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Abstract

Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding
proteins and small GTPases. The bI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is
present in spines. To understand its function, we expressed its actin-binding domain (ABD) in CA1 pyramidal neurons in
hippocampal slice cultures. The ABD of bI-spectrin bundled actin in principal dendrites and was concentrated in dendritic
spines, where it significantly increased the size of the spine head. These effects were not observed after expression of
homologous ABDs of utrophin, dystrophin, and a-actinin. Treatment of slice cultures with latrunculin-B significantly
decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of a-actinin, but not the ABD of
bI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-
tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of bI-spectrin.
The effects of the bI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small
GTPase that co-immunoprecipitates specifically with bI-spectrin in extracts of cultured cortical neurons. Spine size was
normal in cells co-expressing a dominant negative Rac3 construct with the bI-spectrin ABD. We suggest that bI-spectrin is a
synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via
interaction with actin and Rac3.
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Introduction

Most excitatory synapses are positioned on dendritic spines,

which display a range of sizes and shapes. Changes in dendritic

spine size accompany synapse maturation [1] and are correlated

with synaptic strength [2–4]. Spine morphology is altered by

changes in synaptic activity [5,6] and can accompany changes in

synaptic strength in some, but not all, forms of long-term

potentiation [7–9]. Conversely, abnormal dendritic spines are

observed in many forms of mental dysfunction. The signaling

mechanisms that regulate spine structure and couple changes in

synaptic structure and function are now being actively explored.

Actin, both G-actin monomers and filamentous, polymerized F-

actin, is highly concentrated in dendritic spines [10] and regulates

spine morphology. Dynamic changes in actin polymerization

underlie morphological plasticity of spines [11,12] and can affect

synaptic function [10,13–17]. Actin also serves as the scaffold to

which transmembrane proteins like AMPA and NMDA receptors,

as well as intracellular signaling molecules, are anchored [18–20].

Treatment with actin-depolymerizing agents reduces the number

of functional AMPARs at dendritic spines [21,22]. Thus, actin and

its binding proteins, as well as the signaling molecules that regulate

their interaction, are essential for synapse structure and function.

Spectrin is a large protein that links the actin cytoskeleton to the

cytoplasmic surface of plasma membranes [23,24] and regulates

the dynamic state of the actin cytoskeleton [25]. Spectrin also

anchors transmembrane proteins, such as NMDARs [26], to the

actin cytoskeleton, generating localized microdomains that

facilitate rapid signaling cascades. Spectrin is a heterodimer,

consisting of a- and b-chains [27,28]. bI-spectrin is enriched in

postsynaptic spine heads in the absence of a-subunits [29].

Proteins in the spectrin superfamily are composed of a series of

triple helical repeats that serve as binding sites for other

cytoskeletal proteins. Spectrin also harbors a central SH3 domain

and binding sites for Ca2+- activated proteins, suggesting that it

may play a role in signaling cascades. The actin-binding domain

(ABD) is limited to the N-terminal region of bI-spectrin and is

composed of two calponin homology domains.

As a first step in characterizing the role of spectrin in dendritic

spines, we transfected CA1 pyramidal neurons in hippocampal
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slice cultures with the ABD of spectrin or closely related proteins,

following the approach previously used to study a-actinin [30]. We

suggest that bI-spectrin may play both a structural and functional

role in dendritic spines through interaction with the actin

cytoskeleton and Rac3.

Methods

Ethical approval
All experimental protocols that involve tissue collected from

animals in this study have been approved by The University of

Maryland School of Medicine Institutional Animal Care and Use

Committee (Protocol #0609015).

Neuronal cultures
Organotypic hippocampal slice cultures were prepared with the

roller tube method [31]. Briefly, hippocampi were dissected from

5–7 day-old rat pups and cut into 400 mm-thick slices with a

chopper, under sterile conditions. Slices were attached to cleaned,

poly-lysine–coated coverslips in a mixture of lyophilized chicken

plasma (Cocalico, Reamstown, PA) and concentrated fibrin

solution (Tisseel, Baxter Health Care) that was then clotted with

thrombin. Coverslips containing slices were placed in culture tubes

on a slowly rotating roller drum in an incubator. After 4 days in

vitro, cultures were treated with antimitotics overnight to reduce

glial proliferation. Cultures remained in the incubator for 12–16

days before transfection. Cortical neuronal cultures were prepared

and cultured from E18 rat neocortex, as described [12].

ABD and Rac constructs
Plasmids were created using PCR to amplify the cDNAs of the

actin-binding domains (ABDs) of dystrophin, utrophin, actinin-2, and

bI-spectrin [detailed methods: 32]. The first 942 base pairs of the

coding sequence of the ABD of bI-spectrin (NM_000347) was

amplified from plasmid B259 [32]. With primers A, 59 CGTAGAAT

TCCTATG-ACATCGGCCACAG 39 (sense), and B, 59 TCCCC-

GCGGCTAAGGTGAG CAGGTCCGA 39 (antisense). cDNA was

cloned into the DsRed2-c1 plasmid vector (BD Biosciences Clontech)

via a EcoRI sense site and a SacII antisense site. For dystrophin, a

plasmid (pDys246) [33] was used with primers A, 59 GCGAATTC-

TATGTTGTTGTGGGAAGAAGTA 39 (sense), and B, 59

GCAGGTACCCTATTCAATGCTCACTTGTTG 39 (antisense),

to amplify and clone the first 738 bases of the dystrophin gene

(accession no. M18533), containing its ABD. The dystrophin ABD

was cloned into the DsRed2-c1 vector via an EcoRI site on the sense

primer and a KpnI site on the antisense primer. An utrophin plasmid

(pet23Utr261) [34] served as a template to amplify the ABD. The

primers A, 59 TATAAGCTTC-TATGGCCAAGTATGGGAC 39

(sense) and B, 59 TGTGGATCCCTAATCTATCGTGACTT-

GCTG 39 (antisense) were used to amplify the first 783 bases of the

utrophin gene (accession no. Y12229), which was then cloned into

the DsRed2-c1 vector via a HinDIII sense site and a BamHI

antisense site. The ABD of a-actinin-2 (CAA32078.1) was cloned into

the DsRed2-c1 vector similarly, with the primers. A, 59 GTA-

GAATTCTATGAACAGCATGAACCAG 39 (sense) and B, 59

TGTGGATCCCTATTTCTCAGCAATTTCCATG 39 (anti-

sense) were used to amplify the first 671 bases of the a-actinin-2

gene, via an EcoRI sense site and a BamHI antisense site. GFP-actin

was from Clontech (Mountain View, CA). cDNAs encoding wild type

and dominant negative Rac 1 and 3 were myc- and HA-tagged

constructs from the Guthrie cDNA Resource Center (Rollo, MO).

Plasmids were introduced into bacteria and amplified using standard

protocols. Amplified cDNA was isolated and purified using a

HiSpeed Plasmid Maxi Kit (Qiagen; Valencia, CA) following the

manufacturer’s instructions and prepared for the biolistic transfection

of organotypic hippocampal slice cultures.

Biolistic transfection
Cultures were transfected biolistically with a gene gun (Helios;

Bio-Rad, Hercules, CA) as described [35]. Gold pellets (1.0 mm

diameter) were coated with spermidine and then placed in a

solution of 25 mg/ml DNA, which was precipitated onto the

particles by the addition of CaCl2 to a final concentration of

500 mM. The coated pellets were attached to the walls of the

cartridges with polyvinylpyrrolidone, as described. Prior to

transfection, each slice was placed in a small volume of solution

containing 40 mM amino-5-phosphonovaleric acid (AP5), 40 mM

6,7-dinitroquinoxaline-2,3-dione (DNQX), and 10 mM Mg2+ to

block synaptic transmission and reduce excitotoxicity. Cultures

were transfected by shooting the gold particles out of the gene gun

through a nylon mesh (90 mm2 pore size) at a distance of 2 cm

from the culture surface at a pressure of 200 psi. After transfection,

slices were returned to roller tubes and placed in the incubator for

24–48 hrs before being used for electrophysiology or imaging.

Electrophysiology
Cultures were placed in a recording chamber and perfused with

extracellular saline containing (in mM): 145 NaCl, 10 NaHCO3, 2

CaCl2, 2 MgCl2, and Phenol Red (10 mg/l). Transfected neurons

were identified by fluorescence microscopy before recordings were

performed. Patch pipettes were filled with the following (in mM):

130 gluconic acid, 10 KCl, 1 MgCl2, 2 ATP, 10 HEPES, and 0.1

EGTA, titrated to pH 7.4 with KOH. To ensure that transfected

neurons were those being recorded from, the pipette solution also

contained Alexa 488 (100 mM). After breakthrough to whole-cell

configuration, transfected neurons contained both green Alexa

488 and red DsRed fluorescence, whereas untransfected cells,

recorded within the same slice culture, displayed only green

fluorescence. Miniature excitatory postsynaptic currents (mEPSCs)

were recorded at a holding potential of 270 mV in the presence of

tetrodotoxin (1 mm) and bicuculline (40 mm) at room temperature.

Recording pipette resistances were between 6.5 and 8 MV.

Recordings in which the access resistance exceeded 30 MV were

discarded. Spontaneous mEPSCs were amplified using an

Axopatch 200B amplifier and Clampex 9 software (Molecular

Devices, Sunnyvale, CA), low-pass filtered at 2 kHz, and digitized

at 10 kHz. mEPSCs were identified and characterized using a

template-matching algorithm created from the average of 50

events. To be included for analysis, mEPSCs had to have a

uniphasic rise time of ,6 ms, a decay time constant of ,25 ms

and a peak amplitude .4 pA. Decay time constants were

calculated by fitting each event with a single exponential.

Microscopy and data analysis
In experiments involving static imaging, spine head width and

spine length were measured from confocal micrographs of all

morphological spine categories. Confocal images were taken with

an upright Zeiss LSM-510 Meta Confocal Microscope System

using a water immersion objective (Zeiss; 60X/NA 1.2, C-

Apochromat, effective pixel size = 0.017 mm2). Fluorescence exci-

tation was achieved using a 25 mW Argon ion laser (Spectra-

physics, Mountain View, CA) and illuminating the specimen using

the 488 nm and 514 nm lines.

3D image stacks were collected from living cells in unfixed

cultures, background fluorescence was subtracted, and images

were collapsed into maximal fluorescence 2D projections. Spines

were then traced manually and the spine head width or the spine

length was computed using the SimplePCI software with the
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experimenter blinded to the condition. Spine head width was

defined as the maximum dimension of the spine head, whereas

spine length was defined as the distance from the base of the spine

neck to the tip of the spine head. Spine density was calculated by

manually counting the number of spines expressed over a 30 mm

segment of dendrite. For all measurements of spine density or

dimensions, at least 2 well isolated apical dendrites were used per

neuron. In experiments involving dynamic imaging, these same

analyses were performed on images taken from living cells in

unfixed cultures collected using an epifluorescence wide-field

microscope (Nikon; 60X/0.8 NA, water immersion objective) and

a CCD camera (Hamamatsu Orca ER; effective pixel si-

ze = 0.012 mm2). Photodamage was minimized by adding Trolox

(0.2 mM) to the saline.

For post-hoc analysis of time-lapse image sequences, spine heads

were traced manually and the length and width were computed.

This method underestimates the morphological dynamics of spines

because the measurements are only taken in x and y planes [36].

Images were captured every second for 3 min and binned into

10 s intervals. Morphological dynamics were measured by

calculating the coefficient of variation of the spine head diameter

within each 10 s interval. Out-of-focus images were removed from

the analyses. Fluorescence intensity was calculated after subtract-

ing the average background intensity of two regions of interest

surrounding the dendritic spine.

To measure PSD-95 area, slice cultures were co-transfected

biolistically with GFP fused to PSD-95 and DsRed fused to the bI-

spectrin ABD. PSD-95 - GFP was a gift from Dr. T. A. Blanpied,

and was constructed by subcloning PSD-95 at HindIII-EcoR1 into

N1 versions of the fusion protein expression constructs. After 24–

48 h, slices were placed in a standard recording chamber filled

with control saline and wide-field images were taken, as above.

After background subtraction, each cluster of PSD-95-GFP was

traced manually and an area was calculated using SimplePCI

software.

Analyses of dendritic spine dimensions and PSD-95-GFP area

were performed by comparing the cumulative probability

distributions with the Kolmogorov-Smirnov test. Otherwise,

unpaired t-tests were used to establish significance. When

comparing more than two groups, ANOVA was used with a

Tukey’s or Scheffe’s post-hoc analysis to establish significance

unless otherwise noted. All values are presented as mean values 6

standard error of the mean.

Immunoprecipitation
Cultures of cortical neurons were washed with buffered saline

with complete protease inhibitors (Roche Applied Science,

Indianapolis, IN), placed in 0.32 M sucrose in the same solution,

and scraped. After brief centrifugation, the cellular pellet was

mixed with an equal volume of two-fold concentrated RIPA buffer

to obtain the following final concentrations of detergents: 1% NP-

40, 0.5% deoxycholate, 0.1% SDS. Extracts were triturated in the

cold, briefly, and stored on ice. Aliquots (70 ml) of Dynabeads

(Invitrogen, Carlsbad, CA), pre-coated with sheep anti-rabbit IgG,

in buffered saline were bound with 6 mg affinity-purified rabbit

antibodies to bI-spectrin or with purified non-immune rabbit IgG

and washed. The bead pellet was mixed with 1 mg of protein of

the cellular extract and mixed gently overnight. The immunopre-

cipitates were collected, washed briefly in buffered saline

containing 0.5% Tween, solubilized with SDS-PAGE sample

buffer, and subjected to SDS-PAGE, followed by electro-transfer

to nitrocellulose. Blots were incubated with antibodies to bI-

spectrin, Rac1, or Rac3. Bound antibody was detected with

peroxidase-conjugated secondary antibodies (Roche Diagnostics,

Indianapolis, IN; Amersham Biosciences, England) and the

SuperSignal West Femto Kit (Thermo Scientific, Waltham,

MA). Samples of the cell extract were run in parallel, to mark

the positions of the proteins of interest. Affinity-purified rabbit

antibodies to bI-spectrin have been described [37]. Antibodies to

Rac1 were from Santa Cruz Biotechnology (Santa Cruz, CA).

Antibodies to Rac3 were the generous gift of Dr. I. De Curtis (San

Raffaele Scientific Inst., Milan, Italy).

Results

The ABD of bI-spectrin induces actin bundling in CA1
pyramidal neurons

To investigate the interaction between spectrin family proteins

and the actin cytoskeleton, we created constructs of the highly

homologous ABDs of bI-spectrin, a-actinin-2, utrophin, dystro-

phin, and filamin (supporting information Fig. S1), all fused to the

fluorophore DsRed, and introduced them biolistically into CA1

pyramidal cells in hippocampal slice cultures. We co-transfected

with a GFP plasmid in most experiments to fill the cells and allow

visualization of dendrites and dendritic spines (Fig. 1A), and

quantified spine shape and size from images of GFP distribution.

The DsRed-tagged bI-spectrin ABD labeled filamentous

structures in the cell body and apical and basal dendrites

(n = 12)(Fig. 1B). We observed a distribution of the ABD of bI-

spectrin that was similar to what has been reported for endogenous

spectrin in hippocampal pyramidal neurons [29]. Co-transfection

of GFP-tagged actin revealed that these structures were bundles of

filamentous actin, which were not seen with expression of actin-

GFP alone, suggesting that the ABD of bI-spectrin associates with

actin filaments, promoting their formation and inducing bundling.

The ABD of bI-spectrin, either alone or together with actin-GFP,

also labeled spine heads in apical and basal dendrites (Fig. 1E).

Expression of the ABD of other members of spectrin

superfamily tagged with DsRed gave different results. Expression

of the ABD of utrophin resulted in actin bundling in the neuronal

cell bodies, as well as apical and basal dendrites (n = 12)(Fig. 1C),

but minimal labeling of dendritic spines (Fig. 1F). Expression of the

ABDs of actinin-2 (n = 6) and filamin (n = 7), in contrast, produced

diffuse labeling of the soma and principal dendrites (Fig. 1D),

without actin bundling, as well as prominent labeling of dendritic

spines (Fig. 1F). The ABD of dystrophin (n = 12) produced no actin

bundling in the cell bodies or dendrites and did not label spines

(Fig. 1F). Co-transfection of GFP with the utrophin and dystrophin

constructs revealed that spines were present, but unlabeled by their

ABDs. We observed that the expression level for all of the ABD

constructs were similar based on the distribution and fluorescence

intensity of each ABD. These results demonstrate that the ABDs of

spectrin superfamily members caused distinct effects on actin

filaments and were targeted differentially to dendritic spines.

Although these ABDs are highly homologous, their effects are

therefore likely to be mediated by more than mere binding to

actin.

The ABD of bI-spectrin enlarges dendritic spine heads
Endogenous bI-spectrin is expressed at high levels in the heads

of postsynaptic spine [29]. Analysis of confocal images of GFP-

filled dendritic spines revealed that the heads of dendritic spines

co-expressing the ABD of bI-spectrin were more than twice as

large as spines expressing GFP alone (n = 500 spines/5 neurons/

group; p,0.05, K-S test)(Fig. 2). Spine length was not significantly

different between the two groups, however (n = 500 spines/5

neurons/group, p.0.05, K-S test)(Fig. 2B). Neurons co-expressing

the ABD of bI-spectrin and GFP also displayed a small (,20%),
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but significant, decrease in average spine density as compared to

GFP transfected neurons (n = 5 neurons/group p,0.01, ANOVA

and Tukey’s test)(Fig. 3C).

Only the ABD of bI-spectrin affected dendritic spines. Dendritic

spine heads in cells expressing GFP plus the ABDs of a-actinin-2,

dystrophin, utrophin and filamin were not significantly larger than

spines in cells expressing GFP alone (n = 5 neurons/group p.0.05,

ANOVA and Tukey’s test)(Fig. 2C). Because all of these constructs

bind actin, some other action of the bI-spectrin ABD must be

responsible for the enlargement of the dendritic spine head.

Figure 1. Actin binding domains from various spectrin superfamily proteins differentially bundle actin and localize to spines in CA1
pyramidal neurons. Two-dimensional projections of confocal images of neurons expressing GFP (A) or the ABDs of different proteins fused to
DsRed (B–F). (B) Neurons expressing the ABD of bI-spectrin show actin bundling in the cell soma and in dendrites. The ABD of utrophin (C) also
bundles actin in the soma. Neurons expressing the ABD of actinin (D) did not display actin bundling in the soma, dendrites, or spines (Scale
right = 25 mm, Scale left = 100 mm). E, Merged image of a dendrite from a CA1 pyramidal neuron co-expressing actin-GFP and the ABD of bI-spectrin
fused to DsRed. The arrow indicates a bundled actin filament in the dendrite. Images at the right show the co-localization of actin and the ABD of bI-
spectrin in spine heads (scale bar = 1 mM). F, Co-expression of the ABDs of a-actinin, utrophin, dystrophin, or filamin, all fused to DsRed, and GFP in
CA1 pyramidal cells demonstrate their differential targeting to dendritic spines (E, F Scale bar = 10 mm).
doi:10.1371/journal.pone.0016197.g001
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Figure 2. The ABD of bI-spectrin specifically enlarges dendritic spine heads. A, Images of GFP fluorescence in cells co-transfected with GFP
and the ABD of bI-spectrin fused to DsRed, or with GFP alone, illustrate the substantial increase in spine head diameter seen when the ABD of bI-
spectrin is overexpressed. Scale = 4 mm (left) and 2 mm (right). B, Cumulative probability plots demonstrate the significant increase in spine head
diameter in cells expressing ABD of bI-spectrin when compared to cells transfected with GFP alone, and the lack of a significant effect on spine length
(n = 500 spines/5 neurons/group; * = p,0.05, K-S test). C, When compared to the ABD of other spectrin superfamily proteins, only the spines
expressing the ABD of bI-spectrin were significantly enlarged (n = 5 neurons/construct; * = p,0.01, ANOVA with Tukey’s test).
doi:10.1371/journal.pone.0016197.g002
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The ABD of bI-spectrin stabilizes actin filaments in
dendritic spines

Differences in the sizes of spine heads correlate with different states

of actin polymerization [38]. We further probed the activity of the

ABD of bI-spectrin on actin by testing its ability to stabilize actin

filaments in spines in the presence of latrunculin-B, which

depolymerizes F-actin by preventing addition of G-actin monomers

[15,39]. F-actin in spines is significantly depolymerized after 1 hour

of latrunculin treatment, with complete depolymerization requiring

4–8 h. This is accompanied by the collapse of the dendritic spine

head, known as ‘‘deflation’’ [15,21,39]. In agreement with these

results, we found that application of latrunculin-B (6 mM) for 5 h to

slice cultures caused a 50% decrease in spine head diameter in cells

transfected with GFP alone (GFP+latrunculin = 0.4 mm60.1 mm vs.

GFP alone = 0.8 mm60.1 mm; n = 500 spines/5 neurons/group;

p,0.05, K-S test)(Fig. 3A). Spine length was not affected significantly,

however (1.2 mm60.06 mm control vs. 1.2 mm60.04 mm latruncu-

lin; n = 500 spines/5 neurons/group; p.0.05, K-S test). In contrast,

application of latrunculin to cells transfected with the ABD of bI-

spectrin had no significant effect on either spine head diameter (ABD

of bI-spectrin+latrunculin = 2.0 mm60.20 mm vs. ABD of bI-spec-

trin = 2.1 mm60.2 mm; n = 500 spines/5 neurons/group; p.0.05,

Figure 3. The ABD of bI-spectrin prevents actin depolymerization. A, After application of latrunculin (5 mm) for 5 hr, the diameter of the
spine head in cells expressing GFP alone decreased significantly (n = 500 spines/5 neurons/group; p,0.05, K-S test), whereas spine length was not
changed. B, Latrunculin treatment produced no significant decrease in spine head diameter or spine length in cells co-expressing the ABD of bI-
spectrin fused to DsRed and GFP, in contrast. Scale bar = 2 mm for A and B. C, Application of latrunculin-B resulted in a significant decrease in spine
density in spines expressing GFP alone (n = 5 neurons/group; p,0.01 ANOVA with Tukey’s test), but not in spines expressing the ABD of bI-spectrin.
Spine density was significantly lower in cells expressing the b1 spectrin ABD, as compared to cells expressing GFP alone. Scale bar = 6 mm.
doi:10.1371/journal.pone.0016197.g003
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K-S test) or spine length (1.19 mm60.04 mm control vs.

1.2 mm60.06 mm latrunculin; n = 500 spines/5 neurons/group;

p.0.05, K-S test)(Fig. 3B). Treatment with latrunculin-B also

resulted in a significant decrease in overall spine density in GFP

expressing neurons (n = 5 neurons/group, p,0.01, ANOVA and

Tukey’s test), but not in neurons expressing the ABD of bI-spectrin

(n = 5 neurons/group, p.0.05, ANOVA and Tukey’s test)(Fig. 3C).

Actin in spines expressing the bI-spectrin ABD was thus resistant to

the depolymerizing actions of prolonged latrunculin treatment.

We next tested the effects of acute application of latrunculin-B

in cells transfected with actin-GFP alone or with the bI-spectrin

ABD (Fig. 4). Depolymerization of actin with latrunculin reduces

the intensity of actin-GFP fluorescence in the spine head as the

actin monomers that cannot polymerize diffuse out of the spine

[40]. We found that acute addition of latrunculin-B (5 mm)

induced a rapid (,3 min) decrease in actin-GFP intensity in

control cells, as previously reported. Latrunculin application had a

significantly smaller effect on the intensity of actin-GFP in spines

of cells co-transfected with the ABD of bI-spectrin (n = 5 neurons/

group, p,0.001, repeated measures ANOVA). This effect was

specific for the ABD of bI-spectrin, because latrunculin produced

a strong decrease in the fluorescence intensity of spines co-

transfected with the ABD of a-actinin-2 and actin-GFP,

comparable to its effects on cells expressing actin-GFP alone.

We conclude that the presence of the ABD of bI-spectrin in spines

stabilizes F-actin and reduces its rate of depolymerization.

The ABD of bI-spectrin decreases the morphological
plasticity of dendritic spines

Dynamic morphological changes in the shape of dendritic spine

heads (‘‘morphing’’) occur on the order of minutes or seconds and

are dependent upon actin polymerization and depolymerization in

the spine head [10,40]. We therefore tested if decreases in actin

depolymerization resulting from the expression of the ABD of bI-

spectrin would decrease dendritic spine motility. We used live-cell

imaging to compare the spontaneous, constitutive morphing of

dendritic spines in neurons transfected with GFP alone or GFP

together with the ABD of bI-spectrin (Fig. 5). Because the activity

of both AMPARs and NMDARs may affect spine morphing [10],

we also tested the effects of applying saturating concentrations of

DNQX (40 mm) and AP5 (40 mm). Using GFP emission, we

measured the variance of spine head diameter over a period of

10 min to quantify spine head dynamics and to control for

differences in spine head size induced by the constructs. Spines

expressing GFP alone exhibited significantly more spontaneous

morphing than spines expressing the ABD of bI-spectrin

(p,0.001, Kruskal-Wallis test), and neither were affected by

DNQX and AP5 (Fig. 5C). We conclude that stabilization of actin

filaments by the ABD of bI-spectrin attenuates the structural

dynamics of dendritic spines.

Functional consequences of expressing the ABD of bI-
spectrin

We next asked if there were functional correlates of the

morphological changes induced by the ABD of spectrin. The

postsynaptic density (PSD) is a specialized structure at the tip of

the dendritic spine head comprised of densely packed glutamate

receptors and signaling proteins [41,42] and its size is positively

correlated with synaptic strength [2]. A principal constituent of the

PSD is the scaffolding protein, PSD-95 [43]. As a first test of the

possibility that the enlargement of spine heads induced by the

ABD of bI-spectrin (lacking the DsRed tag) would be associated

with an increase in synaptic strength, we co-expressed it with GFP-

tagged PSD-95 and cytosolic mCherry (Fig. 6A). We observed a

significant increase in the area of PSD-95-GFP in dendritic spines

co-expressing the ABD of bI-spectrin, as compared to cells

expressing PSD-95-GFP alone (mean area = 0.20 mm260.02 mm2

in controls vs. 0.38 mm260.01 mm2 with the ABD of bI-spectrin;

n = 365 spines/4 neurons/group; p,0.05, K-S test)(Fig. 6B). In

agreement with previous reports [44] we observed a linear

relationship between spine head size and PSD-95 area under

both conditions (r = 0.83 for control and 0.79 for the ABD of bI-

spectrin). We conclude that overexpression of the ABD of bI-

spectrin is associated with an increase in the size of the PSD.

It has been demonstrated that the number of AMPARs is

proportional to PSD area [2,45,46]. We therefore asked whether

the increase in PSD size produced by the ABD of bI-spectrin

would be accompanied by an increase in the number of synaptic

AMPARs in the spine head. To answer this question, we

transfected CA1 pyramidal cells in hippocampal slice cultures

with the ABD of bI-spectrin tagged with DsRed and performed

whole-cell voltage-clamp recordings of spontaneous miniature

excitatory postsynaptic currents (mEPSCs) on transfected and

untransfected neurons in the presence of TTX (1 mm). Alexa 488

was included in the pipette solution in order to ensure that the

recorded neurons were truly those expressing the spectrin

construct, as apparent by green and red fluorescence. Mean

mEPSC amplitudes were significantly larger in cells transfected

with the ABD of bI-spectrin compared to untransfected cells in the

same cultures, consistent with an increase in the number of

synaptic AMPARs (mean amplitude = 20.861.4 pA for cells

expressing the ABD of bI-spectrin vs. 17.161.1 pA in untrans-

fected cells; n = 7 neurons/group; p,0.05, K-S test)(Fig. 7A,B).

The frequency of mEPSCs was decreased ,20% after transfection

with the ABD of bI-spectrin, compared to untransfected neurons

recorded from the same slice (p,0.05, t-test)(Fig. 7C), consistent

with the decrease in spine density described above. To test for

non-specific effects of biolistic transfection on neuronal function,

we also compared mEPSC amplitudes in neurons transfected with

GFP alone and untransfected cells and observed no significant

difference (mean amplitude = 17.160.5 pA in untransfected cells

vs. 15.760.4 pA in cells expressing GFP; n = 7 neurons/group,

p.0.05, unpaired t-test). The presence of the ABD of bI-spectrin

in dendritic spines thus increased the sizes of the PSD and the

spine head, as well as synaptic strength.

The activity of the ABD of bI-spectrin is mediated by Rac3
Do the effects of the bI-spectrin ABD on spines result directly

from its interaction with actin or do they result because of

recruitment of some other molecule to the spine head? Our

observation that only the ABD of bI-spectrin localizes to spines

and caused their enlargement, although all of them bind to actin

(Fig. 2), favors the later hypothesis. Small GTPases are important

signaling molecules involved in the regulation of dendritic spine

morphological dynamics [47]. One small GTPase, Rac1, modu-

lates dendritic spine morphology [48] and function [49]. We

therefore tested the role of rac proteins in the morphological

changes induced by the ABD of bI-spectrin.

Two Rac GTPases are expressed in hippocampal and

neocortical pyramidal cells, Rac1 and Rac3 [50,51]. We first

immunoprecipitated endogenous bI-spectrin from cultured corti-

cal neurons and screened for the presence of Rac3 and Rac1.

Surprisingly, Rac3 was enriched in immunoprecipitates of bI-

spectrin, but Rac1 was absent (3 replicates)(Fig. 8A). We tested the

importance of this interaction by co-expressing a dominant

negative Rac3 construct together with the ABD of bI-spectrin.

Under these conditions, spine head diameters were significantly
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smaller than in cells expressing the bI-spectrin ABD alone

(Fig. 8B,C). Spine head diameters in cells co-expressing the bI-

spectrin ABD and dominant negative Rac3 or Rac3-DN alone

were not significantly different than in cells expressing only GFP,

suggesting that Rac3 signaling is required for the effects of the bI-

spectrin ABD on spines. If so, then this effect should be mimicked

Figure 4. The ABD of bI-spectrin prevents acute actin depolymerization. A, Images of GFP fluorescence in spines from CA1 pyramidal
neurons expressing actin-GFP alone (upper row), or co-expressing actin-GFP together with the ABD of bI-spectrin (lower row) before and after the
application of 5 mm latrunculin-B. Note that fluorescence decreased within 5 minutes of latrunculin treatment in cells expressing GFP, but not in cells
co-expressing the spectrin ABD. Scale bar = 2 mm. B, Normalized fluorescence emission of dendritic spines was imaged every 30 seconds before and
after the addition of latrunculin-B. Fluorescence decreased rapidly (,3 min) in spines expressing actin-GFP alone and in spines in which the ABD of a-
actinin was co-expressed, but not in spines co-expressing the ABD of bI-spectrin and actin-GFP (n = 5 neurons/construct; p,0.001, repeated measures
ANOVA).
doi:10.1371/journal.pone.0016197.g004
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Figure 5. The ABD of bI-spectrin decreases the morphological plasticity of dendritic spines. A, Time-lapse images in control saline of GFP
fluorescence in a single spine from a CA1 pyramidal neuron expressing either GFP alone (upper row) or GFP together with the ABD of bI-spectrin
(lower row). Rapid, ongoing changes in the shape of the spine head occurred in spines expressing GFP alone, but not in spines expressing both GFP
and the ABD of bI-spectrin. Scale bar = 1 mm; time in sec. B, Changes in spine head diameter in the spines from A were plotted over time. Spines
expressing GFP exhibited more spontaneous morphing, compared to A spine expressing the ABD of bI-spectrin, regardless of whether NMDARs and
AMPARs were active. C, Group data showing the variance of spine head diameter in neurons expressing GFP alone or the ABD of bI-spectrin in the
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by over-expressing wild-type Rac3. Indeed, the size of dendritic

spine heads in CA1 pyramidal cells transfected with Rac3 was

comparable to spines in cells expressing the ABD of bI-spectrin.

Overexpression of Rac3 also resulted in an increase in mEPSC

amplitude. The mean amplitude of mEPSCs recorded from

neurons expressing Rac3 was not significantly different from those

expressing the ABD of bI-spectrin and both were larger than for

mEPSCs in untransfected or GFP-transfected cells (Fig. 7B). We

conclude that Rac3 can alter dendritic spine structure and

function in hippocampal pyramidal cells.

Discussion

Actin is highly concentrated in dendritic spines and determines

their morphology [52–54]. The actin cytoskeleton provides a

scaffold to which a variety of transmembrane proteins and their

intracellular signaling partners are anchored, often indirectly via

actin binding proteins. The spectrin superfamily of proteins can

form complexes via their actin binding domains, which interact

with a number of other proteins, such as RACK-1, protein 4.1 and

dynactin [25,55,56]. bI-spectrin has been immunocytochemically

Figure 6. Expression of the ABD of bI-spectrin increases the size of the PSD. A, Merged images from CA1 pyramidal neurons in hippocampal
slice cultures co-transfected with PSD-95 fused to GFP (green) and mCherry (red), with or without an unlabelled bI-spectrin ABD construct. The areas
of the clusters of PSD-95 in the heads of spines expressing the ABD of bI-spectrin were larger than in cells expressing PSD-95 alone. Scale bar = 4 mm
(left), 1 mm (right). B, Cumulative probability plot showing that the area of the PSD was significantly larger in spines expressing PSD-95-GFP together
with the ABD of bI-spectrin than in spines expressing PSD-95-GFP alone (n = 400 spines/4 neurons/condition; p,0.05, K-S test).
doi:10.1371/journal.pone.0016197.g006

two conditions. Spines expressing the ABD of bI-spectrin displayed significantly less variance in the shape of their heads than did spines expressing
GFP alone (n = 5 neurons/group; * = p,0.001, Kruskal-Wallis test). There was no significant effect of blocking NMDARs and AMPARs on spontaneous
morphing in any condition.
doi:10.1371/journal.pone.0016197.g005
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detected in dendritic spines, but its functions there remain

unknown.

In this study, we expressed the actin binding domain of bI-

spectrin and related spectrin superfamily proteins, an approach

used successfully as a first step in revealing the function of the full-

length proteins, such as a-actinin [30]. Our assumption is that the

exogenous ABD construct will mimic the function of the N-

terminal ABD of the full length protein. We cannot exclude,

however, that overexpression of the ABD of bI-spectrin may

negatively affect endogenous spectrin or induce other downstream

compensatory effects [30]. Indeed, a full characterization of

spectrin requires complimentary approaches, such as knock-down

of endogenous spectrin and overexpression of the full length

protein, that are beyond the scope of the current study.

Nevertheless, spectrin is a prominent substrate of the Ca2+-

activated protease calpain and activation of calpain may result in

the creation of fragments not unlike those we have expressed.

Interactions between bI-spectrin and actin
Although all of the proteins of the spectrin superfamily and

related proteins share highly homologous ABDs, they are all

unique at many sites (Fig. S1). Indeed, we found a surprising

heterogeneity in the way these ABDs were targeted in CA1

pyramidal cells. The ABDs of bI-spectrin and utrophin, but not

dystrophin, colocalized with GFP-tagged actin and bundled actin

filaments in the cell body and proximal dendrites. The ABDs of

bI-spectrin, a-actinin-2 and filamin, but not utrophin and

dystrophin, were concentrated with actin in the heads of dendritic

spines. Our results with the ABD of a-actinin-2 are in contrast to

those of Nakagawa et al. [30], who reported that the ABD of a-

actinin-2 did not localize to spines, although comparable regions

of the protein were used in both studies. Even more unique to the

ABD of bI-spectrin was its ability to enlarge the spine head. None

of the other ABDs we assayed produced this effect. Nakagawa

et al. [30] observed that overexpression of full length a-actinin-2

Figure 7. The ABD of bI-spectrin enhances single spine AMPAR-mediated synaptic responses. A, mEPSCs from an untransfected control
cell (upper trace) and a cell transfected with the ABD of bI-spectrin (lower trace) were recorded at 270 mV in the presence of TTX (1 mm). Average
sized single mEPSCs recorded from the untransfected cell (black) and transfected cell (gray) are shown superimposed at right. B, Group data showing
that neurons expressing the ABD of bI-spectrin had significantly greater mEPSC amplitudes, compared to untransfected controls or cells expressing
GFP alone, suggesting an increase in AMPARs at these synapses (n = 7 neurons/group; p,0.05, K-S test). The increase in mEPSC amplitude produced
by the spectrin ABD was mimicked in cells expressing CA Rac3, in which mEPSC amplitude was also larger than in controls or GFP expressing cells
(p,0.05, K-S test). C, The frequency of mEPSCs in transfected neurons decreased significantly, suggesting fewer functional synapses (n = 7 neurons/
group;* = p,0.05, t-test).
doi:10.1371/journal.pone.0016197.g007
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elongated dendritic spines and that this required its ABD. These

results suggests that different actin-binding proteins from the

spectrin superfamily can exert differential structural effects on

dendritic spines, but only the ABD of bI-spectrin can enlarge

postsynaptic spine heads.

The ABD of bI-spectrin also affected the stability of actin

filaments within the spine. In control cells, both acute (minutes)

and chronic (5 hr) application of latrunculin-B, an inhibitor of

actin polymerization, reduced the dimensions of spine heads and

caused a loss of GFP-actin from spines, as reported previously

[40]. In cells expressing the ABD of bI-spectrin, in contrast, both

the latrunculin-induced loss of actin-GFP and deflation of the

spine head were inhibited. Thus, the ABD of bI-spectrin reduces

the rate at which actin filaments are depolymerized, even when the

addition of new actin monomers has been blocked by latrunculin-

B. This effect was also specific, as the ABD of a-actinin-2 did not

stabilize actin-GFP in spines. These data suggest that some of the

effects of expressing these constructs result not from their ability to

bind to actin, but perhaps because they recruit other signaling

molecules differentially.

Consistent with its ability to stabilize actin filaments, the ABD of

bI-spectrin significantly inhibited the constitutive morphing of

Figure 8. Rac3 is immunoprecipitated with the ABD of bI-spectrin and might mediate its effects on dendritic spines. A, Rac3 is
specifically enriched in immunoprecipitates of detergent extracts of cortical cell cultures generated with antibodies to bI-spectrin. The input sample
(lane 1) contained easily detected amounts of bI-spectrin and Rac1 but relatively little Rac3. Immunoprecipitation with an anti-bI-spectrin antibody
(lane 2) specifically concentrated bI-spectrin and Rac3, but did not precipitate Rac1. Neither GTPase was detected after immunoprecipitation with a
non-immune rabbit IgG (lane 3). B, GFP images of CA1 pyramidal cell dendrites co-expressing GFP and the ABD of bI-spectrin either with or without
dominant negative (DN) Rac3, and co-expressing GFP with wild type Rac3. Scale bar = 10 mm. C, Pooled data illustrate the effects on the mean spine
head diameter, calculated from GFP images (n = 100–300 spines/neuron, 2–5 neurons/group, p,0.001, ANOVA with Sheffe’s test). Spines in cells
expressing the ABD of bI-spectrin had larger heads than cells expressing GFP alone, but not when co-expressing dominant negative Rac3. Expression
of wild-type Rac3 resulted in spines with large heads, thus mimicking the effects of the ABD of bI-spectrin.
doi:10.1371/journal.pone.0016197.g008

The Role of bI-Spectrin in Dendritic Spines

PLoS ONE | www.plosone.org 12 January 2011 | Volume 6 | Issue 1 | e16197



dendritic spines. Prevention of actin polymerization with latrun-

culin-B or cytochalasin-D has been reported previously to

eliminate dynamic changes in spine head shape [10]. We suggest

that endogenous bI-spectrin in spines maintains the spine head in

a large and stable state, in part by stabilizing filamentous actin,

and that decreases in bI-spectrin might facilitate actin reorgani-

zation and promote dynamic changes in spine size and shape.

Functional consequences of expressing the ABD of bI-
spectrin

The turnover of F-actin in dendritic spines is necessary for

postsynaptic reorganization and the translocation of proteins into

and out of the synaptic plasma membrane [14,58]. This activity is

driven by rapid actin polymerization and depolymerization [59].

For example, inhibition of actin polymerization by latrunculin-A or

ADF/cofilin increases the relative rate of AMPAR endocytosis and

partially inhibits late-phase LTP [16,22]. Conversely, the activity of

glutamate receptors can affect actin turnover [60] by modulating

actin polymerization or depolymerization. Indeed, another spectrin

superfamily protein, a-actinin-2, regulates not only the morphology

of dendritic spines [57], but also the trafficking of AMPARs [61]

and the Ca2+-dependent inactivation of NMDARs [62,63].

Larger dendritic spines contain more AMPARs and generate

larger responses to glutamate [2,46]. We observed an increase in

the size of dendritic spine heads after expressing the ABD of bI-

spectrin, as well as an increase in the area occupied by PSD-95 in

the spine head. Stabilization of F-actin by the bI-spectrin ABD,

which increases the size of spine heads, is likely to account for the

increase in PSD size [58]. The association of PSD-95 with F-actin

is required to anchor AMPARs at postsynaptic sites [64]. We

observed that the amplitudes of AMPAR-mediated mEPSCs were

significantly larger in cells expressing the ABD of bI-spectrin. The

doubling in PSD-95 area and spine head diameter observed in

cells expressing the bI-spectrin ABD was associated with only a

,40% increase in mean mEPSC amplitude, however, indicating

that a strict correlation between postsynaptic density size and

AMPA receptor number [e.g. 46] is not obligatory under all

conditions. Nevertheless, our data represent the first evidence that

the actin-binding activity of proteins of the spectrin superfamily

can affect postsynaptic sensitivity to released neurotransmitter.

Rac3 and the ABD of bI-spectrin
How might endogenous bI-spectrin regulate synaptic function? In

addition to its ABD, bI-spectrin contains binding sites for calmodulin,

protein 4.1, ankyrin, and other proteins [25,65,66]. Protein 4.1

promotes the association of the ABD of spectrin with F-actin [67,68].

The neuronal splice form, 4.1N, interacts with AMPA-type GluR1

subunits and promotes their surface expression [69]. Recruitment of

protein 4.1 by the bI-spectrin ABD may therefore promote the

insertion of AMPARs into the postsynaptic membrane.

Small GTPases such as Rho, Rac and cdc42, promote

morphological plasticity by regulating dynamic changes in the

actin cytoskeleton. For example, constitutively active Rac1

disorganizes spines [70], whereas dominant-negative Rac1 dis-

rupts spines [47,70]. Rac1 activity increases following activation of

synaptic NMDARs and promotes the subsequent enlargement of

dendritic spines [49]. Karilin-7, a guanine nucleotide exchange

factor specific for Rac1, is targeted to dendritic spines, where it

enlarges spine heads [71] and potentiates AMPAR-mediated

synaptic activity [49]. Less is known about Rac3, although it is

highly homologous to Rac1 and is expressed in neurons [51],

particularly in the CA1 and CA3 region of the hippocampus

during development [50]. Rac3 promotes neurite extension in

cultured hippocampal neurons [72] and induces effects on cell

differentiation and morphology in neuronal cell lines that are

distinct from those caused by Rac1 [73]. Mice in which Rac3 is

genetically deleted are viable, learn a hippocampal dependent task

normally, and have normal dendritic spine densities, although this

may be due to compensation by Rac1 [74,75].

We observed that Rac3 co-immunoprecipitates with spectrin, but

not Rac1. Overexpression of wild-type Rac3 increased the sizes of

spine heads as effectively as overexpression of the ABD of bI-spectrin.

In contrast, co-expression of a dominant-negative form of Rac3 with

the ABD of bI-spectrin with inhibited its ability to enhance spine head

size. Finally, neurons that overexpress Rac3 had increased mEPSC

amplitudes. We therefore suggest that Rac3 activation is promoted in

part by the ABD of bI-spectrin and may mediate some of the effects of

endogenous spectrin on postsynaptic structure and function.

How might Rac3 mediate its effects? Rac3 associates with

neurabin and this association is required for its GTPase activity

[72]. Furthermore, neurabin binds to actin [76] and this binding is

required for its localization in dendritic spines [39]. Overexpres-

sion of neurabin increases spine head size [77] and AMPAR

expression and triggers actin bundling [78]. It is thus possible that

the presence of high levels of bI-spectrin ABD in the spine head

leads to spine enlargement and synapse strengthening by

recruiting Rac3 and neurabin. Alternatively, neurabin may exert

its effects on dendritic spines [39] by binding to actin and, like bI-

spectrin, recruiting Rac3. It should be noted that the dominant

negative Rac3 construct did not reduce dendritic spine size

compared to control cells. Similarly, genetic deletion of Rac3

does not affect dendritic spine density in hippocampal cell cultures

[75], although spine size was not quantified. This suggest that the

interaction between endogenous bI-spectrin and Rac3 is not

necessary to maintain spine head size. This possibility could be

tested in future studies in which expression of endogenous bI-

spectrin is reduced by targeted siRNA.

Our results suggest the testable hypothesis that the ABD of

endogenous bI-spectrin and Rac3 can interact in a complex that

promotes both activation of Rac3 and polymerization of actin.

Changes in the expression of bI-spectrin might thus affect the

dynamic state of the actin cytoskeleton in spines, thereby

influencing AMPAR trafficking and the balance between synapse

plasticity and stability.

Supporting Information

Figure S1 Sequence alignment of spectrin family ABDs.
Although the sequences are identical to b1-spectrin at many

residues (indicated by *), and very similar (indicated by :) or

homologous at others (indicated by.), there are many differences.

Although all share the ability to bind and bundle actin, these

regions of difference are presumably responsible for the distinct

activities observed in the various experiments.

(TIF)
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