar3, which can be downloaded from

http://sourceforge.net/projects/oscar3-chem/, had an F-score of

82.35% on Sciborg as against 80.7% achieved by [41]. This could

be due to the fact that [41] used a 3-fold cross validation, whilst we

used only 1 combination. The usage of one training set and one

test set, instead of multi-fold cross validation, was guided by the

focus of our paper, namely: the advantages of workflows for text

mining in chemistry. Also, as described in the Data section, the test

set comprised of 14 full papers, manually annotated by three

experts, whilst, the training set was annotated by a single expert.

We conjecture that this test set had enough data points to support

our inferences.

On the Sciborg (Table 1), the pattern-recognition based

workflow achieved a precision of 66.32% while the Oscar3 using

the pattern recognition module achieved a precision of 44.65%.

Again, it seems the only difference between the two variants was

the tokenisation which stems from issues relating to SciXML

conversions. This could be perceived as an example of having an

optimal combination in a workflow to derive a better performance.

The results indicate the success of workflows described in our

experiments discussed earlier. Currently, we are in the process of

converting implementations of other machine learning algorithms

Table 1. Performance (%) of different variants of Oscar on
Sciborg test data using the models trained on Sciborg data
and PubMed data.

Variants on Sciborg Model used

chempaper-M pubmed-M

Oscar3 (MEMM) P 88.24 74.76

R 77.19 65.18

F 82.35 69.64

Oscar workflow (MEMM) P 90.31 80.19

R 79.29 71.22

F 84.44 75.44

doi:10.1371/journal.pone.0020181.t001

Table 2. Performance of different Oscar pattern recogniser
versions on Sciborg.

Variants on Sciborg Scores (%)

Oscar3 (PAT) P 70.43

R 67.42

F 68.89

Oscar workflow (PAT) P 74.11

R 73.68

F 73.90

doi:10.1371/journal.pone.0020181.t002

Table 3. Performance of different variants of Oscar on
PubMed test data using the models trained on Sciborg data
and PubMed data.

Variants on PubMed Model used

chempaper-M pubmed-M

Oscar3 (MEMM) P 75.28 89.04

R 63.42 79.91

F 68.84 84.23

Oscar workflow (MEMM) P 75.06 85.66

R 64.58 84.03

F 69.43 84.84

doi:10.1371/journal.pone.0020181.t003

Table 4. Performance of different Oscar pattern recogniser
versions on Pubmed.

Variants on Pubmed Scores (%)

Oscar3 (PAT) P 44.22

R 58.24

F 50.27

Oscar workflow (PAT) P 45.64

R 60.35

F 51.97

doi:10.1371/journal.pone.0020181.t004
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such as Conditional Random Fields (CRF) into the U-Compare

framework. This will enable us to compare the performance of

different algorithms on data sets. Every time a new annotation

scheme is announced, it obliges the existing applications to adapt,

sometimes subtly and at times extensively. We have shown that a

reconfigurable system (or application) is better for such adaptation.

Conclusions
We have shown that, using a reconfigurable workflow, it is

possible to assess different components in a system to elicit the best

combination. As a consequence, it helps users to focus less on

system implementation issues. Using these workflows, we studied

the impact of using different tokenisation techniques on the task of

named entity recognition in chemistry. The potential for

expanding the scope of inter-component analysis is immense and

more so, with complex systems involving several components. We

have demonstrated the impact of tokenisation in recognising

complex named entities in chemistry, wherein a named entity may

contain two, three or even four words with numerals, Greek

letters, punctuation marks, etc. Work is currently underway to

make a CRF component so that one can freely replace MEMM

models with a CRF model and thus benefit from a pool of

machine learning algorithms for various tasks, named entity

recognition being one of them. We are also working on workflows

to combine a set of taggers and named entity recognisers for

application in the domain of chemistry, biochemistry and

biological sciences [47].
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