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Abstract

Background: To systematically develop dietary strategies based on resistant starch (RS) that modulate the human gut
microbiome, detailed in vivo studies that evaluate the effects of different forms of RS on the community structure and
population dynamics of the gut microbiota are necessary. The aim of the present study was to gain a community wide
perspective of the effects of RS types 2 (RS2) and 4 (RS4) on the fecal microbiota in human individuals.

Methods and Findings: Ten human subjects consumed crackers for three weeks each containing either RS2, RS4, or native
starch in a double-blind, crossover design. Multiplex sequencing of 16S rRNA tags revealed that both types of RS induced
several significant compositional alterations in the fecal microbial populations, with differential effects on community
structure. RS4 but not RS2 induced phylum-level changes, significantly increasing Actinobacteria and Bacteroidetes while
decreasing Firmicutes. At the species level, the changes evoked by RS4 were increases in Bifidobacterium adolescentis and
Parabacteroides distasonis, while RS2 significantly raised the proportions of Ruminococcus bromii and Eubacterium rectale
when compared to RS4. The population shifts caused by RS4 were numerically substantial for several taxa, leading for
example, to a ten-fold increase in bifidobacteria in three of the subjects, enriching them to 18–30% of the fecal microbial
community. The responses to RS and their magnitudes varied between individuals, and they were reversible and tightly
associated with the consumption of RS.

Conclusion: Our results demonstrate that RS2 and RS4 show functional differences in their effect on human fecal microbiota
composition, indicating that the chemical structure of RS determines its accessibility by groups of colonic bacteria. The findings
imply that specific bacterial populations could be selectively targeted by well designed functional carbohydrates, but the inter-
subject variations in the response to RS indicates that such strategies might benefit from more personalized approaches.
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Introduction

The gastrointestinal microbiota is of profound importance for the

human host, affecting its metabolism, immune functions, and

physiology with implications to health [1,2]. Not only are these

microbial populations involved in the prevention of gastrointestinal

infections and stimulation of the immune system, but recent research

has indicated a role of the gut microbiome in complex diseases such as

colon cancer, obesity, type 2 diabetes, and inflammatory bowel disease

[3,4,5]. The implications of these cohesions cannot be overstated; if the

gut microbiota influences health, it stands to reason that dietary factors

which influence species composition and metabolic characteristics of

the gut microbiota are strong candidates for disease prevention and

intervention. Dietary components that are resistant to human digestion

are considered the most significant source of nutrients for colonic

bacteria, and they thus offer a promising tool for the modulation of the

gut microbiota [6].

Resistant starches (RS) are starches or products of starch

degradation that escape digestion and are not absorbed in the

small intestine of healthy individuals [7]. RS are classified into

four categories according to the features that render it undigest-

ible. RS type 1 is physically inaccessible starch whereas RS type 2

(RS2) is native granular starch consisting of ungelatinized granules.

RS type 3 is retrograded amylose, and finally, RS type 4 (RS4)

is chemically modified to achieve undigestibility. Several studies

have shown RS have the potential to improve health, with one of

the primary benefits being maintenance of healthy blood sugar

levels [8,9]. Though resistant to digestion in the small intestine,

bacterial species that reside in the colon are capable of utiliz-

ing RS as a substrate. These fermentations lead to an increase of

short chain fatty acids (SCFA), especially butyrate, and a

reduction of secondary bile acids, phenol, and ammonia [6,10].

These metabolic effects are likely to underlie some of the

documented health benefits of RS, which include the prevention
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of colon cancer development and colitis in animal models

[11,12,13,14].

Several studies have been performed to characterize the potential

of RS to induce alterations in the composition of the gut microbiota.

Increases in bifidobacteria [15,16,17,18] and Bacteroides [19] as well

as decreases in enterobacteria and Bacteroides [20] have been

reported. Unfortunately, most studies have been performed in

either in vitro systems or animal models [21]. To our knowledge,

there were two previous studies that have used culture independent

methods to characterize the effect of RS in humans in vivo. Abell and

coworkers, who used denaturing gradient gel electrophoresis

(DGGE) to study the impact of RS2 on the human gut microbiota

and revealed an enrichment of phylotypes related to Ruminococcus

bromii [22]. Walker et al (2010) detected an enrichment of bacteria

related to Eubacterium rectale and Ruminococcus bromii when RS3 was

consumed by overweight individuals [23].

Recently, the ecological study of the human gastrointestinal

microbiota has gained enormous momentum through the

development of high throughput multiplex sequencing of 16S

rRNA tags [24,25]. This technique has been extremely valuable,

for example, in the characterization of the human microbiota in

terms of lean and obese physiological states, impact of antibiotics,

and the importance of delivery mode at birth [26,27,28].

Pyrosequencing has significant advantages over other molecular

techniques currently used to study microbial communities. First,

unlike probe based techniques such as fluorescence in-situ

hybridization (FISH), pyrosequencing allows the determination

of the entire phylogenetic spectrum of the bacterial populations in

one single analysis. Second, it further allows an immediate

taxonomic characterization and the flexibility to analyze the

communities at different taxonomic levels. Third, pyrosequencing

has a markedly increased dynamic range when compared to more

traditional fingerprinting techniques such as DGGE [25].

The goal of the present study was to obtain a community wide

perspective of the impact of RS on the composition of the human

gut microbiota. We were further interested to compare RS4 and

RS2 in this respect because most emphasis in the literature has been

placed on the latter substrate. To achieve our goal, we conducted a

placebo-controlled, double-blind crossover trial with 10 human

subjects and performed a comprehensive characterization of their

fecal microbiota by using a combination of approaches, including

pyrosequencing of 16S rRNA tags (Figure 1).

Results

Multiplex sequencing of 16S rRNA tags revealed
alterations of the fecal microbiota through RS
consumption and functional differences between RS
types 2 and 4

Pyrosequencing of 16S rRNA amplicons from 161 fecal samples

resulted in an average of 3,423 sequences per sample after quality

control (551,183 sequences in total) with a mean sequence length

of approximately 490 bp. The average number of operational

taxonomic units (OTUs) identified per subject was 1,081.

Rarefaction curves for all ten subjects and the three treatments

and baselines/washouts were generated and are shown Figure

S1A. This analysis and diversity examination by Shannon’s index

revealed that the consumption of RS did not alter the bacterial

diversity in fecal samples (Figure S1B).

The bacterial composition in the ten subjects during the

baseline period was, as shown by other studies [28,29], dominated

by the phyla Firmicutes (78%) and Bacteroidetes (13%). Other

phyla detected were Actinobacteria (3%), Verrucomicrobia (1%),

and Proteobacteria (1%), and 4% of the sequences remained

unclassified (Figure S2A). At the family level, the predominant

groups were the Lachnospiraceae (42%), Ruminococcaceae (19%),

Bacteroidaceae (8%) (Figure S2B). Among the well characterized

culturable genera were Bacteroides (7.5%), Bifidobacterium (1.3%),

Fecalibacterium (8.4%), Ruminococcus (2.5%), Roseburia (2.1%), and

Dorea (3.2%) (Figure S2C).

Sequence proportions determined by pyroseqeuncing were used

to establish the effects of RS on the gut microbiota composition,

and the groups of colonic bacteria that were significantly affected

are shown in Table 1. The control crackers included in the study

(providing a daily dose of more than 55 gram of native starch) did

not have a significant impact on the fecal microbiota, as the

microbial populations during administration of these crackers

showed little difference to those during baseline and washout

periods. In contrast, RS significantly affected several groups of

colonic bacteria, with the two types of RS exerting functional

differences in terms of their ability to modulate the gut microbiota.

Taxonomy-based analysis using RDP Classifier revealed major

differences in the proportions of phyla associated with consump-

tion of RS4, including significant decreases in Firmicutes

(p,0.001) by more than 10% on average, and increases in

Bacteroidetes (p,0.01) and Actinobacteria (p,0.05) by around 5%

each (Figure S2A). These changes were associated with a decrease

in the family Ruminococcaceae (p,0.01) and increases in the

genera Parabacteroides (p,0.001) and Bifidobacterium (p,0.05). The

proportion of the genus Faecalibacterium decreased in the RS4

treatment (p,0.05), although this reduction was small (less than

1% when compared to the baseline) (Table 1). The genus Dorea

was determined to be significantly reduced by both types of RS

(p,0.01).

To gain a more in depth understanding of the effects of RS on

the relative abundances of microbial taxa, we used a phylogeny-

based strategy to analyze the sequence data on the basis of OTUs

(.97% sequence identity). First we identified OTUs that were

affected through the dietary treatments in individual subjects. We

then constructed phylogenetic trees with representative sequences

of these OTUs according to phylum, which are shown in

Figures 2A (for Firmicutes), 2B (for Actionobacteria), and 2C

(Bacteroidetes). The abundance of the OTUs in all ten subjects

was then quantified by local BLASTn. This analysis revealed that

eight OTUs showed statistically significant differences among

treatment groups, seven of which could be linked to known

bacterial species (Table 1, Figure 2). The findings of the OTU-

based approach were in general agreement with those obtained

Figure 1. Experimental design used in this study. Subjects (n = 10) participated in a 17-week double-blind crossover design, in which 3 dietary
treatments were assessed: 100 g of crackers containing either native starch or 33 g of RS2 or RS4. An initial baseline period was proceeded by 3-week
periods of each dietary treatment in succession interspersed by 2-week washout periods, and a final washout period. Weekly fecal samples were
collected throughout the entire study.
doi:10.1371/journal.pone.0015046.g001
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with the Classifier tool, and the species responsible for the

significant RS induced changes in the genera Bifidobacterium,

Parabacteroides, Faecalibacterium, and Dorea did correspond to

Bifidobacterium adolescentis (p,0.05), Parabacteroides distasonis

(p,0.001), Faecalibacterium prausnitzii (p,0.05) and Dorea formicigen-

erans (p,0.05), respectively (Table 1). In addition, the OTU-based

analysis identified four additional taxa that differed between the

treatment groups, belonging to the Clostridium clusters XIVa and

IV. The proportion of Clostridium clostridioforme was increased by

both RS, and the increase reached statistical significance for RS4

(p,0.05). Furthermore, the abundance of the species Eubacterium

rectale (p,0.05) and Rumminococcus bromii (p,0.05) were significantly

increased when RS2 was consumed when compared to RS4.

The population shifts induced by RS were substantial but
varied between subjects

RS, and especially RS4, led to major changes in the

composition of the gut microbiota in a subset of subjects.

Numerically, the most substantial alterations were the change in

the genus Bifidobacterium (e.g. Bifidobacterium adolescentis), which

increased approximately 10 fold (from 2–3% to 18–30%) in three

subjects through RS4. Other significant changes were Parabacter-

oides distasonis, which significantly increased through RS4 by 7 fold

on average, and Eubacterium rectale, which was significantly enriched

when RS2 was consumed, reaching around 20% of the total

population in two of the subjects. Despite these substantial

population shifts, our findings clearly showed that effects of RS

and their magnitude varied among individuals. Figure 3 shows

compositional changes induced by RS2 and RS4 when compared

to administration of native starch for individual subjects. The data

revealed that none of the community shifts induced through the

two RS types were observed in all ten subjects. The most

consistent alteration detected was the reduction in Firmicutes by

RS4, which occurred in nine of the subjects (Figure 3). Other

common alterations were the increase in Bacteroidetes (seven

subjects), Parabacteroides distasonis (seven subjects), and Bifidobacterium

adolescentis (six subjects) through RS4, and the increase of

Eubacterium rectale through RS2 (eight subjects).

Temporal dynamics of microbial populations in response
to RS

The generation of community profiles from 17 individual

samples per subject throughout the trial allowed insight into how

RS influenced the population dynamics within the fecal microbi-

Table 1. Abundance of bacterial taxa that were impacted by RS consumption in fecal samples of ten human subjects as
determined by pyrosequencing of 16S rRNA tags.

Proportion of bacterial taxa expressed in percentage (Mean ± SD)

RS21 RS41 Control1 Baseline2 Washout3 P-value4

Phylum

Firmicutes 75.9±13.4 65.6615.0 79.6±9.6 78.267.5 78.168.5 0.0010

Bacteroidetes 10.166.6 16.3±9.7 10.466.9 12.766.5 12.265.8 0.0028

Actinobacteria 6.166.4 11.4±12.5 4.163.1 3.162.5 4.163.2 0.0334

Family

Bifidobacteriaceae 5.866.0 11.1±11.7 3.062.5 2.161.7 2.862.2 0.0262

Porphyromonadaceae 0.661.0 3.4±1.9 0.560.3 0.660.4 0.560.4 0.0002

Ruminococcaceae 24.8±13.6 16.767.4 23.2±9.7 19.367.4 20.767.6 0.0031

Erysipelotrichaceae 3.162.8 2.662.6 3.9±3.2 4.764.9 3.963.1 0.0279

Genus

Faecalibacterium 9.764.4 7.863.4 10.8±4.7 8.464.2 8.862.9 0.0336

Parabacteroides 0.661.0 3.4±1.9 0.460.5 0.560.3 0.560.4 0.0002

Bifidobacterium 4.564.9 8.9±10.2 2.261.7 1.561.3 2.161.6 0.0342

Dorea 1.761.2 1.661.2 3.0±2.0 2.962.2 2.762.0 0.0030

Species (OTUs)

B. adolescentis 3.764.5 7.9±10.3 1.761.9 1.561.2 1.861.3 0.0347

P. distasonis 0.260.4 1.5±1.0 0.260.1 0.260.1 0.260.2 0.0002

R. bromii 4.1±5.1 1.261.3 2.663.2 1.061.1 2.061.5 0.0479

F. prausnitzii 4.862.6 3.662.0 5.6±3.1 4.262.8 4.262.4 0.0160

E. rectale 8.3±7.1 3.462.3 4.964.0 5.462.9 4.762.0 0.0301

D. formicigenerans 1.261.0 1.061.1 2.2±1.6 2.361.8 1.961.7 0.0140

C. clostridioforme 2.662.4 3.4±2.5 1.260.8 1.461.3 1.561.2 0.0126

Clostridiales spp. 0.360.6 0.9±0.9 0.760.8 0.260.4 0.860.7 0.0322

1The bacteria populations are averages of all three time points of feeding periods.
2The bacteria populations are averages of the two time points of the baseline period.
3The bacteria populations are averages of all the six time points of the three washout periods.
4Bacterial populations during the dietary treatments were compared to each other with repeated measures ANOVA and Tukey’s post hoc test. Numbers in bold
represent proportions that were significantly higher than numbers shown in italic.

doi:10.1371/journal.pone.0015046.t001
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Figure 2. Characterization of the fecal microbiota in ten human subjects that consumed a random succession of crackers
containing RS2, RS4, and native wheat starch (control) by multiplex pyrosequencing of 16S rRNA tags. Phylogenetic trees that
encompass the phyla (A) Firmicutes (with Clostridiales groups XIVa and IV labeled), (B) Actinobacteria and (C) Bacteroidetes are shown. The trees
contain representative sequences of all OTUs detected to be impacted by RS in individual subjects together with sequences of related entries in the
database (which included both type strains of known species and sequences from molecular studies of human fecal samples). Sequences were
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ota. This analysis showed that all the changes induced by RS were

reversible within one week, and no differences in the proportions

of the bacterial groups were detected between the first washout

sample and the baseline (Student’s t-test, p.0.05). Figure 4 shows

the temporal patterns of the three main phyla (Actinobacteria,

Bacteroidetes, and Firmicutes) and four selected species (Rumino-

coccus bromii, Clostridium clostridioforme, Parabacteroides distasonis and

Bifidobacterium adolescentis) for five representative subjects. The data

revealed that bacterial groups showed marked differences in the

stability of their populations and in their temporal response to RS.

For example, levels of Bifidobacterium adolescentis and Parabacteroides

distasonis were remarkably stable in fecal samples in baseline and

washout samples, and their populations returned to baseline level

within one week after RS administration was stopped. In contrast,

proportions of some taxa, e.g. the species Ruminococcus bromii and

Clostridium clostridioforme showed higher fluctuations in background

samples (Figure 4). Although all these taxa were also significantly

impacted by dietary RS, population dynamics were more

idiosyncratic, and these bacterial groups might be more influenced

by other dietary components or environmental factors.

The analysis of population dynamics revealed that RS2 and

RS4 induced changes within the fecal microbial community that

differed in their temporal patterns. RS4 led to an abrupt increase

in the abundance of Bifidobacterium adolescentis in some subjects with

a slight mitigation throughout the three-week feeding period

(subject 1, 4, and 6). Out of the six subjects that showed an

increase in Bifidobacterium adolescentis with RS4, five did also

manifest an increase with RS2. However, RS2 induced a slower

gradual increase with higher proportions in week three of

consumption when compared to week one.

Selective culture, PCR-DGGE and Bifidobacterium specific
quantitative RT-PCR (qRT-PCR)

Quantification of bacterial taxa in human fecal samples by

pyrosequencing of 16S rRNA tags has been validated and it showed

a high correlation with other molecular methods such as qRT-PCR

and phylogenetic microarray [30,31]. To investigate the impact of

RS on human fecal microbiota with independent and well

established methods, we analyzed all 161 fecal samples obtained

during this study with selective culture for representative bacterial

groups, PCR-DGGE, and Bifidobacterium specific qRT-PCR.

Throughout the study, numbers of total anaerobic bacteria,

enterobacteria, enterococci, bifidobacteria, and Bacteroides/Para-

bacteroides spp. were determined by selective culture. These

Figure 3. Bubble plots showing differences in the proportions of bacterial taxa (as per cent of the total microbiota composition)
detected between the RS4 (A) and RS2 (B) periods when compared to the control period. The sizes of the bubbles are proportional to the
magnitude of the difference. Black circles represent increases in proportions induced through RS treatment, and white circles show a decrease.
doi:10.1371/journal.pone.0015046.g003

aligned in Muscle 3.6 and the trees were built using the neighbor-joining algorithm with 1,000 bootstrap replicates in MEGA 4.0. Open-black and
closed-gray symbols were used to label sequences from individual subjects. OTUs that were not significantly affected in all ten subjects were labeled
as ‘not significant’ (NS). The graphs next to the trees show the abundance of OTUs and bacterial groups that were significantly altered in the
treatment groups (RS2, RS4, control). These graphs show mean proportions of the three individual samples taken during the treatment periods for
each subject. Background refers to samples taken in periods were no crackers were consumed. Repeated measures ANOVA in combination with a
Tukey’s post-hoc test were performed to indentify differences between treatment groups, and the background was not included in the statistic
analysis. *p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0015046.g002
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bacterial taxa were selected as they were included in previous

studies that concerned the effect pre- and probiotics on the human

fecal microbiota, and enterococci and enterobacteria cannot be

detected by pyrosequencing as they constitute a minor fraction of

the total microbial community in the human gut [32,33]. Selective

culture revealed significant higher numbers of bifidobacteria and

Bacteroides/Parabacteroides spp. during RS4 consumption (p,0.05)

(Table S1), confirming the findings obtained by pyrosequencing

(Table 1). No significant changes were detected for enterococci

and lactose fermenting enterobacteria (Table S1).

DGGE revealed that RS4, and to a lesser degree RS2, induced

significant alterations to the fecal microbiota of most subjects. The

most consistent change detected was a significant increase in the

staining intensity of a DNA fragment that represented Bifidobacter-

ium adolescentis, which occurred in four subjects during RS4

consumption and in 3 subjects when RS2 was consumed. The

intensity of this DGGE band in all the subjects showed a

remarkably high correlation (r = 0.9178, p,0.0001) with the

abundance of Bifidobacterium adolescentis assessed by pyrosequencing

(Figure S3A). DGGE analysis confirmed the distinct dynamics of

the Bifidobacterium adolescentis population in response to RS2 and

RS4 that were detected by pyrosequencing, meaning that RS4

induced a swift and reversible increase in band intensity while RS2

caused a gradual raise (Figure 4). DGGE also detected an increase

of Parabacteroides distasonis in one of the subjects when RS4 was

consumed. Therefore, DGGE confirmed the increase in bifido-

bacteria and Parabacteroides distasonis in some of the subjects, but as

expected, overall resolution of this technique was lower than

pyrosequencing.

Quantitative enumeration of bifidobacteria by qRT-PCR

confirmed the significant increase in Bifidobacterium numbers

during consumption of RS4 (10.361.5 log10 cells/gram of feces;

p,0.01), and also indicated a significant increase when RS2

(10.161.3 log10 cells/gram of feces; p,0.05) was consumed

Figure 4. Temporal dynamics of the human fecal microbiota in response to the consumption of crackers containing RS2, RS4, and
native wheat starch (control) in five human subjects. Graphs on the left show proportions of the three main phyla and four representative
species (Bifidobacterium adolescentis, Parabacteroides distasonis, Ruminococcus bromii and Clostridium clostridioforme) as determined by
pyrosequencing of 16S rRNA tags. Gel images on the right show molecular fingerprints generated by DGGE. Bands that represent Bifidobacterium
adolescentis and Parabacteroides distasonis are labeled.
doi:10.1371/journal.pone.0015046.g004
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compared to control (9.761.2 log10 cells/gram of feces). The total

cell numbers of bifidobacteria increased by more than three-fold

on average through RS4, while RS2 doubled the numbers. In the

three subjects with the highest response to RS4, qRT-PCR

showed an increase of bifidobacteria to more than 1011 cells per

gram. The cell counts obtained with qRT-PCR in all fecal samples

included in this study (n = 161) showed a high correlation

(r = 0.8310, p,0.0001) with the abundance of bifidobacteria

determined by pyrosequencing (Figure S3B).

RS was well tolerated by human subjects
In addition to microbiota analyses, we also collected data on

bowel-related characteristics during the feeding and washout

periods using a weekly symptoms diary that rated bowel

movement, stool consistency, discomfort, flatulence, abdominal

pain, and bloating on a scale from 1 (best) to 5 (worse). One-way

ANOVA analysis revealed a significant difference for flatulence

(p,0.05), which was moderately increased during the consump-

tion of both types of RS when compared to periods with control

crackers (Table S2). No significant changes occurred in fecal pH

for any of the treatments and no significant detrimental effects

were observed on bowel movement, stool consistency, or

discomfort, indicating that RS at doses of 33 g per day are well

tolerated in human subjects.

Discussion

To gain a deeper understanding of the impact of two chemically

different forms of RS on the composition and temporal dynamics

of the fecal microbiota, we employed a study in 10 human subjects

who were weekly monitored throughout a period of 17 weeks. The

data revealed that RS types induced substrate specific shifts in the

fecal microbial community that were tightly associated with

consumption and which varied between subjects. Our in vivo

findings on RS2 were in accordance to previous studies on starch

fermentation in in vitro models of the large intestine, which showed

an enrichment of Bifidobacterium adolescentis, Eubacterium rectale, and

Ruminococcus bromii [34,35]. The same bacterial groups, with the

exception of bifidobacteria, were also enriched in fecal samples of

obese human subjects during consumption of RS3 [23]. In

contrast, our findings clearly showed that the response of the fecal

microbiota to RS4 differed to that of RS2 and RS3. For example,

Parabacteroides distasonis was enriched through RS4, while Eubacte-

rium rectale and Ruminococcus bromii showed a significant decrease.

Strikingly, RS4 also led to phylum level alterations, decreasing the

proportion of Firmicutes while increasing Bacteroidetes and

Actinobacteria. Such phylum level changes have not been

observed in fecal samples of human subjects consuming RS2 in

our study and RS3 as shown by Walker and coworkers [23].

There was very little overlap in the bacterial groups that

responded to both RS2 and RS4. This was surprising as the RS

types used in this study were both starch polysaccharides that

consist of glucose monomers with the same covalent bonds,

although the RS4 was cross-linked by phosphorylation. One of the

bacterial groups that responded to both RS types was the genus

Bifidobacterium, which increased in six subjects with RS4 and in five

of the same subjects with RS2. However, the temporal dynamics of

these modulations differed. RS2 led to a much slower raise in

bifidobacteria, reaching comparable numbers to RS4 only in week

three. This clearly showed that time is an important variable when

studying dietary modulations of the human gut microbiota. It

appears that the ability to increase levels of bifidobacteria is

comparable between RS2 and RS4 in the long run, but extended

feeding studies will be necessary to determine the exact taxon-time

patterns of responses to different forms of RS.

Questions remain about the mechanisms by which different RS

types selectively promote groups of colonic bacteria in humans in

vivo. Starch fermentation per se should not be selective as many

bacterial genera (Clostridium, Bacteroides, Bifidobacterium, Butyrivibrio,

Prevotella, Roseburia, Eubacterium, Ruminococcus, etc.) present in the

human GIT can utilize this substrate in vitro, and various bacterial

systems involved in the degradation of starch have been identified

by genomic approaches [6,34,36,37,38,39,40,41,42,43]. However,

our in vivo findings showed that substrate preferences and

competitive abilities exist in the gut environment. In this respect,

it is important to point out that the RS types used in this study

varied markedly in terms of their chemical structure. RS2 is a

granular form of high amylose corn starch, while RS4 is a

chemically modified starch that is cross-linked through phosphate

moieties. Therefore, it is possible that different groups of colonic

bacteria produce enzymes with distinct activities towards the two

RS types, promoting different dynamics in the gut ecosystem.

However, it is also of note that the ability of bacterial groups to

make use of RS in vivo might relate not only to the utilization but

also to the binding of the substrate. It is striking that Ruminococcus

bromii, Bifidobacterium adolescentis, and Eubacterium rectale, which

showed the most substantial increases in the human gut in

response to RS2, have also been shown to form highly selective

associations with this substrate [35]. Therefore, the adherence of

bacteria to starch granules might constitute an important first step

in the utilization of this substrate, and groups of colonic bacteria

might differ in their ability to adhere to granules of RS2 and RS4.

The mechanisms by which different types of RS become

fermented in the human colon remain an important area of

future research.

A significant finding of this study was the individualized

responses of the gut microbiota to RS2 and RS4, which has also

been shown previously for RS3 [23]. Out of the nineteen OTUs

that were detected to respond during this study in individual

subjects, eleven did not reach significance when all subjects were

included in the analysis (e.g. Bifidobacterium longum, Ruminococcus

obeum, Roseburia intestinalis, Roseburia inulinivorans, and several

Bacteroides spp.). In addition, none of the taxa that were significantly

affected by RS showed a response in all ten subjects. There are

three possible explanations for the individuality of the responses.

First, few OTU are completely conserved among humans [28,44],

thus species that were affected in some subjects might simply not

be present in other individuals. Second, strain-level differences in

the ability to utilize substrates could contribute to the inter-

individual variations. For example, it has been shown for

Bifidobacterium adolescentis that individual strains can have major

differences in their amylolytic activity [45,46]. Lastly, host factors

might play an important role. For example, subject specific

environmental constrains (e.g. through limitations in growth

factors other than carbohydrates) might restrict the ability of a

bacterial group to increase in numbers even if a suitable growth

substrate is provided. In addition, differences in host genotype

might influence transit times or the amount of digestive enzymes

secreted, thus affecting the fraction of RS that survives digestion.

There is currently no scientific consensus of what defines a

healthy human microbiota in terms of its composition. Therefore,

predictions on the consequences of the compositional alterations

induced through RS2 and RS4 in terms of health remain

speculative. Nevertheless, the distinct effects of RS2 and RS4 on

the microbial community in the gut suggest that these substrates

could have a different impact on the host. RS2 promoted

Eubacterium rectale, a species associated with high butyrate
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production [4], a trait that could be especially beneficial in the

prevention of inflammation and colon cancer [47,48]. In contrast,

RS4 reduced the amount of Firmicutes in favor of Bacteroidetes

and bifidobacteria. Such a shift in the gut microbiota could be

especially beneficial in the prevention or treatment of obesity and

related metabolic disorders. A microbiome enriched in Firmicutes

has been associated with an increased capacity for energy harvest

and obesity [49,50], and a reduction of this phylum could

therefore reduce the amount of calories extracted from the diet.

Furthermore, bifidobacteria have been linked to metabolic and

immunological improvements related to type 2 diabetes [51]. As

we gain a better understanding about the contributions of

members of the gut microbiota to disease, knowledge as obtained

during this study can aid in a more systematic selection of

carbohydrates for intervention studies.

In this study, we demonstrated that RS2 and RS4 promote

distinct compositional alterations within the human gut microbi-

ota. These functional differences imply that specific bacterial

populations can be selectively targeted by starches with different

chemical structures. If future research will reveal causative

associations between dysbiosis and disease, then selective dietary

strategies that redress these imbalances have potential to improve

health. However, the individualized responses observed during this

study certainly pose a hurdle to developing universal dietary

recommendations, and they imply that more personalized

strategies that target the gut microbiome might enhance the

success rate of such applications.

Materials and Methods

The human trial of this study was approved by the Institutional

Review Board of the University of Nebraska (IRB Approval

Number: 2008038840EP), and written informed consent has been

obtained from all subjects.

Preparation of RS crackers
Three types of crackers, containing either RS2 (Hi-Maize 260,

National Starch and Chemical Corp., Bridgewater, N.J., USA),

RS4 (FibersymH RW, MGP Ingredients, Atchison, Kansas, USA),

or native wheat starch (Midsol 50, MGP Ingredients, Atchison,

Kansas, USA), were prepared at the American Institute of Baking

International (Manhattan, Kansas). FibersymH RW is a chemically

modified phosphorylated cross-linked type 4 RS prepared from

wheat starch (RS4) [52]. The crackers containing RS were

formulated to both contain 33 g of fiber in the form of RS per

100 g of crackers, calculated based on the proportion of total dietary

fiber (true RS) in Hi-Maize 260 (60%, dry basis) and FibersymH RW

(85%, dry basis), using native wheat starch to account for the

different RS contents of Hi-Maize 260 and FibersymH RW. The

formulations of all three types of crackers are shown in Table S3,

and the baking conditions of dough are presented in Table S4. The

amount of RS in the final products was confirmed using the AOAC

991.41 method, which measures total fiber (and the most reliable

method to measure RS4). This analysis revealed that the amount of

fiber per 100 g of crackers after processing was 4.53 g61.4 g for the

control crackers, 33.2 g64.2 g for the RS2 crackers and

30.5 g63.5 g for the RS4 crackers.

Experimental design of human study
A double-blind, crossover study was performed starting with 13

healthy human subjects. None of the subjects had been on

antibiotics or on a vegetarian diet within three months prior to the

start of the study or throughout its duration. Three subjects

stopped their participation for reasons unrelated to the study.

Thus, the study was completed by ten subjects (five males and five

females) between 23 and 38 years of age. The study was conducted

over a 17-week period, beginning with a two-week baseline period

(no crackers administered). The subjects then consumed 100 gram

per day of the different crackers in sequence, each for three weeks,

interspersed by 2-week washout periods. The study finished with a

2-week washout. Fecal samples were collected weekly, resulting in

a total of 161 fecal samples for the entire study. For reasons

unrelated to the study, we were unable to collect a total of 9 fecal

samples distributed among five subjects. All missing samples

corresponded to washout periods, and their omission did therefore

not affect the statistical analysis.

Subjects completed a symptoms diary to assess the potential side

effects of RS administration. The symptoms included were bowel

movement, stool consistency, discomfort, flatulence, abdominal

pain, and bloating, and subjects were asked to score them on a

scale from 1 (none, normal, good well-being) to 5 (severe symp-

toms and discomfort).

Collection of fecal samples and analysis by selective
culture

Fresh fecal samples were processed within an hour of

defecation. A ten-fold dilution of each sample in sterile phosphate

buffered saline (PBS) (pH 7.0) was immediately frozen at 280uC
for later DNA extraction (see below). Samples were further

introduced into an anaerobic chamber (Bactron IV Anaerobic

Chamber, Shel Lab, USA), and a 10-fold dilution series was made

with pre-reduced sterile saline (0.9% NaCl). Aliquots were plated

on Brain Heart Infusion agar (BD, USA) for the enumeration of

total anaerobes (2 days), Rogosa SL (BD) for bifidobacteria (4

days), and Bacteroides Bile Esculin Agar (BD) for Bacteroides/

Parabacteroides spp. (2 days), and the plates were incubated

anaerobically at 37uC. Dilution series were plated aerobically on

MacConkey agar (BD,) for enterobacteria (1 day); and Bile Esculin

Azide Agar (Acumedia, USA) for enterococci (2 days); plates were

incubated aerobically at 37uC. Fecal samples (2 gram) were

homogenized with distilled water to obtain a slurry for pH

measurements, which were performed using an Ag/AgCl pH

meter (Accumet Basic AB15 pH meter, Fisher Scientific).

DNA extraction from fecal samples
Fecal homogenates were thawed and transferred to sterile bead

beating tubes (Biospec products, Bartlesville, OK, USA) contain-

ing 300 mg of zirconium beads. Cells were recovered by

centrifugation (8,0006g for 5 min at room temperature) and

suspended in ice-cold PBS to wash the cells. This step was

repeated twice before cell pellets were suspended in 100 ml of lysis

buffer (200 mM NaCl, 100 mM Tris, 20 mM EDTA, 20 mg/ml

Lysozyme, pH 8.0) containing 20 mg/ml of Lysozyme (Sigma-

Aldrich) and incubated at 37uC for half an hour. Buffer ASL

(1.6 ml) from QIAamp DNA Stool Mini Kit (Qiagen, Hilden,

Germany) was added to each sample, after which the samples were

homogenized in a MiniBeadbeater-8 (BioSpec Products, OK,

USA) for 2 min at maximum speed. 1.2 ml of supernatant was

used to purify DNA with the QIAamp DNA Stool Mini Kit

following the manufacturer’s instructions.

Pyrosequencing of 16S rRNA tags
The V1-V3 region of the 16S rRNA gene was amplified by

PCR from fecal DNA. The 16S primers were modified to work

with the Roche-454 Titanium adapter sequences and contain the

A or B Titanium sequencing adapter (shown in italics), followed

immediately by a unique 8-base barcode sequence (BBBBBBBB)
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and finally the 59 end of primer. A mixture (4:1) of the primers B-

8FM (59- CCTATCCCCTGTGTGCCTTGGCAGTCTCAGAGAGT-

TTGATCMTGGCTCAG—39) and B-8FMBifido (59-CCTAT-

CCCCTGTGTGCCTTGGCAGTCTCAGAGGGTTCGATTCTG-

GCTCAG—39) were used as the forward primer during PCR. As

the reverse primer, the primer A-518R (59- CCATCTCATCCC-

TGCGTGTCTCCGACTCAGBBBBBBBBATTACCGCGGCTGC-

TGG —39) was used. Individual samples were amplified with

primers containing unique barcodes, which allowed the mixing of

PCR products from multiple samples in a single run, followed by

bioinformatic assignation of the sequences to their respective

samples via the barcode. Primer 8FMBifido was used in

combination with primer 8FM to detect bifidobacteria, as species

within this genus do not match the latter primer [31]. The PCR

mixture contained 1 ml of forward primer mix, 1 ml of reverse

primer, 0.25 ml of Ex-Taq polymerase (TaKaRa Bio, USA), 1.5 ml

of the sample, 6.25 ml of Ex-Taq buffer, 5 ml of deoxynucleotides

and 37 ml of sterile dH2O were used for the reaction. The PCR

program consisted of an initial denaturing step for 5 min at 95uC,

followed by 30 cycles of denaturation at 95uC for 45 sec,

annealing at 57uC for 45 sec and extension at 72uC for 2 min,

with a final step at 72uC for 10 min. The PCR products were

quantified based on their staining intensity using the image

acquisition software Genesnap (Syngene USA). PCR products

were combined in equal amounts and gel purified using the

QIAquick Gel Extraction Kit (Qiagen, USA).

Pyrosequencing was performed by the Core for Applied Genomics

and Ecology (CAGE, University of Nebraska) from the A end with

the 454/Roche A sequencing primer kit using a Roche Genome

Sequencer GS-FLX following manufacturer’s protocol for the Roche

454 GS FLX Titanium. Sequences were binned according to

barcode using the ‘Initial Process’ tool of the Ribosomal Database

Project (RDP) Pyrosequencing Pipeline (http://pyro.cme.msu.edu/)

[53] with default parameters (which included the removal of

sequences containing at least one ambiguous nucleotide), except for

the minimum sequence length, which was set to 300 bp. The quality

approved sequences were trimmed to 495 bp before their submission

to the sequence analyses (see below).

Sequence analyses to characterize microbial populations
Two independent approaches were used to analyze the sequences

obtained with pyrosequencing. First, the Classifier tool (with a

minimum bootstrap value of 80%) of the RDP was applied to obtain

a taxonomic assignment of all sequences. This approach allowed a

fast determination of the proportions of bacterial groups at different

taxonomic levels (phylum, family, genus). Second, sequences were

assigned to Operational Taxonomic Units (OTUs) that were

quantified in individual subjects. As the entire data from the ten

subjects contained too many sequences for a quality alignment,

sequences were aligned by subject using the Aligner web tool of the

RDP, and then clustered using the Complete Linkage Clustering

tool (with a maximum distance cutoff of 97%). OTUs that

contained less than three sequences were excluded from the

analyses. ANOVA was used to identify OTUs that were

significantly affected by the dietary treatments in each of the ten

subjects. These OTUs were subjected to a taxonomic classification

and grouped according to phylum (Firmicutes, Bacteroidetes, and

Actinobacteria). Within these phyla, five random sequences of each

OTU identified above were aligned with the most closely related

type strains and entry in the NCBI database using Muscle 3.6 [54].

Phylogenetic trees were built with MEGA 4.0 Software [55] by

neighbor-joining with 1,000 bootstrap replicates. These trees

allowed us to visually assign OTUs as sequence clusters which, in

most cases, encompassed sequences from several subjects, and

consensus sequences were generated for each OTU. A local

nucleotide database was established for each subject in BioEdit [56]

containing all sequences detected by pyrosequencing, and the

BLASTn algorithm was used with a 97% cutoff (min. length

300 bp) to quantify each OTU in the fecal bacterial populations in

each sample. We verified that this approach did not result individual

sequences being assigned to different OTUs. In two occasions, two

OTUs that were initially identified as distinct had very high

sequence similarities, and were thus combined.

Diversity of the fecal microbiota was determined using 16S

rRNA sequence data with two different methods, Shannon’s index

and the generation of rarefraction curves. The DNA sequences of

each sample were individually aligned and clustered using Aligner

and Complete Linkage Cluster tools of the RDP. Individual cluster

files corresponding to each fecal sample were used to determine

the Shannon’s Index and construct Rarefraction curves.

Analysis of fecal microbiota by PCR-DGGE
PCR-DGGE and quantitative analysis of molecular fingerprints

was performed as described previously [31]. Briefly, PCR was

performed using primers PRBA338fGC (59CGCCCGCCGCGC-

GCGGCGGGCGGGGCGGGGGCACGGGGGGACTCCTA-

CGGGAGGCAGCAG’3) and PRUN518r (59-ATTACCGCG-

GCTGCTGG-39) (Ovreas et al., 1997). DGGE was done as

described by Walter and co-workers [57] using a DCode universal

mutation detection system (Bio-Rad, Hercules, USA), and DGGE

profiles were analyzed using BioNumerics software Version 5.0

(Applied Maths). Band staining intensities were calculated as

percent peak area in relation to the total peak area of the entire

fingerprint. DNA fragments whose staining intensity changed

according to dietary treatment were excised, purified as described

by Walter and coworkers [58], and cloned using the TOPOH TA

CloningH Kit for Sequencing (pCRH 4 TOPOH Vector) (Invitro-

gen). Plasmids were isolated from transformants using the

QIAprep Spin Minprep kit (Qiagen, Hilden, Germany), and

inserts were sequenced by a commercial provider. Closest relatives

of the partial 16S rRNA sequences were determined using the

SeqMatch web tool provided through the Ribosomal Database

Project (http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp).

Bifidobacterium specific qRT-PCR
Quantitative real time PCR (qRT-PCR) was performed as

described by Martı́nez et al. [31], using a Mastercycler Realplex2

(Eppendorf AG, Hamburg, Germany) and the Bifidobacterium-

specific primers (F: 59TCGCGTC(C/T)GGTGTGAAAG’3) and

R: 59CCACATCCAGC(A/G)TCCAC’3) [59]. Standard curves

for absolute quantification of bifidobacteria in the fecal samples

were prepared using overnight cultures (14 h) of Bifidobacterium

animalis ATCC 25527T and Bifidobacterium infantis ATCC 15697T.

Statistical analysis
One-way ANOVA tests with repeats were performed to identify

differences in fecal microbiota composition induced through the

dietary treatments (RS2, RS4 and control) in all ten subjects. One-

way ANOVA tests were performed to identify significant alterations

of taxa in individual subjects. Samples obtained during the baseline

and washout periods were not included into the statistical analysis.

Post hoc pair-wise comparisons were done using Tukey’s method.

P-values ,0.05 were considered significant unless otherwise stated.

Supporting Information

Table S1 Enumeration of bacterial groups through culturing.

(DOC)
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Table S2 Mean 6 standard deviations of weekly symptoms

reported by the subjects in a scale from 1 (best) to 5 (worse).

(DOC)

Table S3 Formulation of crackers per 100 grams.

(DOC)

Table S4 Baking conditions (uF) of crackers containing control

starch, RS2, RS4.

(DOC)

Figure S1 Diversity and species richness of the fecal
microbiota in ten human subjects that consumed
crackers containing native starch (red), RS2 (green),
RS4 (purple), or no crackers (yellow). (A) Rarefaction

curves showing the amount of OTUs in all individual fecal samples

taken from the ten subjects. (B) Shannon’s Diversity Index for all

subjects during treatments and baseline/washout.

(PDF)

Figure S2 Collective fecal microbial composition in-
cluding the major taxonomic groups at the (A) phylum,
(B) family, and (C) genus levels averaged for 10 human
subjects corresponding to the baseline, washouts, and
periods in which crackers containing native starch
(control), RS2 and RS4 were consumed.
(PDF)

Figure S3 Confirmation of findings obtained with
pyrosequencing by analyzing the fecal microbiota with
PCR-DGGE and Bifidobacterium specific qRT-PCR. (A)

Pearson correlation between the abundance of Bifidobacterium

adolescentis as determined by band intensity in PCR-DGGE and

pyrosequencing of 16S rRNA tags. (B) Pearson correlation

between cell numbers and percent abundance of bifidobacteria

as determined by qRT-PCR and pyrosequencing, respectively.

(PDF)
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