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Abstract

Next-generation DNA sequencing is increasingly being utilized to probe microbial communities, such as gastrointestinal
microbiomes, where it is important to be able to quantify measures of abundance and diversity. The fragmented nature of
the 16S rRNA datasets obtained, coupled with their unprecedented size, has led to the recognition that the results of such
analyses are potentially contaminated by a variety of artifacts, both experimental and computational. Here we quantify how
multiple alignment and clustering errors contribute to overestimates of abundance and diversity, reflected by incorrect OTU
assignment, corrupted phylogenies, inaccurate species diversity estimators, and rank abundance distribution functions. We
show that straightforward procedural optimizations, combining preexisting tools, are effective in handling large (105{106)
16S rRNA datasets, and we describe metrics to measure the effectiveness and quality of the estimators obtained. We
introduce two metrics to ascertain the quality of clustering of pyrosequenced rRNA data, and show that complete linkage
clustering greatly outperforms other widely used methods.
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Introduction

There is a long history of using environmental 16S rRNA [1] to

estimate microbial diversity [2]. While early techniques relied on

using clone libraries [3], next-generation high-throughput se-

quencing technology, such as pyrosequencing, directly generates

vast libraries of sequences [4]. Next-generation high-throughput

sequencers are capable of producing large datasets of more than a

million reads from a single plate [5]. As the size of these datasets

grow, the ability to computationally manage and characterize such

data becomes a larger and more critical component of microbial

ecology.

The goal of analyzing these sequences is to quantify the diversity

and abundance distributions of organisms present in the

environment. As pyrosequencing technology advances, our ability

to measure microbial diversity increases. Already, this technique

has been used to study the diversity of microbiomes from a variety

of environments [6,7], resulting in reports of a so-called ‘‘rare

biosphere’’ of low-abundance organisms [8].

In order to assess the microbial diversity present in any dataset,

the ability to appropriately measure the distance between different

sequences and to reliably group them into operational taxonomic

units (OTUs) is paramount. Typically, the abundance of OTUs is

plotted in a rank abundance plot. These plots have been used as a

gold standard for ecological population modeling for many

decades [9]. In addition, the OTU groupings are utilized by

other metrics in determining relative species compositions,

microbial diversity, and community comparisons [10,11]. While

much effort and controversy has been focused on measurements of

the quality of next-generation sequences [8,12–15], or the

interpretation of pyrosequencing flowgrams [16], less attention

has been given to computational analysis of pyrosequenced 16S

rRNA data after quality processing, despite the large discrepancies

in OTU numbers and diversity when different analysis methods

are used [14,16–18].

There are two major components to the analysis of OTU

abundance. The first is multiple alignment of 16S rRNA or

fragments of 16S rRNA. The second is clustering the sequences

based on a distance metric. The purpose of this paper is to provide

a careful discussion of the computational analysis of alignment and

clustering of pyrosequencing datasets, identifying sources of error,

and appropriate ways to handle the data to mitigate these artifacts.

In particular, we use the Calinski-Harabasz (CH) index [19] to

compare the quality of clustering, and we find unexpectedly large

differences in the performance of different algorithms. We show

that data analysis is surprisingly sensitive to even small errors in

multiple alignment and clustering, but that with relatively little

difficulty, these artifacts can be substantially mitigated using a
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judicious combination of preexisting tools, and others that we have

made available on the Web (http://tornado.igb.uiuc.edu). Fol-

lowing these procedures results in a robust characterization of

microbial ecosystems.

Multiple Alignment: NAST and Infernal
Multiple alignment is the starting point of almost all analyses

performed on microbiome sequences. Most phylogeny [20,21],

community distance estimates [11,22], and abundance distribu-

tions [23–25] ultimately rely on input from a multiple alignment to

compute sequence distances within a consistent alignment

template.

The goal of multiple alignment is to align sequences according

to their evolutionary relationships. In order for a multiple

alignment to be meaningful in this context, all sequences in the

multiple alignment must have a common origin. The various

match, mismatch, and indel events then represent possible

reconstructions of the evolution of those related sequences. In

contrast to pairwise alignment, multiple alignment leverages

conserved features of an entire gene family to obtain a broader

evolutionary picture. This picture can then be fed into various

algorithms such as maximum-likelihood phylogeny [20,21,26] in

order to reconstruct the evolutionary relationships between the

individual sequences.

The use of 16S rRNA sequences for discerning evolutionary

relationships has a long history. The very first studies that

organized the Bacteria according to their evolutionary relation-

ships and resulted in the discovery of the Archaea utilized this

important ribosomal molecule as a molecular fossil [27] and it still

remains the most widely used evolutionary marker in microbial

ecology today [5,8,28]. As such, it is not surprising that a number

of tools exist which are specifically tailored to 16S rRNA such as

the NAST pipeline [29] or Ribosomal Database Project [30].

These specialized 16S rRNA alignment tools all incorporate

information about the 16S rRNA secondary structure. The

importance of the secondary structure is two-fold. First, the

conservation of 16S rRNA sequences stems from the conserved

structure. Second, unlike proteins which are built from up to 20

different amino acids, there are only 4 basic RNA bases.

Randomly chosen RNA bases have a greater chance of aligning

well with one another than randomly chosen protein sequences,

making it more difficult to distinguish between evolutionary

relationships and random matches. Secondary structure can, and

should, be used to provide extra discriminatory power beyond that

available from the one-dimensional sequence alone.

The NAST algorithm [29] tries to align new sequences against a

precalculated multiple alignment template, and has been integrat-

ed into many commonly used 16S rRNA analysis tools such as

Mothur [11] and GreenGenes [31]. Typically, this template is

hand-curated to include the appropriate secondary structure

considerations. In this paper we will use the SILVA SEED

SSURef database version 102 [32] as the template and refer to this

alignment method as NAST+SILVA. The weaknesses of this

method are that errors in the hand-curated multiple alignment

propagate and that alignment against a fixed-size template

necessitates the inclusion of purposeful misalignments. Overall,

this results in alignments that are sometimes inconsistent with

alignments based on secondary structure. An example of this is

shown in the alignments in Figure S2b. By contrast, Infernal [33],

which has been integrated into the Ribosomal Database Project

16S rRNA Pipeline [30], aligns sequences against a predefined

structure. However, even among the well-conserved structures of

16S rRNA, there exist hypervariable regions which vary in their

secondary structure from taxon to taxon. These regions cannot be

aligned to a fixed structural template, and are left unaligned by

Infernal (leading to a multiple alignment whose length is not fixed

but may be different in different datasets). An example of this

Infernal’s alignment is shown in Figure S2a. It is important to note

that while both methods align to a seed model of some sort, the

practical difference is that RDP+Infernal do better in regions of

strong secondary structure whereas NAST+SILVA do better in

hypervariable regions.

To exploit this distinction, one can merge the best alignments

from each tool by combining the hypervariable regions aligned

using the NAST algorithm with the regions of strong secondary

structure aligned by Infernal. An example of sequences aligned

using the merging method is given in Figure S2c. One can also

make adjustment to the multiple alignment by hand. Done

properly, this can produce a better quality alignment than

automated methods alone. An example of the merged alignment

in which the hypervariable region was further hand-curated is

given in Figure S2d. For a brief description of the process and the

tools that we developed to perform the merging and hand-

curation, please refer to the Materials and Methods section.

With the availability of a variety of tools that perform multiple

sequence alignment, it is imperative to have a way to assess its

quality. One way to do that is through maximum-likelihood (ML)

phylogeny. ML phylogeny tries to identify the set of relationships

with the best likelihood value. Conversely, ML scores can also be

used to judge the likelihood of a multiple alignment reflecting

sequence evolution. Indeed, similar measures have been used in

the past [34] and tools such as SATÉ [35] already take advantage

of this measure when iterating between multiple alignments and

phylogeny to automate the search for the best alignment and tree.

However, exploring enough multiple alignments for large datasets

is prohibitively expensive and therefore remains impractical for

now. Nonetheless, it is feasible to use the ML method in order to

compare the quality of alignments by measuring their likelihood

values, and we use this below to compare different alignment

strategies.

Clustering Algorithms
Clustering algorithms, such as complete linkage [36], are

essential for quantifying the diversity of microbial communities.

The goal of clustering is to group sequences that are within some

measure of evolutionary distance. Distances can be calculated

using many different metrics such as percent sequence identity

(PSI) or distance along the phylogenetic tree branches. Ideally, a

clustering algorithm should identify the natural boundaries

between the clusters without utilizing more clusters than necessary

to account for the entire dataset. Ultimately, clustering should

accurately reflect the underlying phylogenetic and taxonomic

distribution of sequences.

Complete linkage clustering (as implemented by Mothur [11])

has become the most widely-used clustering algorithm in microbial

ecology. It relies on input from a distance matrix that can be

generated from the pairwise distances between sequences in a

multiple alignment. When calculating sequence distances, it is

important to clearly note how alignment gaps are dealt with. One

can ignore the gaps (like Phylip DNADIST does [25]) or count

them in a number of different ways [23]. Once pairwise distances

are obtained, complete linkage operates by progressively merging

smaller clusters into larger ones, as long as each element in a

cluster is within a defined distance from other elements in the

cluster [36].

The performance of linkage clustering algorithms, for example

as implemented in Mothur, scales poorly (N3, where N is the

number of sequence reads) as the number of sequence reads

Robust Analysis of Deep Sequencing Datasets
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generated per study increases. In the studies reported below, we

reimplemented Mothur’s clustering algorithm, achieving an

improvement in computational complexity (scaling as N2logN),

better memory usage, and an overall speedup that is typically a

factor of 5–10, leading to the ability to handle datasets with N up

to about 30,000. Despite these improvements, it is understandable

that heuristic, computationally efficient algorithms have been

developed, such as FastGroup [37] and ESPRIT [38].

FastGroup does not order clustering in any particular way, but

instead chooses a sequence at random, grouping everything within

a defined PSI distance of that sequence. As an example of how that

is different from the complete linkage clustering employed by

Mothur, consider the clustering of a scatter of points in two

dimensions, as shown in Figure 1. The two-dimensional space is a

very simple example of sequence space, with position in the space

corresponding to the particular sequence of an organism. A set of

points in this space, if sufficiently close to one another, represents a

set of sequences that can be considered to be grouped into a single

equivalence class—in other words, an OTU. The largest allowable

distance between points in a single equivalence class corresponds

to the sequence similarity required for sequences to be included in

the same OTU (typically 97% is used).

When the FastGroup algorithm is used to group these

sequences, with a radius equal to the radius of the circle of points,

the number of clustered OTUs can vary, depending on the order

of chosen cluster centers. One example of FastGroup’s clustering is

given in Figure 1a. On the other hand, complete linkage clustering

with the same diameter correctly identifies the existence of 1

cluster (Figure 1b), by progressively merging clusters as long as

they are within a cluster diameter (see Figure S3 for the progress of

the complete linkage algorithm).

ESPRIT [38] goes one step further and does away with multiple

alignment entirely and processes the clusters in two steps: the first

relying on a k-mer heuristic, similar to that used in BLAST [39], in

order to group closely related sequences under one representative

sequence; the second relying on pairwise distances between

representatives in order to determine the final clusters. Both

FastGroup and ESPRIT differ from the more controlled

calculations of the complete linkage algorithm, but at the same

time promise less computationally intensive results. Before

pursuing such alternatives, it is important to understand the

differences between the results produced by each of these

algorithms.

In other words, do the heuristic algorithms produce natural

cluster borders and correct cluster compositions? A natural cluster

should have a representative sequence that is near the center of the

cluster, i.e. the representative sequence should be one that shares

the most similarity to all other sequences in the cluster. Natural

clusters should not partition the dataset into more groups than

necessary. One way to quantify this goodness of clustering is via

the Calinski-Harabasz (CH) index [19] that has been found to be

the best in a comprehensive study of 30 different clustering quality

indices [40]. In essence, the Calinski-Harabasz index is higher

when the cluster centers are further away from each other (i.e. the

clusters are better delineated from each other), and when the

cluster radii are smaller (i.e. the clusters are tighter). The CH index

is also correctly normalized so as to be comparable for different

number of OTUs.

Results

In this work, we demonstrate that different methodologies can

lead to very different estimates of OTU abundances. We

characterize these differences and deconstruct their two primary

sources: multiple alignment and the clustering method used. We

measure the performance of both components of this process,

restricting ourselves to 16S rRNA based techniques. We also

provide metrics to quantitatively evaluate the effectiveness of

algorithms used. Our analysis includes an examination of the

robustness of these algorithms on real biological data. We perform

our analysis on a dataset of 22,911 bacterial 16S rRNA sequences

(V3 region) with an average length of 205bp from a sample of a

chicken caecum. We note however, that our methodology is also

applicable to longer 16S rRNA reads.

Before further analysis, we treated our dataset in the following

way. To handle length variation among sequences, we trimmed

our sequences to only be between the first and last conserved

columns in the NAST [29] alignment to SILVA database [32]. We

further removed any sequences less than 100 bp long and any

sequences that contained an unknown nucleotide (N). After

cleanup our dataset had 21,646 sequences.

Multiple Alignment: Performance
We compared the effectiveness of the different alignment

algorithms by using the likelihood values returned by maximum-

likelihood phylogeny. In alignment of nucleotide sequences with

Figure 1. Calculation of clustering a set of points in a plane. (a) FastGroup’s method. (b) complete linkage clustering. Both of these clusterings
are performed with the same radius r equal to the radius of the set of points. FastGroup constructs 4 clusters whereas complete linkage finds 1.
doi:10.1371/journal.pone.0015220.g001
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secondary structure the aligners that are aware of the secondary

structure generally outperform those that rely on sequence data

alone [41], such as ClustalW [42] and MUSCLE [43]. In addition,

these aligners scale poorly with dataset size [44]. Thus, we test the

two commonly used 16S rRNA alignment algorithms: RDP

[30]+Infernal and NAST in conjunction with the SILVA database

[32]. Using ML phylogeny, we find log-likelihood scores of

{17,012 and {17,322 for RDP+Infernal and NAST+SILVA,

respectively, as obtained from the FastTree ML algorithm [20].

The merged alignment of RDP+Infernal with NAST+SILVA,

described in the introduction, has a log-likelihood value of

{16,262, representing an improvement over either of the two

algorithms alone. When we perform further hand-curation of

hypervariable regions of the 16S V3 in the merged alignment, we

obtain a log-likelihood score of {15,036—reflecting the misalign-

ments that can occur in the automated procedure.

We can also take these different multiple alignments and cluster

them in order to see how the OTU abundance results depend on

the multiple alignment procedure. The OTU numbers after

complete linkage clustering with radii 3%, 5% and 7% on seven

different alignments are shown in Table 1. Here, ‘‘merge’’ refers to

the merging of RDP+Infernal with NAST+SILVA. Note that

running the aligners on sequences after quality processing

produces thousands of OTUs. However, performing hand-

trimming of sequence tails reduces the number of OTUs by an

order of magnitude. This suggests that poorly curated alignments

may overestimate microbial diversity.

Clustering: Performance
We compared the three clustering algorithms (complete linkage,

FastGroup and ESPRIT) by running them on the hand curated

alignment described in the previous section. We can visualize the

effect of the choice of clustering algorithm by comparing rank

abundance curves and cluster compositions. Rank abundance

curves for the chicken caecum dataset are compared in Figure 2,

for the 3% sequence difference clustering distance (and 1.5%

FastGroup). As demonstrated by the curve, complete linkage

clustering, ESPRIT and FastGroup at 1.5% obtain the same shape

of the curve, but FastGroup aw 3% finds a very different one. This

is because complete linkage at distance r corresponds to clusters

where every element is at distance r to every other element in the

cluster. On the other hand, FastGroup guarantees that every

element is only at distance r from the chosen center of the cluster.

This means that there may be elements in the same cluster that are

at a distance of 2r from each other. Hence, r for FastGroup

denotes the ‘‘radius’’ of the cluster, whereas r for complete linkage

denotes the ‘‘diameter’’ of the cluster. Thus, FastGroup at 1.5%

sequence distance can be compared to complete linkage and

ESPRIT at 3%.

We find that FastGroup at 1.5% overestimates the number of

OTUs in the sample. The binning in Figure 2 hides the fact that

the number of OTUs found by FastGroup at 1.5% is much larger

than that of ESPRIT and complete linkage. FastGroup at 1.5%

finds 834 OTUs compared to complete linkage (354) and ESPRIT

(434). Most of these extra OTUs are singletons. Of the 834

FastGroup OTUs, 440 are singleton OTUs. In comparison,

complete linkage has 103 OTUs that are singletons out of total of

354. ESPRIT has 122 OTUs that are singletons out of 434 total.

This is in accordance to the idea that is sketched in Figure 1, that a

clustering algorithm such as FastGroup overestimates the number

of OTUs.

We now evaluate the clustering quality via the CH index. For

3% clustering distance, complete linkage has a CH index of

167,771, whereas ESPRIT clustering has a CH index of 244.

FastGroup with 1.5% clustering radius has CH index of 94,696.

We note that complete linkage significantly outperforms other

linkage clustering algorithms: nearest neighbor linkage (single

linkage) got a CH index of 14,042 and average neighbor linkage

got 23,512. We can also compare CH indices for clustering

assignments that have roughly the same number of OTUs, rather

than the same clustering distance. We find that complete linkage

has CH indices between 140,000 and 160,000 for a range of

clustering assignments with 200 to 300 OTUs. ESPRIT produced

two clustering assignments in this range: first with 235 OTUs has a

CH score of 280, and second with 303 OTUs has a CH score of

286. Finally, FastGroup (with 3% distance) got a CH score of

16,000 for a clustering assignment with 251 OTUs.

Table 1. Dependence of the number of OTUs on the
alignment method used. The percentages indicate clustering
radius.

Alignment method Number of OTUs

3% 5% 7%

NAST+SILVA (on raw) 1141 646 406

RDP+Infernal (on raw) 3588 2313 1743

Merged (on raw) 3647 2297 1682

NAST+SILVA (on trimmed) 425 251 187

RDP+Infernal (on trimmed) 406 234 169

Merged (on trimmed) 393 227 165

Hand-curated 354 207 153

Trimmed sequences refer to sequences in which elementary hand-curation was
performed (see introductory paragraphs of Results for more information).
Merged refers to the multiple alignment that is a merging of the hypervariable
regions aligned by NAST+SILVA regions with strong secondary structure
conservation aligned by RDP+Infernal. See Introduction for more information.
Note that crude hand-curation can reduce numbers of OTUs by a whole order
of magnitude.
doi:10.1371/journal.pone.0015220.t001

Figure 2. Rank abundance curves obtained with different
algorithms and/or clustering distances. Notice that FastGroup
with 1.5% sequence distance identifies a similar rank abundance curve
to those of ESPRIT and complete linkage. However, it is not evident
from the Figure that FastGroup identifies almost two times the number
of OTUs than ESPRIT or complete linkage.
doi:10.1371/journal.pone.0015220.g002
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Another way to quantitatively judge the goodness of clustering is

by comparing the OTU assignments to the structure of the

maximum likelihood phylogenetic tree. To do this, we count the

number of clades in a phylogenetic tree that contain only

sequences of the same OTU (as determined by the clustering

algorithm). We expect that a good clustering assignment will have

many such clades. Two examples of this calculation are sketched

out in Figure S4. We ran this calculation on 2 phylogenetic trees,

one made by FastTree [20] (FT) and one made by RAxML [21]

(RX), both inferred from our dataset described above. We find

that complete linkage clustering has the most clades with uniform

OTUs: 863 in FT and 698 in RX. Clustering with FastGroup

(with 1.5% distance), we find 427 clades in FT and 367 in RX,

whereas ESPRIT performs the most poorly: 6 clades in FT and 7

in RX.

We also explored if the rank abundance curves depend upon the

clustering distance metric used. We find that the complete linkage

clustering with the hand curated multiple alignment is very robust

with respect to the choice of distance metric. In Figure 3a we

compare the rank abundance curves (made by complete linkage)

for three different distance metrics: Phylip DNADIST [25],

percent sequence identity and distance along phylogenetic tree

constructed by FastTree. We see that regardless of the choice of

the distance metric, the shape of the rank abundance curve is

conserved.

If we seek universal laws in the rank abundance data, we should

expect that the shape of the rank abundance curve does not

depend upon the particular clustering radius chosen. If instead

rank abundance changes significantly with radius, that would

imply that there is an interesting interplay between population

dynamics and sequence distance. The complete linkage clustering

with our hand curated multiple alignment is found to be robust

with respect to choice of clustering radius. As an example, see

Figure 3b for the rank abundance curves of our chicken caecum

microbial sample clustered at three different distances. By

rescaling the axis of the rank abundance curves, while keeping

areas under them constant, we can compare the functional forms

(i.e. shapes) of the rank abundance curves. The figure shows that

the chicken caecum microbial sample rank abundance seems to

obey a universal law over a range of clustering distances.

Discussion

In the literature, the quality of data from pyrosequencing has

been called into question [17,45], especially with regard to its use

in surveys of OTU diversity. Concern has been directed mostly at

the experimental process of acquiring DNA sequences with high

quality. Sogin et al. [8] showed that a number of heuristics can

guarantee that per-base error rate of pyrosequencing is lower than

that of Sanger sequencing while retaining more than 90% of data.

Other artifacts that raised concern came from the shortness of

pyrosequenced reads [12,13]. Quince et al. [16] showed that

reinterpreting pyrosequencing flowgrams via a maximum-likeli-

hood scheme can lead to fewer OTUs. In this paper we showed

that a significant part of the discrepancy may arise from different

computational analyses employed. Recent work [18] that has been

similarly motivated has been commensurate with the conclusion

that clustering is an important step in OTU analysis. In particular,

they suggest that a preclustering step can help fix problems where

deep sequencing overestimates species richness. Our work presents

more general quantitative metrics that can be used as a standard

for clustering programs. In addition, we find that calculating the

log-likelihood of a maximum-likelihood phylogenetic tree is a good

way to compare the quality of nucleotide alignments. Clustering

quality index such as Colinski-Harabasz can even be used to verify

what clustering radius is appropriate for a particular dataset. Our

results that the multiple alignment and distance metrics can have a

large effect on OTU abundances are also in agreement with recent

work by Schloss [46].

In general, we found that multiple alignments can have a large

influence on OTU abundance information, and the automated

16S rRNA alignment tools should be subjected to hand curation.

Fast clustering tools such as ESPRIT do not make use of a multiple

alignment and rely on k-mer heuristics to calculate pairwise

distances between ungapped sequences. Our results show that

such tools, intended to improve upon complete linkage, actually

perform significantly worse. Hence, even with increasing dataset

sizes, it is important to verify that the clustering method used

performs no worse than complete linkage. We developed tools that

ease the burden of performing hand curation and complete linkage

of large contemporary datasets. These are available as supple-

mentary software and are described in more detail in Materials

and Methods.

Figure 3. Two checks that should be used to verify quality of
rank abundance curves. Both plots show rank abundance curves of
the chicken caecum dataset. (a) Comparison of rank abundance curves
for three clusterings using three different distance metrics. We compare
the clusterings that produce 300 OTUs (which corresponds to different
radii r for different metrics). (b) Rank abundance curve is robust if it
does not change shape (functional form) when a different clustering
radius is used. The rank abundance curves for different clustering radii
all fall onto the same curve after rescaling the ranks to the same
number of OTUs (while keeping area under the curve constant).
doi:10.1371/journal.pone.0015220.g003
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Finally, we summarize for the reader’s convenience, step-by-

step recommendations for handling a large 16S rRNA dataset,

based on the analyses we have reported here. These are

graphically illustrated in Figure S1.

1. Quality Processing: Remove short reads and sequences with

unknown nucleotides (N). Make an alignment to the SILVA

database [32], via NAST [29] as implemented by Mothur [11].

Trim sequences to be between the first and last strongly

conserved columns in this alignment.

2. Alignment: From the trimmed dataset, produce another

alignment through RDP pipeline’s [30] front end to the

Infernal aligner [33]. Merge the two alignments (NAST+
SILVA with RDP+Infernal) using the tool that’s a part of the

TORNADO pipeline at http://tornado.igb.uiuc.edu. Further

hand-optimize hypervariable regions of the reads by using the

tool available on the website above.

3. Cluster: Cluster the dataset using the complete linkage tool

available on the website above.

Further analysis can be performed by calculating estimators in

Mothur [11], or by estimating phylogenetic trees via RAxML [21]

or FastTree [20].

Materials and Methods

V3 rRNA amplicon sequencing
We used the V3 rRNA sequences from the chicken caecum

from batch B of a previous study [47]. PCR specific primers

flanking the V3 hypervariable region of bacterial 16S rRNA were

used to generate PCR products for pyrosequence analysis. The

forward fusion primers for pyrosequencing included 454 Life

Sciences A adapter, and barcode A fused to the 5
0

end of the V3

primer 341F (5
0

gcctccctcgcgccatcag-ACGAGTGCGT-CCTAC-

GGAGGCAGCAG3
0
) or with barcode B (5

0
gcctccctcgcgccatcag-

ACGCTCGACA-CCTACGGAGGCAGCAG3
0
). The reverse

fusion primer included 454 Life Sciences B adapter fused to 5
0

end of V3 primer 534R (5
0

gccttgccagcccgctcag- ATTACCGCG-

GCTGCTGG3
0
). Cycling conditions (20 cycles) were; initial

denaturation at 940C for 5 min; 20 cycles of 940C 30 s, 600C

30 s and 720C 30 s; then 720C 7 min for final extension. The

amplicon products were cleaned using PCR purification clean-up

kit and SPRI size exclusion beads. The quality of products was

assessed using a Bioanalyzer using DNA1000 chip. The fragments

in amplicon libraries were subjected to a single pyrosequence run

using a 454 Life Science Genome Sequencer GS FLX (Roy J.

Carver Biotechnology Center, University of Illinois). The resulting

dataset had 22953 sequences of average length 204.7 bp. Before

further analysis was performed, we performed basic filtering. We

removed all sequences that were shorter than 100 bp reducing the

number of sequences to 21646. The sequences have been uploaded

to GenBank (accession numbers HQ293272-HQ315544).

Multiple Alignments
We compared 4 different alignment methods as illustrated in

Figure S2. (1) We fed the sequences into Infernal [33] with

bacterial secondary structure template as provided by RDP [30].

(2) We aligned the sequences to the SILVA database [32] using the

NAST [29] algorithm as implemented by Mothur [11,48]

(align.seqs command). (3) The results of (1) and (2) were then fed

into a merger script we have made available on the Web at http://

tornado.igb.uiuc.edu/. (4) The merged data sets’ hypervariable

regions were then hand curated using splicer, a tool we developed

and made available on the Web as part of our pipeline

TORNADO at http://tornado.igb.uiuc.edu/. This tool allowed

us to greatly reduce the number of unique snippets of the

hypervariable region of V3 down from 21,646 to about 200, by

cutting the longest hypervariable subregion from the alignment,

and then dereplicating it. These snippets of sequences in the

hypervariable subregion ranged from 1 bp to about 30 bp. This

meant that we only needed to hand-curate 200 short snippets to

handle the alignment of the hypervariable region. These snippets

were separated into two groups according to their secondary

structure: loop, and stem-loop-stem. We used RNAfold web server

[49–52] to verify the structure. The two groups were then hand

curated and merged back into the complete multiple alignment

using the splicer merge command. For clarity, the process of using

splicer is described in Figure S5. All multiple alignments are

available at http://tornado.igb.uiuc.edu/.

Likelihood Scores
Each data set described in the previous section was dereplicated

producing 2215 clones each. Likelihood scores were then

computed for each dataset using FastTree 2.1.1 with command

line parameters -gamma -nt -gtr.

Distance metrics
We compared 3 different distance metrics to generate Figure 3a.

(1) Phylip DNADIST 3.67 [25] with default model parameters. (2)

Percent sequence difference calculated using a program we

developed, psi-distance, available at http://tornado.igb.uiuc.

edu/. The program constructs pairwise differences by calculating

the number of letters that are different between every two

sequence (gap is considered a letter). This number is then divided

by the average of the ungapped lengths of the two sequences

compared [23]. (3) Tree distance calculated from the phylogenetic

tree calculated by FastTree in the previous section. The tree

distances were acquired by calculating tree branch lengths from

the Newick formatted tree using the tree-distance program we

developed, available at http://tornado.igb.uiuc.edu/.

Clustering algorithm
Three different clustering algorithms were compared, all on the

hand-curated dataset. (1) Complete linkage clustering with furthest

neighbors, as implemented in c-linkage, a program we developed

that is available at http://tornado.igb.uiuc.edu/. We tested that

the program produces the same results as Mothur, but much faster

and with less memory usage since it works in O(N2logN). For a

comparison of running times of c-linkage and Mothur version

1.12.3, when clustering up to a clustering cutoff of 10% see Figure

S6. (2) FastGroup [37] with no trimming, PSI difference of 97%

with gaps. (3) ESPRIT [38], for which the dataset was first

degapped.

Cluster Metric
We evaluated the quality of the clustering by calculating the

Calinski-Harabasz index [19,40,53]. The implementation of the

program that calculates the index is available at http://tornado.

igb.uiuc.edu/.

Supporting Information

Figure S1 Diagram of our proposed 16S rRNA align-
ment pipeline, TORNADO. After the preliminary clean up

step, we align the sequences in two different ways. First, we use

Mothur [11] to align our sequences to the SILVA [32] database.

Second, we align using Ribosomal Database Project’s front end

[30] to the Infernal aligner [33]. We then merge the two, using

Robust Analysis of Deep Sequencing Datasets

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e15220



Infernal’s secondary-structure-aware alignments and SILVA’s

alignment of hypervariable region. Finally, we manually curate

the hypervariable regions, using a helper tool, splicer, we

developed (see Fig. S5).

(TIFF)

Figure S2 Snippets of 9 reads aligned using the 4
different methods described in this paper. The 9 reads

are of the V3 region of the 16S rRNA. (a) Sequences aligned via

RDP [30] which uses the Infernal aligner [33]. Note that the

hypervariable region is left unaligned (bases 36 through 64). (b)

Sequences aligned via NAST [29] (as implemented by Mothur

[11]) to the SILVA [32] database. Notice the inconsistencies in the

alignment of the regions with strong secondary structure

conservation (bases 5, 25, 29, 72 through 79, and 85). (c)

Sequences aligned using the merge program in the tool we

developed, TORNADO (http://tornado.igb.uiuc.edu). The

merge process takes the unaligned, hypervariable parts of the

sequence aligned by (a) and replaces them by the alignment in (b).

(d) Sequences aligned like in (c), but with the final hand-curation

step of the hypervariable regions.

(TIFF)

Figure S3 Illustration of the process of the complete
linkage algorithm. Smaller clusters are progressively merged

into larger ones as long as no two elements of a cluster are farther

than r from each other.

(TIFF)

Figure S4 Sketch of the calculation of the number of
clades with uniform OTUs. A phylogenetic tree with 2

different cluster (OTU) assignments is shown. The cluster

assignment is indicated by OTU number and color. Both cluster

assignments have 2 uniform clades (interior nodes indicated by

+1). (a) The uniform clades are: one made up of two OTU 1

organisms, and one made up of three OTU 3 organisms. (b) The

uniform clades are: one made up of two OTU 1 organisms and

one made up of three OTU 1 organisms.

(TIFF)

Figure S5 Using splicer, a part of the TORNADO
pipeline, to perform hand curation. Dereplicating the

hypervariable region significantly reduces the effective number

of snippets of sequences one needs to hand curate (4 instead of 6 in

this example). In our dataset of around 20,000 sequences, there

were only around 200 unique sequence snippets in the

hypervariable region varying in length between 1 and 30 bp.

(TIFF)

Figure S6 Comparison of running times of c-linkage
with the running times of Mothur. The two programs were

benchmarked on artificial datasets of 1000, 2000, 4000, 6000 and

8000 elements. The sripts used to generate these datasets and run

the benchmarks are available at http://tornado.igb.uiuc.edu.

(TIFF)
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