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Abstract

Background: We previously reported increased levels of protein-linked fucosylation with the development of liver cancer
and identified many of the proteins containing the altered glycan structures. One such protein is alpha-1-antitrypsin (A1AT).
To advance these studies, we performed N-linked glycan analysis on the five major isoforms of A1AT and completed a
comprehensive study of the glycosylation of A1AT found in healthy controls, patients with hepatitis C- (HCV) induced liver
cirrhosis, and in patients infected with HCV with a diagnosis of hepatocellular carcinoma (HCC).

Methodology/Principal Findings: Patients with liver cirrhosis and liver cancer had increased levels of triantennary glycan-
containing outer arm (a-1,3) fucosylation. Increases in core (a-1,6) fucosylation were observed only on A1AT from patients
with cancer. We performed a lectin fluorophore-linked immunosorbent assay using Aleuria Aurantia lectin (AAL), specific for
core and outer arm fucosylation in over 400 patients with liver disease. AAL-reactive A1AT was able to detect HCC with a
sensitivity of 70% and a specificity of 86%, which was greater than that observed with the current marker of HCC, alpha-
fetoprotein. Glycosylation analysis of the false positives was performed; results indicated that these patients had increases in
outer arm fucosylation but not in core fucosylation, suggesting that core fucosylation is cancer specific.

Conclusions/Significance: This report details the stepwise change in the glycosylation of A1AT with the progression from
liver cirrhosis to cancer and identifies core fucosylation on A1AT as an HCC specific modification.
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Introduction

Infection with hepatitis B virus (HBV) or hepatitis C virus

(HCV) is the major etiology of hepatocellular cancer (HCC) [1–4].

Both HBV and HCV cause acute and chronic liver infections, and

most chronically infected individuals remain asymptomatic for

many years [5]. About 10% to 40% of all chronic HBV carriers

eventually develop liver cancer, and it is estimated that over one

million people worldwide die because of HBV- and HCV-

associated liver cancer [2,6,7]. Indeed, HBV and HCV infections

are associated with over 80% of all cases of HCC worldwide and

can be as high as 96% in regions where HBV is endemic [3].

The progression of liver disease to liver cancer is primarily

monitored by serum levels of the oncofetal glycoprotein, alpha-

fetoprotein (AFP), or the core fucosylated glycoform of AFP, AFP-

L3. AFP can, however, be produced in many circumstances,

including in relation to other liver diseases [8–10] and is not

present in all those with HCC [11]. Therefore the use of AFP as a

primary screen for HCC has been questioned [12], and more

sensitive serum biomarkers for HCC are needed.

The glycosylation of proteins is cell specific. The N-linked

glycosylation of a protein reflects modifications that occurred in

the cell from which it came [13]. The glycosylation of the same

protein secreted from diseased tissue, malignant cells or normal

cells may, and often do, differ [14]. We, and others, have observed

changes in N-linked glycosylation with the development of

cirrhosis and HCC [15–19]. Specifically, the amount of core

fucosylated N-linked glycan derived from total protein prepara-

tions isolated from the serum of individuals chronically infected

with HCV and from those with a diagnosis of HCC was

consistently greater than that in healthy patients or in those with

HCV and ‘‘inactive’’ disease [19].

Using fucose-specific lectins to identify the proteins that become

fucosylated in patients with liver disease, we identified more than

100 glycoproteins from patients with HCC and/or cirrhosis that

contained increased fucosylation [19]. One of these proteins was
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alpha-1-antitrypsin (A1AT). We analyzed the N-linked glycosyla-

tion of the five major isoforms of A1AT and discovered, in

addition to increased levels of core fucosylation, significant

increases in outer arm fucosylation with the development of liver

cancer. Using a lectin-based assay, we measured this change in

over 400 patients with liver disease and found AAL reactive A1AT

could detect HCC with a sensitivity of 70% and a specificity of

86% using a cut-off of 5 relative units. Glycan analysis of the false

positives identified outer-arm fucosylation as being the cause of

false positivity. In contrast, increases in core fucosylation were

found only in patients with cancer. The reasons for this change

and the clinical usefulness of this change are discussed.

Materials and Methods

Ethics Statement
Both the Drexel University College of Medicine and the Saint

Louis University Institutional Review Boards approved the study

protocol, which was consistent with the standards established by

the Helsinki Declaration of 1975. Written informed consent was

obtained from each participant.

Patients
Serum samples were obtained from the Saint Louis University

School of Medicine (Saint Louis, MO). Demographic and clinical

information along with a blood sample was collected from each

participant in a serum separator tube. The sample was spun within

2 hours, and the serum was stored at –80uC until testing. Patients

were enrolled in the Saint Louis University Liver Cancer Clinic

and HCC were diagnosed using the same criteria established for

the HALT-C trial [20]. Participants had HCC identified by

biopsy, by a new hepatic defect showing vascular enhancement on

one imaging modality (ultrasound [US], magnetic resonance

imaging [MRI], or computed tomography [CT]) with AFP levels

.1000 ng/ml, or by presumed HCC. Participants were presumed

to have HCC if they had a discrete hepatic defect on US with

AFP levels ,1000 ng/ml and either two other scans (MRI, CT,

angiography) indicating malignancy with at least one of the

following characteristics: hypervascularity, arterial to portal

vein shunts, portal vein thrombosis near the defect, tumor in the

portal vein, or one other scan (MRI or CT) showing features

characteristic of HCC and either an increase in size over time after

initial discovery (at least doubling if less than 1 cm) or an increase

in the level of AFP to .200 ng/ml. Tumor staging was deter-

mined using the United Network of Organ Sharing-modified

(UNOS) TNM staging system for HCC. For the cirrhosis group,

patients with hepatitis C and biopsy-proven cirrhosis were

enrolled. All cirrhotic controls were screened for HCC using

US, CT, or MRI prior to enrollment. Patients who were HBsAg+
(with or without HBV DNA were classified into the HBV group.

Similarly, patients who were HCV RNA positive, with no

evidence of cirrhosis, were classified into the HCV group. Patients

with other non viral liver disease but without cirrhosis were

classified into the other liver disease group (OLD). Control

patients were healthy patients recruited by the study to act as

controls.

Two-Dimensional (2-D) Gel Electrophoresis
A total of 7 ml of serum was diluted in 330 ml of solubilization

buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 65 mM

DTT, 5 mM tributylphosphine, and a 0.4% mixture of carrier

ampholytes (Servalyt pH 2–4, pH 3–10, pH 9–1, 1:2:1). Samples

were vortexed periodically for 1 h and applied to an 18-cm pH

3-7 NL immobilized pH gradient (IPG) strip (Amersham,

Piscataway, NJ, USA). Gel rehydration was carried out for 14 h

at 50 V and focused using the IPGPhor (Amersham) isoelectric

focusing apparatus. After focusing, gel strips were first reduced

then alkylated in 6M urea, 2% SDS, 30% glycerol, 50 mM Tris,

pH 6.8, and either 30 mM DTT or 75 mM iodoacetamide for

10 min each. The second dimension was resolved with an 8% to

18% acrylamide–0.8% PDA gradient gel on a Protean II xi Cell

(Biorad Laboratories Headquarters, Hercules, CA, USA) with the

running conditions set to 20 mA/gel for 20 min and 40 mA/gel

for 4 h. Gels were fixed and stained with colloidal Coomassie. Gels

were imaged using the Odyssey Infrared Imaging System (Li-Cor

Biosystems, Lincoln, Nebraska) and analyzed using NonLinear

Dynamics Progenesis Workstation gel imaging software (NonLin-

ear Durham, NC, USA).

Matrix-Assisted Laser Desorption/Ionization-Time of
Flight (MALDI-TOF) Mass Spectrometry

Protein spots were excised from colloidal Coomassie blue

stained gels, destained, and digested with trypsin. Recovered

peptides were concentrated and desalted using ZipTip C18

(Millipore, Bedford, MA, USA) according to the manufacturer’s

directions and prepared for MALDI-TOF mass spectrometry by

mixing 0.5 mL of peptide mixture with 0.5 mL of 10 mg/mL a-

cyano-4-hydroxycinnamic acid and 1% formic acid in 50%

acetonitrile and allowing the droplet to dry on the MALDI plate.

Peptide mass maps were obtained using a Voyager-DE Pro Mass

Spectrometer (Applied Biosystems, Life Biotechnologies, Carlsbad,

CA) operated in positive ion reflectron mode. Proteins were

identified from the peptide mass maps using the MASCOT online

database (www.matrixscience.com) to search the nonredundant

protein database.

Glycan Analysis
The 2DE gel spots were excised and destained using 40%

methanol 7% acetic acid. The gel plugs were dehydrated with

acetonitrile, the acetonitrile was removed and 25mM DTT was

allowed to absorb into the plug. The plug was heated to 100uC for

5 min, allowed to cool, and alkylated in the dark for 30 min with

75mM iodoacetamide. The gel plugs were washed using two

repeats of acetonitrile dehydration and 20 mM ammonium

bicarbonate rehydration. After a final dehydration, the gel plugs

were dried in a speed vac. Peptide:N-glycosidase F (PNGase F) was

diluted with 20 mM ammonium bicarbonate pH 7 and allowed to

adsorb into the gel plug. The gel plug was then covered with the

same solution and allowed to incubate overnight at 37uC. The

glycans were eluted from the gel plug by sonication in Milli-Q

water three times; the elutant was pooled, dried down, and labeled

with a 2AB dye (Ludger, Oxford, UK) according to the

manufacturer’s instructions. The glycans were then cleaned up

using paper chromatography and filtered using a 0.22-mm syringe

filter. Fluorescently labeled glycans were subsequently analyzed

using the Waters Alliance high-performance liquid chromatogra-

phy system with a normal phase column (TSK amide 80 columns)

complemented with a Waters fluorescence detector and quantified

using the Millennium Chromatography Manager (Waters Corpo-

ration, Milford, MA). The mobile phase consisted of solvent A

(50 mM ammonium formate, pH 4.4) and solvent B (acetonitrile).

The gradient used was as follows: linear gradient from 20% to

58% solvent A at 0.4 mL/minute for 152 min followed by a linear

gradient from 58% to 100% solvent A for the next 3 min. The

flow rate was increased to 1.0 mL/minute; the column was

washed in 100% solvent A for 5 min. Following the wash step, the

column was equilibrated in 20% solvent A for 22 min in

preparation for the next sample. Glycan structures were identified

HCC Glycosylation
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by calculating the glucose uptake value and exoglycosidase

digestion, as described previously [21].

Lectin-Fluorophore-linked Immunosorbent Assay (FLISA)
The capture antibody (mouse antihuman A1AT, AbD Serotec,

Raleigh NC, USA), was incubated with 10 mM sodium periodate

for 1 h at 4uC. This treatment ensures the lectin is unable to react

with the glycosylation of the antibody and does not affect antibody

substrate binding. An equal volume of ethylene glycol was added,

and the oxidized antibody was brought to a concentration of

10 mg/mL with sodium carbonate buffer, pH 9.5. Antibody

(5 mg/well) was added to the plate and, following incubation,

was washed with 0.1% Tween 20mM phosphate buffered saline

pH 7.4. The plate was blocked overnight with 3% bovine serum

albumen/phosphate buffered saline. For analysis, 5 ml of serum

was diluted in 95 ml blocking reagent in Heterophilic Blocking

Tubestm (Scantibodies Laboratory, Inc. Santee, CA, USA) and

was incubated at room temperature for 1 h. Subsequently, samples

were added to the plates for 2 h and washed 5 times in lectin

incubation buffer (10 mM Tris pH 8.0, 0.15M NaCl, 0.1% Tween

20). Fucosylated A1AT was detected with a biotin conjugated

Aleuria aurantia lectin (AAL) (Vector Laboratories, Burlingame,

CA). Bound lectin was detected using IRDye 800 conjugated

streptavidin; the signal intensity was measured using the Odyssey

infrared imaging system (LI-COR Biotechnology, Lincoln,

Nebraska). In all cases, signal intensities were compared to those

of signals detected with commercially purchased human serum

(Sigma Chemicals). The lectin-FLISA detects the amount of

fucosylation present on an equal quantity of molecules captured

from each patient sample and is performed in a manner

independent of the total amount of protein in any given patient.

Statistical Analysis
Descriptive statistics for staged patients were compared by

scatter plots that included the outliers. All values were reported as

mean values plus or minus the standard error unless otherwise

stated. Because the data did not follow typical Gaussian

distribution, a nonparametrical test (two-tailed, 95% confidence,

Mann-Whitney test) was used to determine statistical difference

between the groups. To determine the optimal cutoff value for

each marker, the receiver operating characteristic curves were

constructed using all possible cutoffs for each assay. The area

under the receiver operating characteristic curve was constructed

and compared as described previously. A two-tailed P value of

0.05 was used to determine statistical significance. All analyses

were performed using GraphPad Prism (San Diego, CA, USA).

Results

Levels of A1AT and Degree of Sialyation in Patients with
Liver Cirrhosis and HCC

Pooled sera from healthy patients (n = 20), patients with liver

cirrhosis (n = 20) and patients with HCC with a background of

cirrhosis (n = 20) were resolved via 2-D gel electrophoresis (2DE)

(Table 1). Figure 1A shows a representative 2-DE of normal

human serum and Figures 1B, 1C and 1D show a focus on the 5

isoforms (M1, M2, M4, M6, and M7) of A1AT from the three

patient groups. Three major and two minor A1AT isotypes are

commonly seen when human serum is isoelectrically focused and

run on a 2-D gel [22,23] and these are not altered in the three

patient groups. The A1AT concentrations in each patient group

were comparable (Figures 1E–1G) and fell within normal serum

concentrations. This result was confirmed by analyzing A1AT an

Enzyme-linked immunosorbent assay (ELISA), whereby the A1AT

levels were 3.2 mg/mL in the composite from the healthy patients,

3.3 mg/mL in the composite from the cirrhotic patients, and

3.3 mg/mL in the composite from the HCC patients.

We performed glycan analysis on the M1, M2, M4, M6, and

M7 isotypes from the pools of sera from normal participants and

cirrhotic and HCC patients (Figures 1B–1D) and examined the

sialylation patterns of each isotype. Figure S1 shows a represen-

tative glycan profile for the M4 isotype from the controls.

Consistent with results of previous studies [24], the biantennary

glycan is the most abundant species. Figure S1-B shows the level of

the sialyated biantennary and triantennary glycan associated with

each isoforms from each patient group. As S1-B shows, the level of

sialyation on the bi-anntennery glycan (A2G2S1 or A2G2S2) was

Table 1. Patients Utilized in Study.

Disease Diagnosis1 HCC2 Cirrhosis3 HBV4 HCV5 OLD6 Controls7

Number 63 65 33 215 62 20

Etiology% (HBV/HCV/crypto/alcohol/other)8 14/52/6/20/8 N/A N/A 0/0/15/16/69 N/A

Age 58.04611 5068 58.6612 5863 5163 5568

Gender M:F% 71:29 84:16 75/25 60/40 56:44 50:50

MELD Score9 11.865 N/A N/A 962 N/A N/A

Child Class (A/B/C/) or NA%10 52:29:9:10 88:8:4 N/A N/A N/A N/A

Tumor Stage (1/2/3/4) %11 26:48:12:14 NA N/A NA N/A N/A

1Samples were provided coded from St. Louis University Medical School.
2,3HCC or cirrhosis was determined by MRI or by liver biopsy.
4Patients classified as HBV only were defined as those with HBsAg positivity but no evidence of liver cirrhosis.
5Patients classified as HCV only were defined as those with HCV RNA positivity but no evidence of liver cirrhosis.
6OLD, including cryptogenic liver disease, alcohol induced liver disease, nonalcoholic steatohepatitis, and autoimmune hepatitis.
7Patients without any evidence of liver disease were used as controls.
8Etiology: HBV, hepatitis B virus; HCV, hepatitis C virus; crypto, cryptogenic liver disease; alcohol, alcohol induced liver disease; other, liver disease of unknown origin.
9MELD: Model for end stage liver disease.
10The percent of patients with each Child-Pugh score is given as a percentage in each group.
11Tumor staging was determined using the United Network of Organ Sharing-modified TNM staging system for HCC. The percent of patients within each stage is given.

NA, not available.
HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; MELD, model for end stage liver disease; OLD, other liver disease.
doi:10.1371/journal.pone.0012419.t001
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similar in the different patient groups. Similarly, the level of

sialyation was not altered on the triantennary glycan. However,

there was an increase in the level of the tri-sialyated a-1,3 linked

fucosylated outer arm fucosylated glycan (A3F(3)1G3S3) on A1AT

from the cancer patients, as compared to the healthy and cirrhotic

patients. These peak are indicated in figure S1A & B with an

asterisk.

Increased Levels of Core and Outer Arm Fucosylation Are
Observed on A1AT from Patients with HCC

To test if the increased level of tri-sialyated a-1,3 linked

fucosylated outer arm fucosylated glycan (A3F(3)1G3S3) was the

result of an increase in sialyation or an increase in the total amount

of parent glycan, sialic acid was removed enzymatically and the

sample re-analyzed. Figure 2 shows the simplified desialylated

glycoprofile of the five major isoforms for each of patient group

following treatment with neuraminidase (Arthrobacter ureafaciens).

Three peaks of interest, indicated with a star in Figure 2, are

reproducibly altered in the M1, M2, and M4 isoforms as the

diseased liver progresses from cirrhosis to cancer. Sequential

exoglycosidase digestion (data not shown) showed these peaks to be

a core fucosylated biantennary glycan (F(6)A2G2), a triantennary

glycan (A3G3), and a triantennary glycan with a single a 1,3 linked

outer arm fucose residue (A3F(3)1G3). Figure 3A shows a

representative desialylated profile with the corresponding glycan

structure identified for each peak. Table 2 is a quantitation of each

glycan structure present on the five major isoforms for each patient

group. Specific changes in glycosylation are observed in the A1AT

isoforms with the progression to cirrhosis and HCC. On M6, the

isoform with very little tri and tetra-antennary structures, the

biantennary core fucosylated glycan (F(6)A2G2), represents 4.48%

in normal patients, 4.37% in patients with cirrhosis, and 7.04% in

patients with cancer, a trend seen across each isoforms (Table 2,

glycan 3). The percent change between healthy and cirrhosis and

between cirrhosis and cancer is given in Figure 3C and shows that

this structure changes with cancer only. In M4, the triantennary

glycan with an outer arm fucose residue (A3F(3)1G3) increases

from 4.34% in normal participants to 6.78% in patients with

cirrhosis, and 13.18% in patients with cirrhosis plus cancer. Again,

this trend is seen in each of the isoforms, with the exception of the

M6 due to the total lack of triantennary structures (Table 2, glycan

8). The relative increase in each of these fucosylated glycan

structures as a function of disease is shown in Figure 3B and shows

that this structures changes in both liver cirrhosis and HCC. The

increase in outer arm fucosylation was also associated with a

decrease in the parent N-linked glycan. That is, the increase in the

outer arm fucosylated triantennary glycan, A3F(3)1G3, was

associated with a decrease in triantennary glycan A3G3.

(Table 2, glycan 6).

Analysis of Fucosylated A1AT by Lectin-FLISA in a Cohort
of 458 Patients

To further examine if the changes in both core and outer arm

fucosylation could be seen in individual patients and potentially

used as a diagnostic marker of cancer, we analyzed a patient

cohort consisting of 458 patients for the level of fucosylated A1AT

using a lectin-FLISA based assay. In this assay, A1AT was

captured using a monoclonal antibody and the level of fucosylation

was determined using the fucose-binding AAL. AAL recognizes

both outer arm and core fucosylated glycan. Twenty patients with

no evidence of liver disease were used as controls; 33 patients

infected with HBV had an unknown level of liver fibrosis; 215

patients infected with HCV had an unknown level of liver fibrosis;

65 patients had liver cirrhosis; 62 patients had other liver diseases;

and 63 patients had liver cancer (Table 1). Figure 3A shows the

relative level of fucose lectin-reactive A1AT in the six patient

groups. Values are given as -fold increase in relation to the level in

commercially purchased ‘‘normal’’ sera. The mean and 95%

confidence interval of the mean are shown for each group. We

found a clear statistical difference between the HCC group and all

other groups (P,0.0001) and between the cirrhotic group and the

control group (P = 0.0173) but not between any other groups

(Figure 3A). The mean level of lectin-reactive A1AT was 1.4-fold

(60.80) above sigma in the control group, 1.7-fold (60.1.8) in the

group infected with HBV, 1.9-fold (61.8) in the group infected

with HCV, 2.6-fold (62.3) in the group with cirrhosis, 2.6-fold

(62.0) in the group with other liver diseases, and 7.70-fold (64.45)

in the group with HCC. Surprisingly, there was no difference in

the mean level of AAL-reactive A1AT in HCC patients in regards

to the stage of HCC (data not shown). That is patients with stage 1

HCC, as defined as a single lesion of less than 2cm [11], had a 9.1

fold (64.70) increase in the level of AAL reactive A1AT while

Figure 1. Two-dimensional gel purification of alpha-1-antitrypsin isoforms. Sera from pools of healthy controls (A, B, E) and cirrhosis (C, F)
and cancer (D, G) patients were focused using IPGPhor 3–7 NL first dimension strips followed by SDS-PAGE separation on 8% to 18% acrylamide gels.
The pI of selected gel spots are M1 = 4.91, M2 = 4.95, M4 = 5.00, M6 = 5.05, and M7 = 5.10. Panels E, F, and G show the relative abundance of each gel
spot.
doi:10.1371/journal.pone.0012419.g001
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Figure 2. The desialylated N-linked glycan profile for each of the five A1AT isoforms from normal controls (top) and cirrhotic
(middle) or HCC patients (bottom). The major peaks that are altered are indicated with an asterisk and are (from left to right) a core fucosylated
bianntennary glycan (F96)A2G2), a trianntennary N-linked glycan, and a trianntennary N-linked glycan with a single outer arm fucose residue
(A3F[3]3). The percent of each of these peaks in the different isoforms and in the different patient groups is shown in Table 2.
doi:10.1371/journal.pone.0012419.g002

Figure 3. Specific changes in glycosylation on A1AT can be observed with the progression from liver cirrhosis to liver cancer. (A) A
representative N-linked glycan profile from a normal control patient. The 11 major glycan structures identified are indicated and given a number. This
number is used in Table 2 with structure names provided. The relative change in the level of the trianntennary N-linked glycan with a single outer arm
fucose residue (A3F[3]G3) (B) and the core fucosylated bianntennary glycan (F[6]A2G2) (C) in normal to cirrhotic and cirrhotic to HCC is shown as
percent change. As this figure shows, increases in outer arm fucosylation are associated with both cirrhosis and HCC, whereas increased core
fucosylation is only observed with HCC.
doi:10.1371/journal.pone.0012419.g003
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patients with stage 4 HCC (those with multiple lesions .6cm in

diameter) had a mean of 6.7 fold (65.54), which was not different

than that observed in stage 1 patients (p = 0.114).

In this cohort, fucosylated A1AT could distinguish between

HCC and non-HCC cases with an area under the receiver

operator curve (AUROC) of 0.871. When comparing only HCC

versus cirrhosis, the discriminatory ability was 0.867. Using a cut-

off of 5 relative units AAL reactive A1AT could differentiate HCC

from cirrhosis with a sensitivity of 70% and a specificity of 86%. In

contrast, AFP, when analyzed in this cohort, had an AUROC of

0.764 and could differentiate HCC from cirrhosis with a sensitivity

of 59% and a specificity of 93% using a cut-off of 20 ng/mL.

False Positives Have Increased Levels of Outer Arm
Fucosylation Whereas Core Fucosylation Is Specific for
HCC

Some patients do not have cancer but have elevated levels of

lectin-reactive A1AT (Figure 4A). Because we observed changes in

outer arm fucosylation on A1AT from patients with cirrhosis, it

was of interest to determine if those with false positive results had

core or outer arm fucosylation. Figure 4A shows the results of

glycan analysis from purified A1AT from three cirrhotic patients

(out of nine) and three patients with stage 1 or 2 HCC (out of nine)

and analyzed as before. The results from these patients are shown

in Figure 4A, and a representative glycan profile of one of these

patients is shown in Figure 4B, along with the level of 4 major

glycan structures indicated. As Figure 4B shows, consistent with

the results presented in Table 2 and in Figures 3A–3C, the three

cirrhotic patients have levels of core fucosylation (F(6)A2G2)

similar to those observed in healthy controls. However, these

patients have significant increases in outer arm fucosylation

(A3F(3)1G3), similar to the highest levels seen in patients with

HCC. That is, the level of outer arm fucosylation in these patients

ranged from 10% to 17%, which is similar to the level observed in

patients with HCC (13%). In contrast, three patients with HCC

who had very strong positive results from the lectin FLISA test had

increased core and outer arm fucosylation. For example, the core

fucosylated bianntennary glycan represented 9.55% on A1AT

purified from patient H27. Similarly, this glycan represented more

than 9% on A1AT purified from patients H18 and H23. Increases

in outer arm fucosylation ranging from 14.03% to 15.97% of the

total glycan on A1AT were also observed in these patients.

Figure 4D shows the results of all 18 patients with a focus on the

level of outer arm (a-1,3) and core (a-1,6) fucosylation. When

examining all 9 cirrhotic false positives the mean level of core

fucosylation was 3.77%60.25 and the mean level of outer arm

fucosyalation was 11.88%62.79. In the case of the cancers the

mean level of core fucosylation was 8.62%61.2 and the mean

level of outer arm fucosylation was 14.26%61.9. There was

statistical difference between the level of core a-1,6 fucosylation

between these nine cirrhotic and nine HCC patients (p,0.0001)

but not with a-1,3 linked fucosylation (p = 0.07). Importantly, the

maximum level of core fucosylation observed in the false positive

cirrhotics was 4.01%, similar to what was observed in healthy

controls (3.62%).

Figure 4. Increase in lectin-reactive A1AT with the development of HCC and identification of core fucose as a specific marker of
liver cancer. (A) The level of lectin-reactive A1AT in patients with HCC, HBV infection, HCV infection, or other liver diseases (OLD) and in controls.
The solid line represents the mean value. The x-axis represents the patient group. The y-axis shows the -fold increase in lectin-reactive A1AT
compared with that in commercially purchased serum. (B) Glycan analysis of A1AT isoform M4 from patient 21. (C) Quantification of glycan analysis
from three cirrhotic patients (01,21 and 27) and three patients with stage 1 or 2 HCC (HCC-23, HCC 27 and HCC 18). The levels of 4 major glycan
structures are shown. As this figure shows, in cirrhotic false positives, there is an increase in outer arm but not core fucosylation. Consistent with data
shown in Figures 2 and 3, increases in core fucosylation on AAT were observed only from patients with HCC. (D) Scatter plot of the level of a-1,3 or a
1,6 linked fucose from 9 cirrhotic false positives and 9 patients with either stage 1 or 2 HCC.
doi:10.1371/journal.pone.0012419.g004
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Discussion

Recent reports have indicated that increased core and outer-

arm fucosylation could be observed following glycomic analysis of

either total human serum or serum depleted of immunoglobulin

[18,19,25]. We examined the glycosylation of a single protein,

A1AT, as a function of liver cirrhosis and liver cancer. To this end,

we found some changes that were consistent with our previous

findings such as an increase in core fucosylation as well as changes

in outer arm fucosylation.

The observation that changes in both core and outer arm

fucosylation occur may provide clues to the molecular basis of this

change. That is, although the exact mechanisms for increased core

fucosylation in HCC are unknown, they are thought to involve

increases in both the levels of the enzyme and the substrates

involved in core fucosylation [17].

It is also possible that these markers reflect some alteration in

the Golgi apparatus. Recent reports have suggested that, in

regards to the liver, the fucosylation of proteins is involved in

protein sorting to the bile [26]. Thus, it is conceivable that the

appearance of fucosylated proteins in the serum may reflect a

common defect in protein sorting. It is interesting to note that the

glycosylation of A1AT in the serum of patients with liver cancer

(Figures 2, 3 and 4) is similar to that observed in the bile of healthy

individuals [26].

It is also interesting to note that lectin reactivity was greater than

the total change observed in fucosylation. For example, patient 27

had either core or outer arm fucose on 22.82% of his or her N-

linked glycans. In contrast, A1AT from a healthy individual had

fucose (core or outer arm) on 9% of the N-linked glycans. Hence,

using the lectin FLISA, we should have observed closer to a 2.5-

fold increase and not the 11-fold increase that was obtained. This

difference may be an artifact of the lectin-FLISA, the result of

other proteins attached to A1AT, increased or modified O-

glycosylation, or increased accessibility of the lectin to the fucose

residues. All of these possible scenarios are under investigation.

It is also important to note that increased outer arm fucosylation

was observed both in patients with cirrhosis and in those with

HCC. This finding implies that outer arm fucosylation was not

specific to cancer but rather was probably associated with

inflammation, first from the liver cirrhosis and then from the

presence of the HCC lesion. Indeed, the level of outer arm

fucosylation may be a more specific marker of inflammation and

may be predictive of cancer development [27,28]. In contrast,

increases in core fucosylation are observed only in patients with

HCC, suggesting that this change is cancer specific.

As Figure 4A shows, many patients in the non-HCC groups

have elevated levels of lectin-reactive AAL. Analysis of three

patients with elevated AAL levels from the cirrhosis group

indicated that they had changes primarily in outer arm

fucosylation, not in core fucosylation. To that end, core

fucosylation may be a more specific target for the detection of

cancer [29]. Efforts to use lectins such as lens culinaris and Pisum

sativum agglutinin, which will not bind outer arm fucosylated

glycan, in the lectin FLISA proved problematic because these

lectins have much weaker binding affinities and do not actually

bind fucose directly. Efforts to make recombinant AAL with

specificity only to core-linked a-1,6 fucose are currently underway.

In summary, we have analyzed the glycosylation of A1AT as a

function of HCC and used a lectin FLISA to measure this change

in a cohort of more than 400 patients. These data need to be

confirmed in larger cohorts of patients to determine if these

markers are truly reliable serum markers of early HCC, to

compare their accuracy with AFP in patients of diverse gender,

ethnicity, etiologies of liver disease, and to determine their role in

HCC surveillance. Future studies should also test the benefit of

combinatorial analysis with other potential markers of HCC, such

as des-gamma-carboxy prothrombin as well as to examine how the

level of core and outer arm fucosylation varies as a function of

anti-cancer treatment.

Supporting Information

Figure S1 The sialylated N-linked glycan profile for each of the

five A1AT isoforms from normal, cirrhotic, or HCC patients. (A)

A representative sialyated profile of the M4 A1AT isoform from

healthy individuals. (B) The relative percent of sialyated bi-

antennary or tri-antennary glycan in each A1AT isoform.

Found at: doi:10.1371/journal.pone.0012419.s001 (3.00 MB TIF)
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