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Abstract

We measure the thermal fluctuation of the internal segments of a piece of DNA confined in a nanochannel about
50{100 nm wide. This local thermodynamic property is key to accurate measurement of distances in genomic analysis. For
DNA in *100 nm channels, we observe a critical length scale *10 mm for the mean extension of internal segments, below
which the de Gennes’ theory describes the fluctuations with no fitting parameters, and above which the fluctuation data
falls into Odijk’s deflection theory regime. By analyzing the probability distributions of the extensions of the internal
segments, we infer that folded structures of length 150{250 nm, separated by *10 mm exist in the confined DNA during
the transition between the two regimes. For *50 nm channels we find that the fluctuation is significantly reduced since the
Odijk regime appears earlier. This is critical for genomic analysis. We further propose a more detailed theory based on small
fluctuations and incorporating the effects of confinement to explicitly calculate the statistical properties of the internal
fluctuations. Our theory is applicable to polymers with heterogeneous mechanical properties confined in non-uniform
channels. We show that existing theories for the end-to-end extension/fluctuation of polymers can be used to study the
internal fluctuations only when the contour length of the polymer is many times larger than its persistence length. Finally,
our results suggest that introducing nicks in the DNA will not change its fluctuation behavior when the nick density is below
1 nick per kbp DNA.
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Introduction

Stretching DNA in nanochannels has emerged as an important

technique for separating DNA, performing genome mapping, and

also studying repressor-DNA interactions, etc [1–3]. On the other

hand, DNA confined in nanochannels also serves as a simplified

model for studying single polymer behavior in concentrated

polymeric solutions and melts [4,5]. For these reasons, mechanical

behaviors of DNA inside nanochannels have attracted a long-

standing interest. The two most well-known scaling theories in this

field are those described by de Gennes [5] and by Odijk [6]. de

Gennes’ blob theory, which was later generalized by Schaefer and

Pincus [7], assumes that the channel width D is much greater than

the persistence length jp of the polymer. It models the moderately

confined DNA as a chain of spherical blobs inside a cylindrical

channel and gives the following expression for the end-to-end

extension SxT of the polymer [5,7,8]:

SxT
L

~A
wjp

D2

� �1=3

, ð1Þ

where L, w are the contour length and effective molecule width of

the DNA respectively. The prefactor A is found to be close to unity

[9]. Odijk’s theory, on the other hand, works for DNA under

strong confinement in which D%jp. In this regime, the polymer is

deflected back and forth by the channel walls and the end-to-end

extension is predicted to be [6]:

SxT
L

&1{a0
D

jp

� �2=3

, ð2Þ

where a0~0:17 is a constant whose value was determined recently

by simulations [10]. Aside from the scaling theories, Wang and

Gao [11] showed that the end-to-end extension of a strongly

confined polymer in the Odijk regime can be derived analytically

by modeling the confinement effect as a quadratic potential

U~1=2Jj~rr\j2. Here J is the stiffness of the effective quadratic

potential, which depends on the channel width D, and~rr\ is the

transverse displacement of the polymer from the axis of the

nanochannel. Wang and Gao considered a confined chain under

end-to-end applied force F and obtained an expression for the

total extension SxT as a function of J and F . We set F~0 pN,

substitute the relation between J and D (see Supporting

Information) into their expression, and find:
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which is the same as Eq.2, confirming the scaling theory of Odijk,

and at the same time validating the use of quadratic confinement

potentials in the strongly confined regime.

Both de Gennes’ and Odijk’s theories have been tested by

experiments as well as simulations over the years [10,12–16].

However, most of the studies so far have focused on the properties

of the entire DNA, for example, the end-to-end extension SxT, the

corresponding end-to-end fluctuation sx, and also the relaxation

time t of the entire DNA etc. Local properties of a confined

polymer, on the other hand, like the extension and fluctuation of

its internal segments, are rarely investigated. In fact, local

conformation and alignment of the confined DNA have been

probed only recently [17,18]. It is also not well understood

whether the existing theories developed for an entire piece of DNA

can be applied locally for its internal segments. These are

important issues because, if one considers the case of genome

mapping, it is the local fluctuation of the internal segments that

determines the resolution of the mapping.

In this paper, we measure the longitudinal internal fluctuation of

a piece of DNA confined in rectangular channels about

50{100 nm wide. We show that neither de Gennes’ blob theory

nor Odijk’s deflection theory can completely describe the

measured internal fluctuation versus mean extension profile. A

critical length scale of *10 mm for the mean extension is

observed, below which the internal DNA segments are more

‘blob’-like, and above which Odijk’s deflection theory works

better. From the histograms of extension of the internal segments,

we further infer that there exist folded structures of length

150{250 nm separated by *10 mm along the backbone of the

DNA during the transition between the two regimes. To justify the

use of existing theories for studying the internal fluctuation, we

focus on the Odijk regime and propose a method to explicitly

calculate the internal fluctuation of a strongly confined DNA. We

model the confinement effects by quadratic potentials and show

that one can use the existing theories for end-to-end extension/

fluctuation to describe the internal segments of the DNA when the

contour length of the polymer is many times larger than its

persistence length. Our model, which views the confined DNA as a

discrete wormlike chain, can describe the fluctuations of

heterogeneous polymers confined in non-uniform channels. It is

also capable of capturing effects, like the influence of nicking sites

on the DNA fluctuation profiles, which we will discuss at the end

of the paper.

Results and Discussion

To visualize the internal segments, dye-labeled (Alexa-546)

nucleotides are introduced into the backbones of the nicked l
DNA (48:5 kbp, L&16:5mm), T4 DNA (166 kbp, L&56:4mm)

and bacterial artificial chromosome (BAC) human DNA clones

(MCF7 BAC clone 9I10, fragmented, full length *180kbp,

L&61:2mm) (Fig. 1) [19]. The DNA molecules are then driven by

electric field into the nanochannels. With the Alexa-546 labels

excited by light, extension of each internal segment is recorded

frame-by-frame. Average extension SxT and the root mean square

(rms) fluctuation s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sx2T{SxT2

p
for each internal segmenet

are calculated and plotted in the s{SxT profile.

In Fig. 2, we first show the result for l DNA confined in a

80 nm|130 nm channel. The maximum SxT, which is roughly

the mean extension of the entire DNA, is about 10mm, in

Figure 1. Measurement of the fluctuations of the internal segments of confined DNA. (A) Image of a dye label (Alexa-546) on a DNA
backbone (backbone not shown) with 80 ms exposure time. (B) 2D surface plot of the raw image (intensity of the dye vs. the X Y coordinates). (C)
Image of one T4 DNA fragment (*36 microns) with backbone (red) and internal labels (green). (D) Time series (8 seconds) of the DNA showing the
fluctuations of backbone and internal labels. In (D), the red trace is the backbone and the green traces are the trajectories of internal dye labels.
doi:10.1371/journal.pone.0016890.g001

Fluctuation of DNA in Nanochannels
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agreement with the measurements of Tegenfeldt et al [12]. The

internal fluctuation s increases with SxT with a 0:5 power law.

This 0:5 power law and even the magnitude of the fluctuation can

be well captured by de Gennes’ theory (discussed below) with no

fitting parameters.

The longitudinal fluctuation of the confined DNA in de Gennes’

theory can be evaluated using the effective stiffness keff of the

polymer: s2~kBT=keff%(4=15)L(wjpD)1=3 [12,20]. Using this

expression and Eq.1 to eliminate L, we get the relation between s
and SxT:

s%

ffiffiffiffiffiffiffi
4D

15

r
:
ffiffiffiffiffiffiffiffi
SxT

p
: ð4Þ

Therefore, de Gennes’ theory predicts a 0:5 power law for the

s{SxT profile. It is interesting to note that the prefactor in Eq.4

depends only on the channel width D, but not on the effective

molecule width w, nor on the persistence length jp. This implies

that the s{SxT profile is independent of the ionic strength of the

experimental buffer. To compare the theory with the measured

internal fluctuation, we plot Eq.4 together with the experimental

data in Fig. 2. Surprisingly, the data matches with the theory very

well without any fitting parameters. Both the 0:5 power law and

the magnitude of the fluctuation are correctly predicted by Eq.4.

de Gennes’ theory also gives the distribution of the extension

P(x), which we can compare to our measurement. We consider

the recently proposed ‘‘renormalized’’ Flory-type free energy F for

a confined polymer [21] and its corresponding prediction of the

longitudinal fluctuation:

bF~A
x2

N=gð ÞD2
zB

D N=gð Þ2

x
, s2~

L2 bFð Þ
Lx2

 !{1

, ð5Þ

where b~1=kBT , A, B are two constants, N, g are the total

number of monomers and the number of monomers inside a blob

respectively [21]. Both of the relations can be rewritten in terms of

SxT (which is the solution of LF=Lx~0) as:

bF~C
x2

2DSxT
z

SxT2

Dx

� �
, s~

ffiffiffiffiffiffiffi
D

3C

r ffiffiffiffiffiffiffiffi
SxT

p
, ð6Þ

with C~(2A)2=3B1=3 being a constant. The probability distribution

P(x) is therefore:

P(x)~P0 exp ({bF )~P0 exp {C
x2

2DSxT
z

SxT2

Dx

� �� �
: ð7Þ

Here P0 is a constant determined by the normalization condition.

In our experiments, we record the extension x of each internal

segment frame-by-frame and then calculate the distribution P(x)
for each segment. Fig. 3 shows the measured P(x) for two internal

segments and their fitting results to Eq.7 (red). The result again

implies that, for l DNA confined in a 80 nm|130 nm channel,

the behavior of the internal segments can be well captured by

de Gennes’ theory. Moreover, by fitting the distribution P(x)
to Eq.7, we obtain the constant C, which, when plugged back

into Eq.6-2, yields: s~0:58
ffiffiffiffi
D
p ffiffiffiffiffiffiffiffi

SxT
p

&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D=15

p ffiffiffiffiffiffiffiffi
SxT
p

(here

D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
80|130
p

~102 nm). Therefore, starting from the ‘‘renor-

malized’’ Flory-type free energy Eq.5, we recover Eq.4 with the

same prefactor. This indicates that the prefactor in Eq.4 is quite

accurate although it is derived from a scaling theory. It also

explains why Eq.4 matches with the measured s{SxT profile

without any fitting parameters (Fig. 2). It is important to note that,

for l DNA confined in a 80 nm|130 nm channel, the maximum

SxT is less than *10 mm (Fig. 2). We shall show next that for

longer DNA whose maximum SxT is greater than *10 mm, the

measurement no longer agrees with de Gennes’ theory. In

particular, the 0.5 power law in the s{SxT profile is lost.

Fig. 4A shows the s{SxT profile for the internal segments of

T4 DNA in a 80 nm|130 nm channel. The maximum SxT,

which is roughly the mean extension of the entire DNA, is about

30mm, in agreement with the simulation result of Jung et al [14].

Fitting of s*SxTc to the experimental data yields c~0:19, which

is very different from the prediction of de Gennes’ theory (Eq.4).

Similar results are found for DNA in channels of different sizes:

c~0:15 for T4 DNA confined in 60 nm|100 nm channels

(Fig. 4B) and c~0:11 for l DNA in 50 nm|70 nm channels

(Fig. 4C). In all these cases the maximum SxT is greater than

10mm. We note, however, that in Fig. 4, the experimental data for

segments with SxT 10mm still matches with de Gennes’ theory

(except for the 50|70 nm channel case, which we will explain

later). It is the data with SxT *> 10mm that deviates significantly

from de Gennes’ prediction. In fact, if we plot the fluctuation

results for short segments with SxT 10mm for l and T4 DNA

together, the two profiles are almost identical, satisfying de

Gennes’ theory (see Supporting Information Fig. S1).

To rule out the possibility that the observed difference between

l DNA and T4 DNA stems from sequence variations, we perform

the same experiments on the bacterial artificial chromosome

(BAC) human DNA clones (MCF7 BAC clone 9I10), which also

Figure 2. Internal fluctuation of l DNA confined in a
80 nm|130 nm channel. (A) The measured rms fluctuation s versus
mean extension SxT for the internal segments of the DNA agrees very

well with de Genne’s theory with no fitting parameters (red curve, Eq.4).

(B) A linear s2{SxT profile confirms the 0:5 power law of s*SxT1=2 of
the de Gennes’ theory. Note, however, that here we have maximum
SxT 10mm. As shown in a subsequent figure (Fig. 4) and in the text, for
longer polymer with a maximum SxT *> 10mm, the data deviates
significantly from de Gennes’ theory and even the 0.5 power law is lost.
doi:10.1371/journal.pone.0016890.g002

Figure 3. Probability distributions P(x) for 2 internal segments
of l DNA inside a 80 nm|130 nm channel. The experimental data
is fitted to Eq.7 (red). The fitting value C (Eq.7), when plugged back to
Eq.6-2, recovers de Gennes’s formula Eq.4.
doi:10.1371/journal.pone.0016890.g003

Fluctuation of DNA in Nanochannels
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has maximum SxT *> 10mm. As shown in Fig. 5, the results for the

BAC DNA are almost identical to those for the T4 DNA. In

particular, for small SxTv10mm, both match with de Gennes’

prediction without any fitting parameters, while for SxTw10mm,

both identically deviate from de Gennes’ prediction. This suggests

that the deviation from de Gennes’ theory for long internal

segments truly stems from segment size, not from sequence

variations.

To better understand the deviation from de Gennes’ prediction,

we further look i nto the local structures of the confined DNA.

Odijk showed recently that even in a 135 nm channel, DNA can

fold back on itself, giving rise to a global persist ence length much

larger than 50 nm, the intrinsic persistence length of the DNA

[18,22]. Because of this, Odjik argued that the transition from

Odijk’s regime to de Gennes’ regime could be delayed with the

increase of the channel size [18]. To check whether such local

folded structures exist in the DNA in our experiments, we measure

the extension distribution P(x) for each single internal segment

(see ‘‘Materials and Methods’’ for details). We find that for most

internal segments whose mean extension is longer than 10mm, the

distribution P(x) shows two or more peaks (Fig. 6B–C). From this

observation, we infer that there indeed exist some folded structures

in those internal segments – one peak in the distribution

corresponds to the folded configuration, and the second peak

corresponds to the extended configuration (Fig. 6). The existence

of folded structures can be also inferred from the typical extension

x versus time plot as shown in Fig. 6D, where the steps in x

correspond to different states of the internal segments. Further-

more, we find that in the distribution P(x), the measured distances

between any two peaks are always integral multiples of

400{500 nm, indicating that the difference in extension of a

single folded structure and its extended form is about 500 nm, ten

times the persistence length of the DNA. This further implies that

each branch of the folded structure is about 150{250 nm, if we

assume each folded structure has two (loop) or three (hairpin)

branches (Fig. 6). Also, by checking the location of the internal

segments that show multiple-peak distributions, we find that the

folded structures are separated by *10 mm, which roughly agrees

with the value of SxT above which de Gennes’ theory fails to

match with the experimental data (Fig. 4). In the following we

show that for SxT *> 10mm the fluctuation data is better described

by Odijk’s deflection theory.

To exactly (rather than in a scaling sense) evaluate the

fluctuation of DNA in the Odijk deflection regime, we extend

the theory recently developed by Wang and Gao [11]. This theory

represents the DNA as a strongly confined wormlike chain

(fluctuating elastic rod) subjected to an additional end-to-end force

F and produces the relation between the mean extension SxT and

J, the stiffness of the effective confinement potential (which is a

function of the channel width D):

SxT~L{
kBTL

2
ffiffiffi
k
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fz2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J(D)k

pq , ð8Þ

where again, kBT is the thermal energy, k is the bending modulus

of the polymer, and in a rectangular channel the stiffness of the

confinement potential can be expressed as J~4c4 kBT=½
(k1=4D2)�4=3

, with c being a constant. Using Eq.8, we calculate

the effective stiffness of the DNA as keff~ LSxT=LFð Þ{1
, and then

evaluate the fluctuation as s2~kBT=keff :

s~
D

2
ffiffiffiffiffiffiffiffiffiffiffi
8jpc3

q : 1{
1

4c

D

jp

� �2=3
" #{1=2 ffiffiffiffiffiffiffiffi

SxT
p

: ð9Þ

Figure 5. Internal fluctuation s versus mean extension SxT for
BAC (red squares) and T4 DNA (black circles) in a
80 nm|130 nm channel. This figure shows that DNAs from two
different sources give almost identical results, which suggests that
agreement with de Gennes theory for short internal segments, and
deviation from de Gennes’ theory for long internal segments, are both
sequence independent.
doi:10.1371/journal.pone.0016890.g005

Figure 4. Fluctuation of the internal segments of (A) T4 DNA in 80 nm|130 nm, (B) T4 DNA in 60 nm|100 nm and (C) l DNA in
50 nm|70 nm channels. For all cases, the maximum mean extension SxTw10mm. For (A) and (B), the data SxT *v 10mm agrees with de Gennes’s
theory (red, no fitting parameters). Deviation from de Gennes’ theory begins at a critical SxT*10mm, above which the data falls into the black curve
predicted by the deflection theories of Odijk [6], Wang and Gao [11]. For tighter channels (C), the transition occurs earlier with most data falling in the
deflection regime.
doi:10.1371/journal.pone.0016890.g004

Fluctuation of DNA in Nanochannels
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Leaving c as a free parameter, we fit Eq.9 to the experimental data

with SxTw10mm in Fig. 4A–C (black curves) and obtain

c~1:03, 0:94 and 0:99 respectively. For the BAC DNA confined

in 80 nm|130 nm channels shown in Fig. 5, we obtain c~0:9
from a similar fit. The fact that all the four sets of experimental

data for different channel widths yield the same c&1 makes sense

because c is expected to be a universal constant independent of D.

Moreover, the constant c comes from the expression for the free

energy of confined chains in the Odijk regime and it has been

estimated by Burkhardt to be c~1:1 [23], which is very close to

our fitting results. This strongly suggests that in the large mean

extension regime SxTw10mm, the DNA segments are better

described by the deflection theory.

Furthermore, from Fig. 4A to C, we observe that the length of

the error bars decreases with the decrease of the channel size. The

reason for this may be that for moderately confined DNA, the

local folded structures can form and unravel with comparable

rates, as indicated by the similar height of the two peaks in the

distribution in Fig. 6B–C. Therefore, the behaviors of the confined

polymer is a competition between de Gennes’ type and Odijk type

regimes and the error bar is large. As the channel size becomes

smaller, Odijk’s theory begins to dominate, resulting in smaller

error bars.

By integrating the force-extension relation Eq.8, we obtain the

free energy expression G(x) in the Odijk (or Wang and Gao)

deflection regime (see Supporting Information), which further

leads to the distribution for the extension P(x):

P(x)~P0 exp Bx{
A

L{x

� �
, ð10Þ

where A~L2=4jp, B~4c2j1=3
p =D4=3 and P0 is the normalization

factor. We fit this expression to the right peaks in Fig. 6B–C and

find that reasonable parameters (L&15mm, jp&50 nm) give

excellent matches with the measured probability distributions in

experiments. In fact, we can use this free energy expression to

understand the transition from a different point of view. We note

that the internal segments are expected to stay in the regime with

lower free energy, and that regime transition occurs when the free

energies in the two regimes are equal. By comparing the free

energies in the two regimes, we draw a phase diagram on the

L{D plane in Fig. 7. The result shows that as D decreases, the

transition length L decreases. Theoretically, the phase diagram

involves an undetermined constant, which we fit such that

transition occurs in the range L&8{12mm when D~100 nm.

Then the result shows that at D~60 nm, the transition length is

3{5mm, which roughly agrees with our experimental result for l
DNA in a 50 nm|70 nm channel (Fig. 4C). The phase diagram

shows that transition from de Gennes’ to Odijk’s regime can occur

when D decreases with L fixed, or when L increases with D fixed.

We also measure the end-to-end extension for DNA with

different lengths (longer than 10 microns) in a 60 nm|100 nm

channel and the result agrees with Odijk’s theory (Fig. S3).

In the above analysis, we have applied the theories (de Gennes,

Odijk, Wang and Gao) for the end-to-end extension/fluctuation to

evaluate the internal, or local extension/fluctuation of a confined

DNA. The assumption behind this is that when the internal

segments are much longer than the persistence length of the DNA,

the behavior of the segments is not very different from that of the

entire DNA (with the same length) because the boundary

conditions do not play a significant role [24–26]. To verify such

an assumption, we explicitly calculate the internal fluctuation in

Odijk’s regime by extending a theory we developed earlier [26],

and then compare our results to the theories developed for an

entire piece of DNA.

Following the procedure in ref.[26], we model the polymer as a

confined discrete N{segment wormlike chain, or fluctuating

elastic rod (Fig. 8). The Hamiltonian consists of 3 terms (Eq.11): (1)

Figure 6. (A) Folded structures in the backbone of confined DNA. Each branch of the structure is about 150{250 nm, about the width of the
channel size. The structures are separated by a distance *10 mm. (B, C) Distribution of extension P(x) for 2 internal segments that contain the folded
structures. In disagreement with de Gennes’ prediction, the distributions show 2 peaks, from which we infer the existence of the folded structures.
However, the structures are not stable as the two peaks in the distributions are comparable in height. The red curves fitted to the left peaks on the
histogram are from de Gennes’ theory (Eq.7) and the ones superimposed on the right peaks are from the deflection theory (Eq.10). (D) Extension x
versus time for a single internal segment that shows two peaks in the distribution P(x). The extension of this particular internal segment seems to
fluctuate around two values shown by the dashed lines. This gives rise to the two peaks seen in the probability distribution.
doi:10.1371/journal.pone.0016890.g006

Fluctuation of DNA in Nanochannels
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bending energy, (2) confinement energy, and (3) potential energy

of an end-to-end applied force as shown in Fig. 8.

H~

ðL

0

k(s)

2

dt̂t

ds

����
����
2

dsz

ðL

0

J

2
y2ds{FDx ð11Þ

~
1

2
~hhT :K~hh{FL: ð12Þ

In the bending energy term, k(s) is the bending modulus of the

DNA and it can vary along the arc length s so that the polymer is

not necessarily homogeneous in mechanical properties. t̂t is the

tangent vector along the polymer. For the confinement potential

term, we follow Wang and Gao’s approach [11] and use an

effective quadratic energy characterized by the coefficient J, with

y being the transverse displacement. In general, J can be a

function of the arc length s in case the confinement is not uniform.

Also, for 3D chains in rectangular channels, J can be different in

the two transverse directions. For the potential energy term, we

consider the chain subjected to an end-to-end force F , which can

be set to zero if no force is applied. Dx~x(L){x(0) is the end-to-

end extension of the chain. Up to a second order approximation,

the Hamiltonian can be written in matrix form as shown in Eq.12,

with hi being the discretized tangent angles and K being the

N|N stiffness matrix of the chain [26].

It has been shown that when there are no constraints on twist (as

is the case here), thermodynamic properties of a 3D chain can be

easily generated from those of two 2D chains [26]. Therefore, for

simplicity, here we describe the theory for 2D chains and plot the

results for the corresponding 3D chains.

To get the internal fluctuation, we first need to calculate (1) the

partition function, and (2) the angle fluctuation ShihjT. These are

evaluated in the ‘‘Materials and Methods’’ section. Finally, for any

internal segment between node i and node j of the discrete chain,

the mean extension SxijT and the corresponding rms fluctuation

can be explicitly calculated as:

SxijT
l

~(j{i){
Sh2

iz1Tz � � �zSh2
j T

2
, ð13Þ

s2
ij

l2
~

S(xj{xi)
2T{Sxj{xiT2

l2
~

1

2

Xj

m~iz1

Xj

n~iz1

ShmhnT2, ð14Þ

where l is the segment length of the discrete chain. In Fig. 9, we

consider DNA in 60 nm|60 nm channels and plot sij versus

SxijT for all the pairs of internal nodes (i,j) and see if the profiles

match with the theories developed for the entire piece of DNA.

Fig. 9(A) shows the result for a chain with contour length

L~10mm, which is much larger than its persistence length

jp~50 nm. The internal fluctuation profile agrees exactly with

Eq.9, which is derived for the end-to-end fluctuations. In

particular, all the data collapses into a single curve with 0:5
power law. As the contour length of the polymer decreases,

however, (Fig. 9B–D), the internal fluctuation profile begins to

scatter around the curve for the end-to-end fluctuation. This

implies that, for short chains, the magnitude of internal fluctuation

can be different, even if two internal segments have the same mean

extension. The magnitude of the fluctuation depends strongly on

where the internal segment is located. In fact, we show in Fig. 10

that the internal segments located at the two boundaries have

larger fluctuation because they have more freedom to fluctuate

compared to the segments inside the chain. The strong boundary

effects on short chains (such as, DNA with contour length 0.6–

7 mm) have been discussed by several groups recently [24–26].

Our results suggest that the accuracy of DNA sizing depends on

Figure 7. (A) Phase diagram showing two regimes on the L{D plane, assuming jp~50 nm for DNA. Transition from de Gennes’ to Odijk’s regime
can occur when D decreases with L fixed, or when L increases with D fixed. (B) DNA with local folded structures as an intermediate state between de
Gennes’s and Odijk’s regimes. In experiments, we observe heterogeneity in the intensity profile of YOYO-1 dye along the backbone of a confined
DNA, which suggests the existence of the local folded structures (see Supporting Information Fig. S2).
doi:10.1371/journal.pone.0016890.g007

Figure 8. Discrete wormlike chain model for confined DNA in a
nanochannel. The confined wormlike chain, subjected to and end-to-
end applied force in general, has bending energy represented by a
spring of stiffness k at each node.
doi:10.1371/journal.pone.0016890.g008
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the DNA contour length. For a short DNA with contour length

Lv1mm confined in a 60 nm|60 nm channel, the uncertainty of

the measurement will be high. For the experimental results we

discussed earlier, the l DNA, T4 DNA and BAC DNA all have

contour lengths of tens of microns, for which boundary effects can

be neglected. Therefore, it is safe to use the formulae for end-to-

end extension/fluctuation to estimate the internal properties of the

confined DNA in our experiments.

To measure the internal fluctuation, we have introduced nicks

into the DNA so that internal sites along the DNA can be labeled.

Since the theory discussed above allows for arbitrary bending

modulus k(s) as a function of the arc length s, we can model the

effect of nicking by setting k~0 on some nodes of the discrete

chain and see whether the nicks have significant effects on the

behavior of the DNA. For simplicity, we assume here that the

nicks are equally spaced along the chain. Fig. 11 shows that the

fluctuation profile does not significantly deviate from the

homogeneous chain with uniform k when there are less than 50
nicks along a 18mm chain (*50 kbp DNA in a 60 nm|60 nm

channel). In our experiments, the fluorescent tagging is introduced

at the nicking endonuclease recognition sequence sites, which have

much lower density than 1 nick/kbp in l, T4 and BAC DNA.

Therefore, the nicks will not significantly affect the DNA internal

fluctuation.

To summarize, in this paper, we have investigated the thermal

fluctuations of the internal segments of a piece of confined DNA

in a nanochannel. The channel size is on the order of the

persistence length of the DNA and we have compared the

fluctuation data to several theories in literature. We have found

that for channel widths on the order of 100nm there exists a

critical length scale *10 mm for the mean extension of an

internal segment below which the de Gennes’ theory describes

the internal fluctuations and above which the data agree better

with Odijk’s deflection theory. For long DNAs confined in

nanochannels we have inferred that there are folded structures

whose branches are about 3 times the persistence length of DNA

which are separated by segments with mean extension *10mm.

We surmise that these folded structures are indicative of a

Figure 9. Fluctuation versus mean extension of internal segments of the strongly confined DNA in 60 nm channels (Eq.13 and
Eq.14). The contour lengths of the DNA are (A) L~10mm, (B) 5mm, (C) 1mm and (D) 250 nm. For a long DNA (A and B), data from internal segments of
various locations of the chain collapse on the a curve with 0:5 power law (light green). The result agrees with Eq.9 (blue), which is derived for the end-
to-end fluctuation of a confined DNA. For short DNA however (C and D), no power law is found as data from various locations of the chain do not
collapse onto a single curve (light green). Therefore, formulae derived for the end-to-end fluctuation of the confined DNA, such as Eq.9 (blue), cannot
be used for internal fluctuation. The boundary effect is so significant that the rms fluctuation s not only depends on SxT, but also on the location of
the internal segments.
doi:10.1371/journal.pone.0016890.g009

Figure 10. Fluctuation as a function as the position of an
internal segment for a short chain. The contour length of the entire
chain is short (250 nm), so that the fluctuation not only depends on the
length of the internal segment, but also on its position. Here we plot
the fluctuation versus position for internal segments with the same size:
50 nm (red) and 10 nm (blue). For the internal segments close to the
boundaries, the fluctuation is larger because they have more freedom
compared to the segments inside the chain.
doi:10.1371/journal.pone.0016890.g010

Figure 11. Fluctuation of a 18mm long chain with persistence
length jp~50 nm confined in a 60 nm|60 nm channel. From
bottom to top: (1) D: no nicks; (2) z: 10 nick in 18mm; (3) p: 50 nicks in
18mm; (4) |: 100 nicks in 18mm; (5)% : 200 nicks in 18mm. This figure
shows that when the density of nicks is lower than 50 nicks per 18mm,
or 1 nick per kbp of DNA, the fluctuation profile is almost the same as
that for a chain without nicks.
doi:10.1371/journal.pone.0016890.g011
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transition from the Odijk regime, in which the DNA is relatively

straight, to the deGennes regime, in which the DNA is more

blob-like. We have also presented a more detailed theory based

on small fluctuations and incorporating the effects of confine-

ment. We have shown that one can use the existing theories for

end-to-end extension/fluctuations to study the statistical proper-

ties of internal segments only when the contour length of the

chain is much larger than the persistence length of the molecule

so that boundary effects play no role. Our calculations suggest

that introducing nicks into the DNA can change its fluctuation

behavior if the density of nicks is greater than about 1 nick per

kbp DNA.

Materials and Methods

Sequence specific labeling and DNA staining
In a 20ml reaction native, duplex DNA samples 50 ng/ml (l, T4

DNA and also MCF7 BAC clone 9I10) are incubated with 0:5 U

of Nb.BbvCI (0:5 U/ml) (NEB, Ipswich, MA) in 1| NEB buffer 2

(NEB) for 1 hr at 370C and 20 min at 650C. The nicked DNA

samples (12:5 ng/ml) are then incubated for 30 min at 500C in

1|NEB thermopol buffer with DNA polymerase Vent (exo-)

(NEB) at 0:5 U/ml in presence of a mixture of 75 nM dAGC and

75 nM Alexa-546 labeled dUTP. Then, the DNA (4 ng/ml)

samples are stained with intercalating dye YOYO-1 iodide at 1 dye

molecule per 10 base pairs of DNA (Invitrogen Inc, Carlsbad, CA)

in presence of 0:4 M DTT (Promega Inc, Madison, WI).

Loading DNA into nanochannels
Fabrication of silicon based nanochannel chips has been

described elsewhere [27,28]. The DNA sample is diluted by 2

times using the flow buffer consisting of 1|TBE, 3.6% Tween,

and 10% Polyvinylpyrrolidone (PVP). Ultrapure distilled water is

used for making solutions (Invitrogen Corp., Ultrapure water).

The DNA molecules are driven by electric field (3{5 V) at the

port of entrance of the chip and allowed to populate there for

2{3 minutes [29]. Under higher voltage (*10 V), the populated

molecules are moved to the locos and then through the micro

pillar structure of the chip to convert from a compact globular

conformation to an open relaxed one. At the 300nm channel area

the molecules adopt a more relaxed linear form with some

heterogeneity on the backbone. With one end entering the

nanochannel under the electric field, the DNA molecules elongate

to a linear conformation with almost homogeneous backbone.

Most of the structural heterogeneity progressively disappears as it

interacted with the nanochannels, adopting fully confined

equilibrium conformation after the field is off (relaxation time

10{15 s). A buffer consisting 0.5|TBE, 1.8% Tween 20, 5%

PVP has been used to flow the DNA molecules resulting in a

stretch of 65%.

Microscopy and image processing
The epi-fluorescence imaging is done in Olympus microscope

(Model IX-71, Olympus America Inc, Melville, NY) using a

100|SAPO objective (Olympus SApo 100X/1.4 oil). YOYO-1,

the DNA backbone staining dye (*491 nm absorption, *509 nm

emission) is excited using 488 nm laser (BCD1, Blue DDD Laser

Systems, CVI Melles Griot, Rochester, NY) whereas Alexa-546

(*550 nm absorption, *570 nm emission) is excited using

543nm green laser (Voltex Inc, Colorado Springs, CO). The

same filter cube consisting triple band dichroic and dual band pass

emission filters (Z488/532/633rpc, z488/543 m respectively)

(Custom made, Chroma Technology Corp. Rockingham, VT) is

used for detection of YOYO-1 and Alexa-546 emission by

alternative laser excitation (using external laser shutters, Thorlabs,

Newton, NJ). The emission signal is magnified 1.6| and detected

by a back-illuminated, thermoelectric cooled charge coupled

device (EMCCD) detector (iXon) (Andor, Ireland). About 200

sequential images of the labeled DNAs confined in nanochannels

are recorded at 60{80 ms exposure time in blue-green alternative

laser excitation.

Recording and calculations
The intensity profile I(x,y) of each Alexa-546 label is fitted by a

2D Gaussian function to determine the position of the label (xc,yc)
in the channel (Fig. 1B). The position of each internal label is

followed frame-by-frame at a time interval of about 160 ms. The

probability distribution, the mean value and the corresponding

standard deviation of the distance between each pair of internal

labels are calculated.

Partition function and angle fluctuation
The partition function for a confined DNA, whose Hamiltonian

is expressed in Eq.12, is: Z~
Ð

exp {H=kBTð Þd~hh~ exp

FL=kBTð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2pkBT)N= det K

q
, where N is the number of

segments in the discrete chain. The angle fluctuation or correlation

is the Boltzmann weighted average of (hihj) over all the

configurations [26,30]:

ShihjT~
1

Z

ð
hi
:hj exp {

H
kBT

� �
d~hh~kBT K{1

� 	
ij
: ð15Þ

Using Eq.15, we can explicitly calculate the mean extension and

fluctuation of the internal segments (Eq.13–14).

Supporting Information

Figure S1 s versus SxT profile for the SxTƒ10mm region.
Fluctuation of short internal DNA segments from different sources

matches with de Gennes’ theory with NO fitting parameters.

(TIF)

Figure S2 (A) The backbone intensity images of a confined

DNA fragment (*34 mm) stained with YOYO-1 iodide in a

80 nm|130 nm channel. The images are recorded at time

interval of 1:6 s. From the heterogeneity of the intensity profile, we

infer that there exist some local structures on the backbone. (B)

Images of the time series (8 seconds) of a T4 DNA fragment

(*32 mm). The backbone of the DNA is shown in red and the

internal dyes are shown in green. The region with high

fluorescence density is the area with local folded structures. The

green traces are the trajectories of internal dye labels in the time

series. This image shows two internal dyes coming together, which

is evidence of formation of local folded structures.

(TIF)

Figure S3 Mean end-to-end extension SxT versus con-
tour length L of confined DNA in a 60 nm|100 nm
channel. The fitting result is x~0:5L, which is consistent with

the prediction of the Odijk deflection theory: x~0:7L.

(TIF)

Text S1

(PDF)
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