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Abstract

Multiple genetic modifications in pigs can essentially benefit research on agriculture, human disease and xenotransplan-
tation. Most multi-transgenic pigs have been produced by complex and time-consuming breeding programs using multiple
single-transgenic pigs. This study explored the feasibility of producing multi-transgenic pigs using the viral 2A peptide in
the light of previous research indicating that it can be utilized for multi-gene transfer in gene therapy and somatic cell
reprogramming. A 2A peptide-based double-promoter expression vector that mediated the expression of four fluorescent
proteins was constructed and transfected into primary porcine fetal fibroblasts. Cell colonies (54.3%) formed under G418
selection co-expressed the four fluorescent proteins at uniformly high levels. The reconstructed embryos, which were
obtained by somatic cell nuclear transfer and confirmed to express the four fluorescent proteins evenly, were transplanted
into seven recipient gilts. Eleven piglets were delivered by two gilts, and seven of them co-expressed the four fluorescent
proteins at equivalently high levels in various tissues. The fluorescence intensities were directly observed at the nose, hoof
and tongue using goggles. The results suggest that the strategy of combining the 2A peptide and double promoters
efficiently mediates the co-expression of the four fluorescent proteins in pigs and is hence a promising methodology to
generate multi-transgenic pigs by a single nuclear transfer.
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Introduction

The genetic modification of swine can have a multitude of

agricultural and medical applications. In agriculture, modifications

in the swine genome could alter the pork composition and produce

healthier meat, create swine strains that are more resistant to

specific diseases, reduce the embryonic losses normally observed

during the first month of swine embryogenesis, and breed animals

that are more environmentally friendly [1–4]. In the medical field,

specific genetic modifications in swine may afford organs for pig-

to-human xenotransplantation, produce recombinant products for

biomedical or nutraceutical use, as well as generate models of

human diseases for medical research and drug development

[3,5,6].

However, in many situations, multiple genes are required to be

simultaneously modified in pigs to achieve a certain goal. For

instance, in agriculture, it might be necessary to produce pigs with

several favorable traits (e.g., low fat/muscle ratio, high disease

resistance, and enriched with special nutrients), hence requiring

multiple corresponding genes to be transferred into the pigs. In

medical research, the transfer of multiple foreign genes into pigs is

necessary for generating models of various human diseases, such as

Alzheimer’s disease and Parkinson’s disease, which are related to

multiple genes or factors [7,8]. Multi-gene transfer has also been

implicated in xenotransplantation research. Organs from multi-

transgenic pigs expressing two or three complement genes

involved in immunological rejection have exhibited prolonged

xenograft survival [9–13].

Most multi-transgenic pigs have been produced by complex and

time-consuming breeding programs that utilize different single-

transgenic pigs [13,14]. Sperm-mediated gene transfer (SMGT)

has been previously reported for multi-transgenic pig production

[15], but the prolonged expression of transgenes remains

controversial [16]. A possible method to generate multi-transgenic

pigs is by transfecting multiple plasmids (each containing one gene)

simultaneously into porcine fetal fibroblasts (PFFs), which are then

used for somatic cell nuclear transfer (SCNT). However, our

previous data (unpublished) showed that the efficiency of this

method was particularly low in both cell transfection and selection

as well as in proteins co-expression in cloned piglets. The internal

ribosomal entry site (IRES), which has been conventionally used

for polycistronic expression cassettes, may be another choice for

generation of multi-transgenic pigs. However, in vectors contain-

ing the IRES sequence, the gene placed downstream is often

expressed at a much lower level than the gene located upstream

[17,18].
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The viral 2A peptide has recently become an alternative to

IRES for mediating polycistronic expression in gene therapy and

somatic cells reprogramming [19–22]. This peptide, which

originates from the picornaviruses, is approximately 19 amino

acids long and contains a conserved and functional motif D (V/

I) EXNPGP. It is also called a ‘‘self-cleaving’’ peptide or

protease site because it is able to ‘‘cleave’’ at its own C terminus

between the last two amino acids through ribosomal skipping

during protein translation. Briefly, a normal peptide bond

formation between the glycine and the proline is impaired at the

2A site, which causes the ribosome to skip and begin to translate

from the second codon, resulting in the expression of two

independent proteins from a single transcription event [23].

Considering the high ‘‘cleavage’’ efficiency at the 2A site, the 2A

peptide can be used to mediate multiple genes expression in a

polycistron. Previous studies have confirmed the feasibility of

using the 2A site for the expression of multiple transgenes

[24,25], and 2A-based polycistronic expression has gained great

success in generating induced pluripotent stem cells that require

four factors working together [20,21,26–28]. The 2A peptide has

also been shown to be more efficient in mediating multiple

transgenes expression than IRES. Chinnasamy et al. [29] have

reported that the expression of enhanced green fluorescent

proteins (EGFP) in an MGMT-2A-EGFP bicistronic vector is

approximately four times greater than that in an IRES-based

vector. And the size of 2A peptide coding sequence is much

smaller than that of IRES sequence. These unique properties of

the 2A peptide make it a promising tool for generating multi-

transgenic pigs.

In this study, a 2A peptide-based double-promoter expression

vector that mediated the expression of four fluorescent proteins,

namely, yellow fluorescent protein (ZsYellow1), enhanced cyan

fluorescent protein (ECFP), red fluorescent protein (tdTomato),

and EGFP was constructed to generate multi-transgenic pigs.

Transgenic piglets were obtained, and the expressions of the four

fluorescent proteins in these piglets were examined.

Methods

Ethics statement
The animal experiment was approved by the Department of

Science and Technology of Guangdong Province, with an

approval ID SYXK (Guangdong) 2005-0063, and complied with

the guidelines of the Animal Care Committee, Guangzhou

Institute of Biomedicine and Health, Chinese Academy of

Sciences.

Vector construction
The 2A sequence of the foot and mouth disease virus was

synthesized and inserted into the pBlueScript KS(-) vector (pBS-

2A). ZsYellow1, ECFP, tdTomato and EGFP, cDNAs were

amplified by PCR from pZsYellow1, pECFPN1, pCMV-tdTo-

mato, and pEGFPC1 (Clontech), respectively, and cloned into

pBS-2A to generate pBS-cDNA-2A vectors. The tdTomato-2A

and ZsYellow1-2A fragments were then cut off from the

corresponding vectors and inserted into pBS-EGFP-2A to

generate pBS-tdTomato-2A-EGFP-2A-ZsYellow1-2A.The tdTo-

mato-2A-EGFP-2A-ZsYellow1-2A construct was then ligated to

ECFP cDNA and inserted into a pCAG vector containing the

CAG promoter (a composite of chicken b-actin promoter and

cytomegalovirus early enhancer element) [30] to generate pCAG-

tdTomato-2A-EGFP-2A-ZsYellow1-2A-ECFP (pTGZC).

The EGFP and ECFP cDNAs were inserted into pBS-

tdTomato-2A and pBS-ZsYellow1-2A generating pBS-tdTo-

mato-2A-EGFP and pBS-ZsYellow1-2A-ECFP, respectively, to

construct a vector in which the expressions of the four fluorescent

genes were driven by two independent CAG promoters. The

tdTomato-2A-EGFP (TG) and ZsYellow1-2A-ECFP (ZC) con-

structs were then subcloned into the pCAG vector to generate

pCAG-TG and pCAG-ZC, respectively,followed by the insertion

of the CAG-ZC fragment into the pCAG-TG vector to generate

the 2A peptide-based double-promoter vector pZCpTG.

Primary cell isolation and culture
PFFs were prepared as previously described [5]. Briefly, A 35-

day-old fetus (landrace) without head, limbs, and internal organs

were minced in phosphate buffered saline (PBS) and digested in

Dulbeccos’ modified Eagle’s medium (DMEM) supplemented with

15% fetal bovine serum (FBS) (Hyclone), 1% penicillin-strepto-

mycin (Gibco), 0.32 mg/ml Collagenase IV (Sigma), and

2500 IU/ml DNase I for 6 h at 39uC. The cells were then

centrifuged at 1,000 rpm for 5 min, followed by suspension in

DMEM supplemented with 15% FBS, 0.5% penicillin-streptomy-

cin, 5% L-glutamine, 2.5% pyruvate, and 2.5 ng/ml basic

fibroblast growth factor. The cells were cultured in 10 cm dishes

for 12 h and then frozen in FBS containing 10% dimethyl

sulfoxide for future use.

Ear tissues from newborn piglets were treated with 75% ethanol

for 5 min and then washed thrice with PBS containing 1.5%

penicillin-streptomycin. The ear tissues were minced, and the

fibroblasts in the ear were isolated and cultured in the same

manner as described above.

PFFs transfection and selection
PFFs were thawed and cultured in 10 cm dishes until 90%

confluent. Then, 16106 PFFs in 800 ml PBS containing 25 mg of

linearized pTGZC or pZCpTG were electroporated at 230 v/cm

and 500 mF using a Gene Pulse Xcell electroporator (Bio-Rad).

After 24 h of recovery, the electroporated cells were selected with

1 mg/ml G418 (Merck) for 10 days. Cell colonies co-expressing

the four fluorescent proteins were picked up and cultured in 48-

well plates. The cells were transferred to 35 cm dishes and

cultured for 3–4 days until confluent, and then the cells were

frozen for future use.

SCNT and transgenic pig generation
Oocytes were processed as previously described [5]. Pig ovaries

were purchased from a local slaughter house. Briefly, cumulus

oocyte complexes (COCs) were aspirated from antral follicles and

washed with maturation medium (Tissue Culture Medium 199)

(Gibco) supplemented with 0.1% (w/v) polyvinyl alcohol (Sigma),

3.05 mM D-glucose, 0.91 mM sodium pyruvate (Sigma), 0.57 nM

cysteine (Sigma), 0.5 mg/ml LH (Sigma), 0.5 mg /ml FSH (Sigma),

10 ng/ml epidermal growth factor (Sigma), 10% (v/v) porcine

follicular fluid, 75 mg /ml penicillin G, and 50 mg /ml streptomy-

cin. The COCs were then transferred to a four-well multidish

(Nunc) containing 500 ml of the maturation medium covered with

mineral oil and pre-equilibrated at 39uC overnight. After 42–44 h

of incubation, the oocytes were released from the COCs by

vigorous vortex for 4 min in TL-Hepes containing 0.1% polyvinyl

alcohol and 0.1% hyaluronidase (Sigma). The polar body and

associated metaphase plate of the oocytes were aspirated using

glass pipettes in micromanipulation medium supplemented with

7.5 mg/ml cytochalasin B. Denuded oocytes were used as the

recipients for SCNT.

The transgenic PFFs were thawed and grown to subconfluency

prior to SCNT. Cells with uniform co-expression of the four

fluorescent proteins were selected under fluorescent microscopy

Generation of Multi-Transgenic Pigs by 2A Peptide
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and used as donor cells that were injected into the perivitelline

space of the oocytes. The oocyte-donor cell complexes were

activated to fuse and become reconstructed embryos with two

successive DC pulses at 1.2 kv/cm for 30 ms using an electrofusion

instrument (BLS). The reconstructed embryos were cultured in

embryo-development medium PZM3 at 39uC overnight and then

surgically transferred to recipient gilts exhibiting natural estrus.

The pregnancy status of the gilts was monitored weekly using an

ultrasound scanner beginning on Day 24 after the implantation.

All cloned piglets were delivered by natural birth. To monitor in

vitro development, transgenic and nontransgenic SCNT embryos

were cultured for 6 days until they reached the blastocyst stage.

Genotype identification
Genomic DNA was extracted from primary fibroblasts isolated

from newborn piglets using PureLink Genomic DNA Mini Kit

(Invitrogen). Two pairs of primers were designed to detect ZC and

TG fragments, with each primer located in the coding sequence of

each fluorescent gene. The ZC forward (59-CATGTAC-

CTGCTGCTGAAG-39) and reverse (59-CTGAAGCACTG-

CACGCCCCAG-39) primers yielded a 507 bp amplification

product. Given that tdTomato cDNA contains two tandem

repeated sequences and the TG forward primer is located in this

sequence, two products (1572 bp and 488 bp) were amplified with

the TG forward (59-GTGGAGTTCAAGACCATCTAC-39) and

reverse (59-CTGAAGCACTGCACGCCGT-39) primers. For

PCR, 0.1 mg of genomic DNA extract was added to 19 ml PCR

buffer containing 0.2 mM primers, 0.2 mM dNTPs, 50 U/ml of

ExTaq polymerase (TaKaRa). The pZCpTG vector DNA was

used as positive control, whereas the genomic DNA of wild-type

(WT) PFFs was used as negative control. The PCR products were

analyzed by 2% agarose gel electrophoresis.

Fluorescent protein expression analysis
Fibroblasts were seeded on coverslips for 24 h, fixed with 4%

paraformaldehyde for 5 min, washed with PBS, and mounted

onto slides for observation. One of the transgenic piglets was

sacrificed, and various tissues, including the liver, kidney, hoof,

heart, tongue, skin, nose, and lung, were fixed in 4% paraformal-

dehyde at 4uC overnight, washed thoroughly with PBS, and

cryosectioned at 20 mm thickness. The fibroblasts and tissue slices

were observed under a confocal microscope (Leica TCS SP2).

ZsYellow1, ECFP, tdTomato, and EGFP were excited at 514,

458, 543, and 488 nm, respectively. Fluorescence intensity was

measured using Leica Confocal Software.

The co-expression of the fluorescent proteins in the recon-

structed embryos was observed using a fluorescence microscope

(Olympus BX51) under appropriate excitation filters (490–500 nm

for ZsYellow1, 425–445 nm for ECFP, 535–555 nm for tdTo-

mato, and 460–480 nm for EGFP).

The fluorescent proteins expressed in the living transgenic

piglets were directly observed using goggles specifically designed

by Biological Laboratory Equipment Maintenance and Service

Ltd. for observing fluorescence in living organisms.

Real-time PCR
Total RNA was extracted from various tissues of transgenic

piglets using TRIzol Reagent (Invitrogen) and treated with DNase I

(TaKaRa) according to the provided instructions. First-strand

cDNA was synthesized using SuperscriptTM III Reverse Transcrip-

tase (Invitrogen), and mRNA levels of target genes were determined

by real-time PCR. The real-time primers for ZsYellow1 were:

forward (59-CCCAGGACATCGTGGACTACTT-39) and reverse

(59-ACGCCGTTGAAGATGCTCTT-39), whereas those for

tdTomato were: forward (59-GCTGAAGGGCGAGATCCA-39)

and reverse (59- GTGGGAGGTGATGTCCAGCTT-39). Consid-

ering that only a few nucleotides are differed between the coding

sequences of EGFP and ECFP, we designed a primer pair that was

able to detect both EGFP and ECFP: forward (59-CATGCCC-

GAAGGCTACGT-39) and reverse (59- GCTTGTGCCCCAG-

GATGTT-39). 18S rRNA was used as the reference gene.

Statistical analysis
Data in this study were expressed as mean 6 S.D. of at least

three independent experiments. Statistical significance was

determined using the two-tailed Student’s t- test. p,0.05 was

considered statistically significant.

Results

Construction of vectors for the co-expression of four
fluorescent proteins

The pTGZC and pZCpTG vectors were constructed via

multiple steps of cloning as described in Methods, and their maps

Figure 1. Maps of the pTGZC (A) and pZCpTG (B) vectors.
doi:10.1371/journal.pone.0019986.g001
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were shown in Figure 1. The pTGZC vector contained a

polycistronic cassette TGZC, which was mediated by the 2A

peptide. The transcription of TGZC was driven by a single CAG

promoter. In contrast, the pZCpTG vector contained two CAG

promoters and two independent bicistronic cassettes: TG and ZC.

Each cassette has its own CAG promoter. The pTGZC and

pZCpTG vectors were transfected into 293T cells using

Lipofectamine 2000 (Invitrogen). The uniformly high co-expres-

sion levels of the four fluorescent proteins showed that both vectors

worked well in cell lines (data not shown).

Co-expression of the four fluorescent proteins in PFFs
and blastocysts

Ten days after G418 selection, 10 PFFs colonies transfected

with linearized pTGZC were randomly selected from each of the

eight 10 cm dishes to evaluate the co-expression of the four

fluorescent proteins in PFFs. Among the 80 selected colonies, 19

(23.75%) were found to co-express the four proteins and only 6

(7.5%) co-expressed all four proteins at uniformly high levels. In

the SCNT-blastocysts derived from the pTGZC PFFs, the

fluorescence intensities of the proteins encoded by the downstream

genes (ZsYellow1 and ECFP) were markedly lower than those of

the proteins encoded by the upstream genes (tdTomato and

EGFP) in the vector (data not shown). However, when the 2A-

based double-promoter vector pZCpTG was used, 54.3% (38/70)

of the colonies obtained from the seven dishes co-expressed the

proteins at uniformly high levels (Figure 2A). The blastocysts

derived from the pZCpTG PFFs also consistently co-expressed the

four fluorescent proteins (Figure 2B).

These results suggest that although the 2A peptide was highly

efficient in mediating polycistronic expression (pTGZC) in the cell

lines, it was not significantly efficient in the primary cells and

embryos, especially for the expression of the downstream genes.

However, when it was used solely for mediating a bicistronic

expression (pZCpTG), it was efficient in the primary cells and

embryos. Therefore, the 2A-based double-promoter vector

pZCpTG was used for the generation of the multi-transgenic pigs

in this study.

In vitro development of multi-transgenic embryos
The rate of embryonic development in vitro was compared

between transgenic SCNT (pZCpTG-PFF) and nontransgenic

SCNT (WT-PFF) embryos (Table 1). The overall developmental

rates of transgenic and nontransgenic SCNT embryos showed no

significant differences at both two-cell stage [(86.860.8)% vs.

(87.961.0)%] and blastocyst stage [(20.461.3)% vs (20.961.0)%],

suggesting that the transgenes had no significant impact on

embryonic development.

Generation of multi-transgenic pigs and genotype
identification

The pZCpTG PFFs co-expressing the four fluorescent proteins

were used as donor cells for SCNT to obtain multi-transgenic pigs.

A total of 840 reconstructed embryos were transferred to 7

recipient gilts. Early pregnancy was observed in 4 gilts, and 2 gilts

went to full term. Eleven live male piglets were born from the 2

gilts by natural delivery. These piglets appeared normal at birth

and were observed to have normal growth 8 months later.

Genomic DNA extracted from the ear fibroblasts of Piglets 2, 3,

4, 6, 7, 9 and 10 was used for PCR to confirm the presence of the

four fluorescent protein genes in the genome of the cloned piglets.

As shown in Figure 3, these piglets contained the four fluorescent

protein genes, confirming that they were multi-transgenic pigs.

Co-expression of the four fluorescent proteins in
fibroblasts isolated from multi-transgenic piglets

The fibroblasts isolated from the ear tissue of the newborn

piglets were observed under a confocal microscope, and the co-

expression of the four fluorescent proteins was observed in

fibroblasts from all of eleven piglets. The fibroblasts from most

multi-transgenic piglets, including Piglet 2, 3, 4, 5, 7, 10, and

Figure 2. Co-expression of the four fluorescent proteins in PFFs and blastocysts. (A) PFFs transfected with the linearized pZCpTG vector
were observed under a confocal microscope using appropriate filters. The scale bar represents 10 mm. (B) Several reconstructed embryos derived
from the pZCpTG PFFs were cultured until they reached the blastocyst stage. The blastocysts were observed under a fluorescence microscope using
appropriate filters.
doi:10.1371/journal.pone.0019986.g002

Table 1. Development ability of nuclear transfer embryos
derived from pZCpTG-PFFs and WT-PFFs.

Embryo type Cultured Cleaved (%) Blastocyst (%)

WT-PFF 235 206 (87.961.0) 47 (20.961.0)

pZCpTG-PFF 240 208 (86.860.8)* 43 (20.461.3)*

The embryo numbers are the total numbers counted from three independent
experiments, and the percentage values in the third and fourth columns are
shown as mean 6 S.D.
*p.0.05 compared with WT-PFF; no significant difference.
doi:10.1371/journal.pone.0019986.t001
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11, exhibited excellent co-expression of all proteins. Slight

variations of protein expression were observed in the fibroblasts

from Piglet 1, 6, 8, and 9. As shown in Figure 4, the fluo-

rescence intensities of all proteins were identical in fibroblasts

from Piglet 10.

Co-expression of the four fluorescent proteins in various
tissues of a multi-transgenic piglet

Piglet 7 was sacrificed and the major tissues, including the liver,

kidney, hoof, heart, tongue, skin, nose, and lung, were collected for

expression analysis of the four fluorescent proteins. Different

fluorescent proteins exhibited rather consistent and uniform

expression in the same tissue (Figure 5), but the protein expression

levels in the different tissues slightly differed, possibly due to the

tissue specificity of the promoter and the protein synthesis activities

of the different tissues.

Real-time PCR was introduced to detect the mRNA levels of

the different proteins in the above tissues to confirm the uniform

co-expression of the four fluorescent proteins further. However,

considering that the coding sequences of EGFP and ECFP showed

extremely high similarity (99%), we could only design a pair of

primers that was able to detect both EGFP and ECFP. As shown

Figure 3. Genotype identification of multi-transgenic piglets. (A) Positions of the two primer pairs for genotype identification. Genomic DNA
from Piglet 2, 3, 4, 6, 7, 9, 10 was extracted, whereas ZC (B) and TG (C) bicistronic cassettes in the genome were detected by PCR using appropriate
primers. Lane 1, DNA marker; lane 2, positive control; lane 3, negative control; lane 4–10, genomic DNA from Piglet 2, 3, 4, 6, 7, 9 and 10.
doi:10.1371/journal.pone.0019986.g003

Figure 4. Co-expression of the four fluorescent proteins in the fibroblast isolated from multi-transgenic piglets. (A) Fibroblasts
isolated from the ear tissue of a representative animal (Piglet 10) observed under a confocal microscope using appropriate filters. The scale bar
represents 10 mm. (B) The fluorescence intensities of the four fluorescent proteins were measured. The results are shown as mean 6 S.D.
doi:10.1371/journal.pone.0019986.g004
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by the real-time PCR results in Figure 6, the EGFP+ECFP mRNA

level were always approximately 2 folds of tdTomato and

ZsYellow1 mRNA level in the eight tissues. An especially high

mRNA expression was found in the heart tissue, whereas the

mRNA levels in other tissues were relatively close. This data

suggest that different fluorescent genes have consistent expression

in the same tissue, and the CAG promoter had an extremely high

activity in the heart.

Figure 5. Co-expression of the four fluorescent proteins in various tissues of a multi-transgenic piglet. Liver, kidney, hoof, heart,
tongue, skin, nose and lung tissues from Piglet 7 were cryosectioned and observed under a confocal microscope using appropriate filters. The scale
bar represents 100 mm.
doi:10.1371/journal.pone.0019986.g005
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Observation of fluorescence in living multi-transgenic
piglets

Fluorescent protein expression in living piglets was then

evaluated using goggles. With appropriate excitation and emission

filters, high levels of tdTomato, EGFP, and ECFP fluorescence

were observed in the nose, hoof, and tongue of the multi-

transgenic piglets, but not in the control piglet (Figure 7), further

supporting the high expression of fluorescent proteins in the

piglets. However, the instrument used was not sensitive enough to

discern yellow fluorescence, whose emission wavelength is

extremely close to that of EGFP. High ZsYellow1 expression in

multi-transgenic piglets has already been confirmed by confocal

microscopy observation and real-time PCR.

Discussion

Expanding applications of transgenic pigs, especially multi-

transgenic pigs, have been observed in agricultural and medical

research. Production of multi-transgenic pigs, however, remains to

be a great challenge. In this study we have underlined an effective

method for generating multi-transgenic pigs via a single round of

SCNT using the 2A peptide-based double-promoter vector

pTGpZC. All 11 piglets we obtained were multi-transgenic pigs,

with 7 piglets co-expressing the four fluorescent proteins at

equivalently high levels and 4 showing slight discrepancy in

protein expression.

Several studies on the generation of multi-transgenic pigs have

been previously reported. Zhou et al. [13] successfully produced

triple-transgenic pigs co-expressing human CD59, human mem-

brane cofactor protein (hMCP), and human decay-accelerating

factor (hDAF) by breeding among single-transgenic pigs. However,

different single-transgenic pigs should first be produced with their

method, which is time-consuming and costly. The combination of

all transgenes is not necessarily achieved if the single-transgenic

pigs are heterozygous. In addition, the prolonged period of sexual

maturity and gestation of pigs requires substantial time to generate

multi-transgenic pigs under this method.

SMGT, another technique in which sperms are pre-incubated

with multiple transgenes before insemination, has also been

optimized to produce multi-transgenic pigs [15]. Although this

method is of low cost, requires a short time to complete, and is

easy to use, the gene insertion is random, which might yield rather

different expression levels for different genes in the piglets [16]. In

addition, the sperms with all transgenes could not be intentionally

selected for artificial insermination, which results in the low

efficiency of multi-transgenic pig generation. The transgenes

introduced by SMGT have also been reported to be transiently

transmitted to the offspring at the early growth stage and be most

likely lost in adulthood [31].

Compared with the aforementioned strategies, our proposed

method has the following advantages: (1) It only requires a single

round of nuclear transfer and saves significant time and money. (2)

The four fluorescent genes are most likely to stay together and

exhibit a ‘‘one-expression, all-expression’’ pattern. (3) The

expression levels of the four fluorescent genes are consistent due

to their uniform conditions in the genome along with the two

CAG promoter-driven bicistronic cassettes and the high ‘‘cleav-

age’’ efficiency of 2A. This consistence in expression levels of the

2A upstream and downstream genes would probably be crucial to

the application of multi-transgenic pigs. (4) The donor cells for

SCNT are selected by G418, enabling to integration of the four

genes into the genome, resulting in a stable expression of

transgenes throughout the whole lifetime of transgenic pigs. (5)

Cells with a uniformly high co-expression of the four fluorescent

proteins could be selected directly under fluorescent microscopy

and used as donor cells for SCNT, which significantly increases

the efficiency of multi-transgenic pig production. (6) This method

could be easily applied to other functional genes. Three fluorescent

genes in our vector could be replaced with three functional genes,

with one fluorescent gene being retained as a marker for donor cell

selection prior to SCNT and protein expression in transgenic

piglets.

The 2A peptide-based single-promoter vector pTGZC, in

which the four fluorescent genes linked by 2A peptide were

driven by a single CAG promoter, was also constructed in this

study. However, it was not efficient enough to mediate the co-

expression of the four genes in the PFFs and embryos. The

expression of the last two genes was much weaker than that of the

first two genes in the polycistronic cassette, suggesting that the

‘‘cleavage’’ efficiencies at the downstream 2A sites were lower than

those at the upstream 2A sites. Thus, we chose the double-

promoter vector containing two 2A-mediated bicistronic cassettes

for multi-transgenic generation. Nevertheless, the mechanism for

the increased incomplete ‘‘cleavage’’ at the downstream 2A sites

remains to be elucidated.

The ‘‘cleavage’’ at a 2A site results in an upstream protein fused

with the 2A peptide without proline residue and a downstream

protein with a proline residue added to the N terminus. The

addition of a single proline to the N terminus of the second protein

should not significantly affect its function. However, whether the

addition of the 2A peptide to the first gene product does not

interfere with its intracellular localization and function in

transgenic pigs need to be verified. Most studies have shown that

the intracellular trafficking [19,29] and function [32,33] of the

transgene products are not affected by the 2A fusion, but

mistargetting [34] and functional abrogation [35] of transgene

products caused by such fusion have also been reported. Two

strategies may possibly address this problem in 2A-mediated multi-

transgenic production. First, the co-expression cassette could be

tested to ensure that all transgene products have normal

localizations and functions in donor cells before SCNT. The gene

that might be affected by 2A addition could be placed downstream

of the 2A site. Second, the furin cleavage site could be introduced

Figure 6. Expression profile analysis of four fluorescent
proteins in various tissues by RT-PCR. Total mRNA was extracted
from various tissues of Piglet 7. The mRNA levels of the target genes
(tdTomato, EGFP+ECFP and ZsYellow1) were determined by RT-PCR.
The results are shown as mean 6 S.D.
doi:10.1371/journal.pone.0019986.g006
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to remove 2A-derived amino acid residues in vivo [36]. Furin, an

endogenous cellular proprotein convertase, could cleave at the

cleavage site sequence RXK/RR [37,38]. Therefore, placing a

furin cleavage site between the upstream gene and the 2A

sequence would eliminate all possible adverse effects caused by the

remaining 2A residues [36].

In this study, the mRNA levels of the four transgenes were

much higher in the heart than in other tissues due to the high

activity of the b-actin promoter-based CAG promoter in this

organ, which is rich in actin filaments [39]. The especially high

expression of transgenes driven by the CAG promoter has also

been observed in the mouse heart [40,41]. In the present work, the

CAG promoter was selected to construct a multi-transgenic pig

model. In other practical applications numerous promoters could

be used. For example, the liver-specific human apolipoprotein E

promoter could drive transgene expression in a liver-specific

pattern [42], which would be especially useful when the multi-

transgenic pigs are used as liver donors in xenotransplantation and

the transgene products are detrimental to other tissues in the pig.

In summary, multi-transgenic pigs uniformly co-expressing four

fluorescent proteins in various tissues were successfully produced

using a 2A peptide-based double-promoter vector through a single

round of SCNT. This study demonstrates that the 2A peptide

could be used to generate multi-transgenic pigs with high

efficiency, and provides a promising methodology to generate

multi-transgenic large animals.
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